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Solution of the two-center Dirac equation with 20-digit precision using the finite-element technique
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We present a precise fully relativistic numerical solution of the two-center Coulomb problem. The special case
of unit nuclear charges is relevant for the accurate description of the H2

+ molecular ion and its isotopologues,
systems that are an active experimental topic. The computation utilizes the 2-spinor minmax approach and
the finite-element method. The computed total energies have estimated fractional uncertainties of a few times
10−20 for unit charges and a bond length of 2 atomic units. The fractional uncertainty of the purely relativistic
contribution is 1 × 10−17. The result is relevant for future precision experiments, whereas at present the
uncertainties arising from the quantum electrodynamic treatment of the rovibrational transition frequencies are
dominant.
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I. INTRODUCTION

There is currently considerable interest in precisely mea-
suring the rotational and vibrational transitions in the
molecular hydrogen ions and comparing the values with ab
initio theory predictions [1]. Such comparisons allow a se-
ries of applications: determination of mass ratios, of nuclear
charge radii, tests of wave mechanics, and search for fifth
forces [2–4]. Disregarding hyperfine-structure contributions,
the relativistic contributions are the largest ones beyond the
Schrödinger energy. They make an important, easily mea-
surable contribution to rotational and vibrational transition
frequencies of the molecular hydrogen ions. For example, for
the overtone vibrational transition (v = 0, L = 0) → (v′ =
5, L′ = 1) of HD+, this contribution is �4.0 GHz, or 1.5 ×
10−5 relative to the transition frequency. Here v, L are the
vibrational and rotational quantum numbers of the level. To-
day’s experimental uncertainty of this transition frequency
is of the order of 1 kHz, i.e., 2.5 × 10−7 of the relativis-
tic contribution, and approximately 1 × 10−11 relative to the
transition frequency itself [5]. There are excellent prospects
for further reduction of the experimental uncertainty in the
near future: this would be achieved using techniques already
demonstrated for the precision spectroscopy of single atomic
ions, that have reached uncertainties below the 1 × 10−17 level
(see Ref. [6] for a review). Two aspects can be mentioned in
this respect. First, the controlled trapping of single molecular
hydrogen ions has recently been demonstrated [7] and, sec-
ond, the systematic shifts of vibrational transitions have been
analyzed theoretically and found to allow an uncertainty at the
level below 1 × 10−16 [8]. Thus, it is clearly desirable to per-
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form a highly precise theoretical evaluation of the relativistic
contribution.

The currently employed approach to deal with the dom-
inant relativistic effects is the perturbative evaluation of the
Breit-Pauli Hamiltonian, with respect to the electronic wave
function computed in the approximation of fixed nuclear
charge centers [9]. This gives the relativistic shift of the or-
der of α2 compared to the nonrelativistic energy, the latter
being close to −1 atomic unit (a.u.). Beyond this, the shift
of relative order α4 can also be computed perturbatively, with
an appropriate formalism [10]. Finally, computations of the
contribution of the order of α6 have been available since the
late 1980s.

In order to verify and extend the perturbation results, here
we perform a high-precision numerical solution of the Dirac
equation for the electron in the field of two static positive
charges. We reduce the uncertainty of the relativistic shifts by
a factor >1 × 107 compared to the best previously published
finite-element method (FEM) calculation, from 1 × 10−14 a.u.
[11] to below 1 × 10−21 a.u.

The paper begins in Sec. II A with a brief introduction
of the minmax approach for finding solutions of the Dirac
equation, circumventing the issues found in other approaches.
We also explain the iteration procedure and the nonrelativistic
limit (Sec. II B). The implementation is discussed in Secs. II C
and II D. Section III presents the computational aspects,
including convergence of the FEM calculations and the treat-
ment of the limiting cases of the hydrogen atom and of the
nonrelativistic molecular hydrogen ion. The main results are
contained in Sec. IV, viz., the relativistic shift as a function
of the fine-structure constant and as a function of distance
between the charge centers. Finally, Sec. V evaluates the
consequences of the present treatment of the relativistic shifts
on transition frequencies already measured for the molecular
hydrogen ion.
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II. METHOD

We apply the method previously developed in the works
of one of us (O.K.) [11–13]. A minmax principle is used that
is based on the elimination of the small component from the
Dirac equation, leading to a nonlinear eigenvalue problem that
is solved iteratively. The main extension implemented is this
work is the use of larger FEM order, larger number of grid
points, and the use of quadruple precision (32 digits) in order
to achieve a high numerical accuracy. Also, stringent tests are
performed that allow one to determine the uncertainty of the
energy values obtained in the numerical solution. Specifically,
we obtain a highly accurate result for the H2

+ system. We
also show that the chosen relativistic treatment has an effi-
ciency approaching that of the solution of the nonrelativistic
Schrödinger equation.

A. Concept

A solution of the one-particle 4-spinor Dirac equation can
be obtained from a stationarity principle for the functional
I = 〈ψ |Ĥ |ψ〉 − ε〈ψ |ψ〉, but one cannot apply a variational
minimum principle as for the Schrödinger equation. However,
there exists a minimum principle in the space of bound elec-
tronic states. The minmax principle (see [14] and references
therein [15]) applies to the construction of the eigenvalues of
an operator Ĥ that has a gap in its continuous spectrum (here
from −mc2 to mc2) and that is unbounded from above and be-
low. The principle considers the subspace of positronic states,
F−, and the subspace of electronic states, F+, and requires a
two-step search for extrema. The sequence of minmax level
energies is given by

λk = inf
dimG=k

G subspace of F+

sup
ψ �=|0〉

ψ∈(G⊕F− )

〈ψ | Ĥ | ψ〉
〈ψ | ψ〉 , (1)

where F+ ⊕ F− is an orthogonal decomposition of a well-
chosen space of smooth square integrable functions and
〈ψ | Ĥ | ψ〉/〈ψ | ψ〉 is the Rayleigh quotient. It has been
proven [14] that the sequence of the minmax energies λk

equals the sequence of eigenvalues of Ĥ in the interval
(−mc2,+mc2). The minmax principle transforms the problem
of finding a solution of the Dirac equation to a minimization
(infimum) problem. It guarantees a solution of the Dirac equa-
tion in the space of the large component φ+. The spectrum
consists only of positive eigenvalues, i.e., the negative eigen-
values are eliminated and the spectrum is free from spurious
states [14,15].

B. The minmax eigenvalue equation

The Dirac eigenvalue equation of the electron in a scalar
potential V , ĤD ψ = εψ , with the 4-spinor ψ , can be written
in the form (

V L̂†

L̂ V − 2mc2

)(
φ+
φ−

)
= ε

(
φ+
φ−

)
, (2)

where we introduced the 2-spinors φ+ and φ− for the large
and small component of ψ , respectively. L̂ = −i c h̄ σ · ∇,
σ = ∑3

k=1 σk ek , where σk are the Pauli matrices. ε is the
eigenenergy that in the nonrelativistic limit corresponds to the

eigenenergy of the Schrödinger equation. Rather than solving
Eq. (2) directly, or operating with the functional I above,
we proceed to reduce the 4-spinor treatment to a 2-spinor
treatment. First, we eliminate the small component φ− from
Eq. (2), obtaining the differential (”strong”) form

L̂†

(
L̂ φ+

ε + 2mc2 − V

)
= (ε − V ) φ+. (3)

In addition, we turn to a ”weak” (integral) formulation
that provides a good efficiency for FEM with large finite-
element basis sets. It is obtained by multiplying both sides in
Eq. (3) with φ

†
+ and integrating over the electron’s coordinate

space [14],∫ |L̂φ+|2
ε + 2mc2 − V

dr3 =
∫

(ε − V ) |φ+|2dr3. (4)

We now apply the minmax principle and seek the minimum
value of ε. We expand the 2-spinor φ+ over a set of basis func-
tions with unknown coefficients. This set should be as large
(complete) as possible. The vector of expansion coefficients
will be denoted by φ+. Variation of Eq. (4) with respect to
the unknown coefficients in combination with the requirement
that ε is stationary with respect to all coefficients leads to a
matrix equation that determines the coefficients. It reads

M(ε) φ+ = ε φ+. (5)

Thus, the original 4-spinor Dirac equation has been trans-
formed into a Schrödinger-like equation for the 2-spinor φ+,
but where the effective ”Hamiltonian” M is eigenvalue de-
pendent. The equation is nonlinear in the eigenvalue ε and
therefore has to be solved by iteration. It can be shown that
the solutions of this equation minimize the Rayleigh quotient
over all electronic bound states of ĤD [16].

It has been shown that an efficient approach consists of
expanding the left-hand side of Eq. (4) in a series [14], as
follows. We start with an approximate value ε0 of an eigen-
value ε. For the iteration j + 1 ( j = 0, . . . , jmax), we expand
the left-hand side as [17]∫ |L̂φ+|2

ε j + 2mc2 − V
dr3

=
∫ |L̂φ+|2

(ε0 + 2mc2 − V )︸ ︷︷ ︸
g(ε0 )

+�ε j
dr3

=
∫ |L̂φ+|2

g(ε0)
dr3 +

kmax∑
k=1

(−�ε j )k
∫ |L̂φ+|2

g(ε0)k+1
dr3, (6)

with �ε j = ε j − ε0. The series expansion has the advantage
that the iteration procedure reduces to solving successive
eigenvalue problems. At iteration j + 1, one computes the
updated global matrix corresponding to the expression (6),
M′(ε0,�ε j ). One then solves the conventional eigenvalue
problem M′(ε0,�ε j )φ+ = ε j+1φ+. This is the computation-
ally heaviest and therefore longest part of the numerical
procedure. Another advantage of the series expansion is that
the matrix elements for the individual terms in (6) need to
be computed just once for a given grid, at the beginning of
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the iteration. For explicit expressions of the elements of the
matrix Hamiltonian M′, we refer to Ref. [17].

The matrix equation is solved by an iterative method with
a Cholesky decomposition [18]. In our method, only an open
boundary condition is implemented so far, which has been
found to work well.

The iteration process is stopped at j = jmax or when a
required accuracy between successive iterations is reached.
The series converges quickly and for atoms with small nuclear
charge, only kmax = 3 to 4 terms are needed. Typically, a small
number of iterations is sufficient, jmax = 3 for the Z = 1 case.
For large-Z nuclei, usually kmax = 4 to 9 terms are sufficient
and jmax = 3–7 remains small or moderate. For the nonrel-
ativistic case c −→ ∞, the k expansion is unnecessary; see
below.

In the FEM approach, one usually performs the computa-
tion for a series of grids with increasing number of elements
and thus increasing number of basis functions. When one
moves from one grid to the next finer grid, one uses as new
start value ε0 the solution ε jmax+1 found in the previous grid.

The 2-spinor formulation exhibits major advantages com-
pared to the 4-spinor formulation: the number of matrix
elements to be computed is a factor of 3 smaller and the
solution of the matrix (by inverse vector iteration) requires a
factor of 4 fewer operations. The reduced size of the problem
enhances the computational performance and allows one to
tackle larger problems [13,17].

Note that Eq. (4) can be written in the form

∫
c−2|L̂φ+|2

[2m + (ε − V )/c2]
=

∫
(ε − V ) |φ+|2dr3. (7)

Therefore, in the nonrelativistic limit (c → ∞), Eq. (4) turns
into the Schrödinger equation, considering that L̂ is propor-
tional to c. Thus, we recognize that Eq. (4) exhibits similar
properties to the Schrödinger equation. In practice, we calcu-
late the nonrelativistic values by setting c to a large number,
c � 1015(α2 � 10−30). In this limit, the small component φ−
becomes zero and the two components of φ+ are then iden-
tical. The possibility of computing the nonrelativistic energy
value in this way (i.e., using the same numerical procedures)
leads to an important advantage: by subtracting it from the
value for finite c, we can extract the relativistic shift with a
better accuracy than the accuracy of the total (nonrelativistic
plus relativistic shift) energy (see Sec. III).

We showed in previous work [13,19] that in the weak for-
mulation, the 2-spinor fully relativistic FEM approach to the
two-center Coulomb problem is numerically better behaved
than the numerical solution of the 4-spinor Dirac equation.
One finds some very desirable behaviors: the energy values
converge from above with increasing grid size (finer subdivi-
sions) and do not show the typical convergence from below or
oscillatory convergence of the 4-spinor Dirac equation. This is
a consequence of the elimination of the small component φ−,
which effectively projects the problem onto electronic states
and leads to a second-order differential operator bounded from
below.

C. Implementation

The Dirac Hamiltonian for a single particle of mass m in a
two-center potential V is

ĤD = c α̂ · p̂ + mc2β̂ + V, (8)

V = −
2∑

l=1

h̄ c α Zl

|r − Rl | .

Z1, Z2 are the charges of the two nuclei in units of the ele-
mentary charge, α̂ and β̂ are the usual Dirac matrices, r is the
position of the electron, p̂ is the momentum operator, and Rl

are the positions of the nuclei. α is the fine-structure constant.
Alternatively, if atomic units are employed,

ĤD = mc2α2(α−1α̂ · p̂′ + α−2β̂ + V ′), (9)

V ′ = −
2∑

l=1

Zl

|r′ − R′
l | .

The primed quantities correspond to the case when coordi-
nates and momenta are in atomic units. mα2c2 is the atomic
unit of energy.

The nonrelativistic energy is found from the difference
between the total energy and the rest-mass energy m c2, in
the limit c → ∞ of Eq. (8), or, equivalently, in the limit
α = e2/(4πε0 h̄ c) → 0 of Eq. (9). In both cases, the product
c α, i.e., the potential energy V,V ′ and the atomic energy unit,
are to be kept constant. In the following, often c and α−1 are
used synonymously; they are equal in an appropriate system
of units. For the atomic case (Z2 = 0), we consider different
values of Z1, in particular Z1 � 1; see below.

For the two-center case, one has axial symmetry around
the internuclear axis (the z axis) and favorably uses prolate
spheroidal (elliptic spheroidal) coordinates ξ and η,

x = R

2
u(ξ, η) cos ϕ, y = R

2
u(ξ, η) sin ϕ,

z = R

2
ξ · η, where u(ξ, η) =

√
(ξ 2 − 1)(1 − η2), (10)

and R is the internuclear distance in atomic units. The elec-
tron’s angular coordinate is ϕ. The distances between the
electron and the nuclei are

r1 = (ξ + η)
R

2
, r2 = (ξ − η)

R

2
. (11)

The Coulomb singularity of point nuclei causes a singu-
lar behavior of the relativistic solutions at the position of
the nuclei of the form r−1+γl,κ

l , with γl,κ =
√

κ2 − (αZl )2

and κ = | jz| + 1
2 , l = 1, 2. This is well known from atomic

calculations [20,21]. Thus, further singular coordinate trans-
formations (whose back transform is nonanalytic) are needed
to take care of this issue [11,12,17]. The transformation from
ξ, η to s, t reads

ξ = 1 + c1 sinhν (s/2) + c2 sinh(ν+2)(s/2) · · · , (12)

η = 1 − c1 sinν (t/2) + c2 sin(ν+2)(t/2) − · · · ;

0 � s < ∞, 0 � t � π,

for ν = 2, 4, 6, 8, 10, with ci = 0 for i >
ν

2
.
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The transformation regularizes the singularities at the nuclei
by increasing the point density in the inner region. The higher
ν, the denser the points near the nuclei to ensure a better
approximation of the wave function. The coefficients and the
details are given in Refs. [11,12]. As a result of this transfor-
mation, one can use a square grid over s and t .

A high value of ν (e.g., 6, 8) is needed for grids with a
large number of points, which in turn enable a higher conver-
gence order q for the energy and the full utilization of a FEM
approximation of the order p. See below and Refs. [12,13,17].

Because of axial symmetry, the angular dependence is
treated analytically by the ansatz,

ψ =
(

φ+(s, t, ϕ)
φ−(s, t, ϕ)

)
=

⎛⎜⎜⎝
φ1(s, t ) · ei( jz−1/2)·ϕ

φ2(s, t ) · ei( jz+1/2)·ϕ

iφ3(s, t ) · ei( jz−1/2)·ϕ

iφ4(s, t ) · ei( jz+1/2)·ϕ

⎞⎟⎟⎠. (13)

The wave function ψ is an eigenstate of the total angular mo-
mentum, and the good quantum number jz is the z component
of the total angular momentum.

In the present FEM treatment, the definition domain of s, t
is subdivided into triangular elements e. Each component k of
the relativistic wave function is approximated as

φk (s, t ) = Gk (s, t )
∑

e

n∑
i

dk,e
i Nk,e

i (s, t ), (14)

where Gk (s, t ) are global functions, and the sums run over all
elements e of the grid and over all n nodal points (si, ti ) of
each element. Gk (si, ti ) dk,e

i is the value of the wave function
at nodal point i. The shape functions Ne

i (s, t ) are zero outside
the element e. Inside they are complete polynomials of the
order of p in s, t [22], implementing a Lagrange-form inter-
polation. The values of the coefficients of the polynomials
are determined by the conditions that Nk,e

i (s j, t j ) = δi j for
all nodal points i, j inside the element. In our FEM imple-
mentation, we use triangular Lagrangian-type elements with
equidistant point distribution. The functions Gk (s, t ) account
for the global behavior of the wave function, where Gk

1(s, t )
represents the angular momentum dependence and Gk

2(s, t )
expresses the singular behavior at the two nuclei. They are
given by

Gk (s, t ) = Gk
1(s, t ) · G2(s, t ),

Gk
1(s, t ) = [(ξ 2 − 1)(1 − η2)]

mk
2 = R

mk
2

⊥ , (15)

m1,3 = jz − 1/2, m2,4 = jz + 1/2,

G2(s, t ) = r−1+γ1,κ

1 · r−1+γ2,κ

2 . (16)

Here, R⊥ is the (perpendicular) distance to the internuclear
axis. For larger Z , γl,k becomes smaller and the singular be-
havior of the wave function is stronger, hence the convergence
is less efficient. Indeed, as can be seen for the example hy-
drogenic atoms (Table III), the numerical precision decreases
for higher atomic numbers. Still, introducing the singular co-
ordinate transformation given by Eq. (12) guarantees a high
convergence order because it allows one to describe the sin-
gularity of the wave function near the nuclei more accurately
[20,23].

III. COMPUTATIONAL ASPECTS

A. Generalities

We compute the lowest-energy state of energy ε1(1/2)g, i.e.,
with jz = 1/2, and gerade symmetry g. The notation of the
corresponding nonrelativistic state is 1σg. We abbreviate the
notation of the (exact) energy in atomic units by the shorthand
Erel.

In all calculations, we use the FEM polynomial order p =
10. We run the calculation for different values of ν and size
of the grid in order to achieve the best convergence. The size
is defined by the size of the largest ellipse, ξ = ξmax = const,
containing the grid elements. The size of the grid can alter-
natively be defined by Dmax(ξmax), defined as the distance
between one of the centers to a point on the outermost ellipse
ξmax, where this distance is perpendicular to the line between
the two centers [19]. Dmax values (given in atomic units) of
approximately 30–50 are used. This should be compared to
the most relevant value of the internuclear distance, R = 2, the
approximate equilibrium bond length of the H2

+ molecule.
From this comparison, we see that the space around the nuclei
considered in the calculation is large compared to the internu-
clear distance.

The largest number of grid points we were able to rea-
sonably work with was N = 32 761. As we show below, for
the system H2

+, a fractional uncertainty of the energy of the
order of 10−20 is thereby achieved. For the relativistic shift,
the absolute uncertainty is of the order of 10−22 atomic units,
where we profit from an error cancellation concerning the
nonrelativistic energy Enrel. Thus, this is a high-performance
calculation. The computing time for the grid sequence up to
648/32 761 (see Table I) was 15–20 core-hours on a super-
computer. The code is not parallelized and runs on one core.

B. Convergence for the fully relativistic and the nonrelativistic
case

We present in Table I the relativistic and nonrelativistic
energy values Erel(N ), Enrel(N ) of H2

+ in grids of different
point number N , including their extrapolations to an infinite
grid [19]. The relativistic shift �Erel (fourth column) is the
difference, Erel − Enrel.

Performing an extrapolation is legitimate if the energy
values exhibit a regular dependence on the grid size. This is
the case for this problem if relevant parameters are chosen
judiciously. For the computation reported in Table I, indeed,
one notices that with increasing number of grid points (finer
subdivision), the accuracy increases and convergence to the
true value is from above, not only for the nonrelativistic case
but also for the relativistic case. This behavior is known from
previous treatments of the 2-spinor approach and is a major
advantage of this method. As a guide to the eye, bold digits
show the significant digits, but the actual uncertainty may be
smaller than one unit of the last bold digit.

To test the convergence and confirm the accuracy of the
result, we present in Fig. 1 a log-log plot of the errors δE (N )
of the energies and of the relativistic shift computed for a
particular grid N , with respect to the extrapolated value. As
can be seen in the red and blue line of the left panel, the
convergence rate in the 2-spinor formulation is close to that
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TABLE I. Energies of H2
+ at R = 2 and for α−1 = 137.035999084. All values in atomic units. The calculations utilize ν = 6 and Dmax =

50. Ne, N are the numbers of the elements and grid points, respectively. Superscript 1 indicates values extrapolated over the sequence Ne. Bold
digits are significant. Superscript 2 is with ν = 2, and Dmax = 50; the relativistic shift is computed using the last relativistic energy value of
column 2.

Ne/N Relativistic, Erel Nonrelativistic, Enrel Rel. shift, �Erel (10−6)

8/441 −1.102281044470406312209 −1.1022736006131289397101 −7.44385727737249928
32/1681 −1.102641575567778026666 −1.1026342090292764774058 −7.36653850154926045
72/3721 −1.102641581012739732920 −1.1026342144751026384076 −7.36653763709451296
128/6561 −1.10264158103240750588 −1.1026342144947767797576 −7.36653763072611806
200/10201 −1.102641581032576082616 −1.1026342144949453798398 −7.36653763070277600
288/14641 −1.102641581032577138209 −1.1026342144949464356152 −7.36653763070259364
392/19881 −1.102641581032577162741 −1.1026342144949464601360 −7.36653763070260506
512/25921 −1.102641581032577163917 −1.1026342144949464613087 −7.36653763070260827
648/32761 −1.102641581032577164097 −1.1026342144949464614889 −7.36653763070260893
extrpl1 −1.102641581032577164118 −1.1026342144949464615095 −7.36653763070260901
extrpl2 −1.1026342144949464615089689454 −7.36653763070260903

of the nonrelativistic Schrödinger equation [19]. This is the
main result of the minmax concept.

When we choose a suitably large value of ν, the values
converge extremely rapidly. The mean convergence is ap-
proximately ∼N−8 considering all results from Table I. The
convergence rate even appears to increase for the largest val-
ues of N used.

The accuracy in the FEM using polynomials of the order
of p typically scales as ∼N−p with grid size. In our case, N
can be made sufficiently large, but the singular behavior near
the centers significantly reduces the efficiency of the FEM
approximation. This can be controlled by the singular coordi-
nates transformation given by Eq. (12), as already mentioned,
but it is necessary to adapt the value of ν to the grid size. This
issue is not so important in the nonrelativistic case because
the wave function is finite at the nuclei. To illustrate this, we
performed calculations for the same grids given in Table I,
but with a lower value ν = 4, and present the corresponding
log-log plot in Fig. 1 (right).

For small grids, the error evolution is similar for both the
relativistic and nonrelativistic values; here the distribution of

the grid points is balanced between inner and outer regions.
Then, for a larger number of grid points, the error caused by
the relativistic singularity [Eq. (16)] becomes larger. This is
because, for small ν, the points’ density in the inner region is
not sufficient to reproduce the singular behavior at the nuclei.
The error of the FEM solution then does not decrease any
more strongly with increasing grid size. In contrast, in the
nonrelativistic case, the error continues to decrease strongly
with increasing N .

Returning to a larger value ν = 6 (Fig. 1, left), when the
wave function is better approximated near the charge centers,
the error due to the approximate treatment of the relativistic
singularity [Eq. (16)] becomes smaller also for higher grid
point numbers. Here, a suitable distribution of the grid points
between the inner and outer regions of the treated domain is
achieved [11,17].

In the relativistic shift, one profits from an error can-
cellation: the error reduces by two or more orders, as the
comparison of the green and red lines in Fig. 1 (left) evi-
dences. The scaling of the error of the relativistic shift with
grid point number exhibits an exponent of approximately

FIG. 1. Convergence behavior of the relativistic (red square) and nonrelativistic (blue, left triangle) energies, and of the relativistic shift
(green circle), as a function of the number of grid points, N . δE = E(N ) − E or δE = �Erel (N ) − �Erel is the deviation of the energy from
the extrapolated value, as given in Table I. Two cases are considered. Left: Dmax = 50, ν = 6, good convergence. Right: Dmax = 70, ν = 4,
unsatisfactory convergence for the relativistic solution. Left, black triangles: nonrelativistic calculation with ν = 2 and Dmax = 50.
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TABLE II. Dependence of the relativistic shift �Erel (in 10−6

atomic units) at R = 2 on the domain size Dmax. The second column
is the result for the densest grid, with 648/32 761 elements/points.
The third column is the extrapolated value for infinite point num-
ber. All evaluations were performed with ν = 6. Bold digits are
significant.

Dmax Value for densest grid Extrapolated value

30 −7.3665376307026089560 −7.36653763070260899
40 −7.3665376307026089666 −7.36653763070260904
50 −7.3665376307026089298 −7.36653763070260901
60 −7.3665376307026088816 −7.36653763070260898
70 −7.3665376307026088322 −7.36653763070260894

q � 8.5 < p. Determining the reason for this is beyond the
scope of this work.

We take as the uncertainty of the extrapolated value the
difference between the extrapolated value and the value com-
puted for the most dense grid. Then, the achieved uncertainties
are as follows. For Erel: � 2 × 10−20 atomic units, or � 2 ×
10−20 in fractional terms. The same holds for the nonrelativis-
tic energy (with the same ν). For the relativistic shift �Erel =
Erel − Enrel: � 1 × 10−22 atomic units or � 1 × 10−17 in frac-
tional terms.

To show that the precise value of Dmax is not crucial, we
present in Table II the values of the relativistic shifts for

several grid extensions Dmax, and where the grid point number
is the largest one reported in Table I. As expected, the shifts
stay stable over a large range of Dmax. A larger number of
grid points requires larger Dmax to avoid truncation errors.
However, a larger value ν = 6, 8, . . . condenses the points
in the inner region and dilutes them in the outer region. To
counter this effect, one chooses a smaller Dmax for larger ν for
the same system and grids sequence. Note that the variation
of Dmax mainly affects the outer region; therefore, due to the
error cancellation, the relativistic shift is less sensitive to Dmax.

Finally, we consider the nonrelativistic calculation. Be-
cause the wave function is not singular at the nuclei, ν = 2
is sufficient. This maintains the uniform distribution of the
grid points. The wave-function error is determined by the
polynomial approximation. As Fig. 1 (black triangles) shows,
the convergence order is approximately q = 9.5 for large grid
point number, almost equal to the polynomial order p = 10.
Test calculations similar to those in Table II showed that
the most accurate result is found for Dmax � 50, yielding the
result shown in Table I (last line).

C. Test of the numerical procedure on the hydrogenlike ions

We can test our FEM procedures on the hydrogenlike ions
since the exact solution of the Dirac equation is available. The
energy levels are given by (in explicit units, excluding the rest-
mass energy)

Ejn = −mec2

{
1 −

[
1 +

(
Zα

(n − j − 1/2) +
√

( j + 1/2)2 − (Zα)2

)2]−1/2}
. (17)

The relativistic energy shift in atomic units is �Erel =
Ejn/(1 a.u.) − Enrel = (mec2α2)−1Ejn + Z2/(2 n2). Here, we
consider the ground state, n = 1, j = 1/2.

The FEM values were computed by setting the second
center to be a dummy center with Z2 = 0. In Table III, we
show the results for various values of Z1, each obtained with

TABLE III. Comparison of the extrapolated FEM numerical results for the relativistic shift of hydrogenlike ions with the exact result. Z is
the nuclear charge. Exact values are computed using Eq. (17). The cases Z = 1, 2 are computed with two different values of c. The first value
used is for ease of comparison with other values reported in the literature. The next-to-last entry shows the actual relativistic energies. The last
entry reports a nonrelativistic calculation. FEM parameters used: superscript 1: Dmax = 50, ν = 4; superscript 2: Dmax = 40, ν = 6; superscript
3: Dmax = 30, ν = 6.

Z �Erel, exact (a.u.) �Erel, FEM (a.u.) Difference (a.u.) note
α−1 = 137.0359895

1 −6.65659748374605054203 ×10−6 −6.656597483746050539 ×10−6 −3.0 × 10−24 1

2 −1.06514068278487728906 ×10−4 −1.0651406827848772881 ×10−4 −1.0 × 10−22 1

α−1 = 137.035999084
1 −6.6565965526253642790×10−6 −6.656596552625364281×10−6 −2.0 × 10−24 2

2 −1.0651405337817627608×10−4 −1.065140533781762761×10−4 2.2 × 10−22 3

10 −6.674201689468916918 ×10−2 −6.674201689468916913 ×10−2 −4.8 × 10−20 3

20 −1.076523210794734716 −1.076523210794734713 −3.1 × 10−18 3

30 −5.524906318343685119 −5.52490631834368509 −3.0 × 10−17 3

Erel, exact Erel, FEM Difference

30 −455.52490631834368512 −455.5249063183436834 −1.7 × 10−15 3

Enrel, exact Enrel, FEM Difference

30 −450 −449.999999999999998309 −6.9 × 10−16 3
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TABLE IV. FEM nonrelativistic energy of a particular excited
state of the two-center problem with Z1 = 3, Z2 = 2 and distance
R = √

15, that has the exact energy −(1/2) a.u. The third column
shows the differences FEM minus exact. The FEM computations
were performed with Dmax = 50, ν = 4. Ne/N is the number of the
grid elements/points. The values are truncated.

Ne/N Enrel, FEM (a.u.) Difference (a.u.)

8/441 −0.493598112780690785516 6.4 × 10−4

32/1681 −0.499999685189264323528 3.2 × 10−7

72/3721 −0.499999998831658333453 1.2 × 10−9

128/6561 0.499999999995025573402 5. × 10−12

200/10201 −0.499999999999921236179 7.9 × 10−14

288/14641 −0.499999999999998240336 1.8 × 10−15

392/19881 −0.499999999999999914507 8.5 × 10−17

512/25921 −0.499999999999999994099 5.9 × 10−18

648/32761 −0.499999999999999999158 8.4 × 10−19

extrpl −0.4999999999999999999483 5.1 × 10−20

10th-order FEM, with the maximum number of grid points
computed being 32 761, and extrapolated.

The agreement with the exact results is excellent. For the
case of nuclear charge Z1 = 1, the difference of the relativistic
shifts is of the order of 10−24 a.u., or 5 × 10−19 fractionally.
This value confirms our uncertainty estimate given above for
the two-center system H2

+. The last two entries in the table
compare the result of the energies for the relativistic and non-
relativistic cases. We see that our FEM is almost as accurate
in the relativistic case as in the nonrelativistic case; there is
only a factor 2 loss in accuracy.

Note that unlike what is obviously the case in Eq. (17), in
the FEM computations of both the hydrogenic ions and the
two-center problem, varying Z1 or Z1, Z2 simultaneously is
not equivalent to varying α (such a variation is reported in
Table XI below). This is because our computations of the α

dependence are based on Eq. (9) with fixed atomic energy unit
and atomic distance unit.

D. Test of the numerical procedure on an exactly known excited
nonrelativistic molecular state

It is little known that there exist exact solutions of the non-
relativistic two-center problem for particular combinations of

charge values Z1, Z2 and distances R [24]. These solutions
are of great interest because performing the corresponding
FEM calculation allows one to verify the extrapolation pro-
cedure and the uncertainty estimate. Unfortunately, these
exact solutions are not the electronic ground states, but ex-
cited states. We have treated the case (Z1 = 3, Z2 = 2, R =√

15), whose 4sσ state has the exact nonrelativistic electronic
energy, Enrel = −(1/2) a.u. The FEM computation is very
cumbersome because this state is the 21st jz = 1/2 state in
order of increasing energy, and all intermediate states have to
be calculated before treating the state of interest. As for other
calculations in the present study, the energy values are iterated
until they remain stable at the level of ∼10−27–10−30 a.u.

The result is shown in Table IV. The difference of the
extrapolated value relative to the exact value is 5 × 10−20 a.u.
This agreement, obtained for a system having substantially
larger squared charge than the H2

+ system, comparatively
large ground-state energy −5.01691106677841796618 a.u.
(significant digits, extrapolated), and using a moderate value
of Dmax, gives us confidence that our uncertainty estimates for
the relativistic solution of H2

+ are reasonable.

IV. RESULTS

A. Series expansion of the relativistic shift

We have computed the FEM relativistic energy shift at
R = 2 a.u. for a set of values of c = α−1, ranging from 5 to
1200. The shifts are reported in Table XI. We fitted a series
�Erel = ∑smax

s=1 d2sα
2s to the FEM data. The best-fitting series

is with smax = 6 and is reported in Table V, together with
the standard errors of the best-fit coefficients. The resulting
fractional deviations of the fitted values from the FEM values
are approximately (1–10)×10−16, substantially larger than the
uncertainties of the FEM values. Therefore, these FEM uncer-
tainties were not taken into account in the fit.

We also show in Table V the comparison of our best-fit
series expansion with what we believe is the most precise
perturbation series. The coefficient for the order α2 was
recently recomputed by Korobov [27]. It differs by 7 ×
10−12 a.u. from the value in the supplemental material of
Korobov (2018) (file ”tmph-2017-0313-File001.dat”) [25]. It
is now in agreement with the FEM-computed coefficient. We
recognize that a main difference between the perturbation
result and FEM result is the coefficient of the order of α4. The
uncertainty of the perturbation coefficient value as calculated

TABLE V. Numerical series expansion of the FEM relativistic shift �Erel and comparison with perturbation and variational theory results.
Column 2 contains the coefficients d2s, s = 1, . . . , 6, for H2

+ at R = 2 a.u. Columns 3 and 4 list the available best results of perturbation
and variational theory, respectively. Column 5 shows rounded values of the coefficients for the exact solution of the hydrogen atom. The
uncertainties in column 2 are for the 95% confidence intervals. The uncertainty in column 3, line 3 is one unit of the last digit. [a] Ref. [27];
[b] Ref. [10]; [c] Ref. [26].
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TABLE VI. Relativistic shift �Erel, in units 10−6 a.u., as a function of internuclear distance. α−1 = 137.035999084. The calculation is
performed with Dmax = 35, ν = 8 in the range R = 0.05–0.25, Dmax = 40, ν = 8 in the range R = 0.30–1.95, and with Dmax = 40, ν = 6 for
R = 2.0–5.0, and in addition extrapolated to infinite grid point density.

R �Erel (R) R �Erel (R) R �Erel (R) R �Erel (R)

0.05 −102.205220874297353 1.30 −12.448456768274240 2.55 −5.97244880905323561 3.80 −5.28072339944993510
0.10 −94.2070961513458068 1.35 −11.840587433312817 2.60 −5.89682181016418189 3.85 −5.28498620517162691
0.15 −85.3131813342957982 1.40 −11.287362392410170 2.65 −5.82730252634455702 3.90 −5.29060881471213234
0.20 −76.6282196861760657 1.45 −10.783014143550542 2.70 −5.76349219079285695 3.95 −5.29751088104089074
0.25 −68.6084308516448949 1.50 −10.322491660645794 2.75 −5.70502398629843855 4.00 −5.30561552816506309
0.30 −61.4076071297781014 1.55 −9.9013599726656259 2.80 −5.65155994593625421 4.05 −5.31484911635246100
0.35 −55.0368465872734128 1.60 −9.5157152038954672 2.85 −5.60278818603095446 4.10 −5.32514103071051427
0.40 −49.4432261483497075 1.65 −9.1621125180967957 2.90 −5.55842043205063507 4.15 −5.33642349106801577
0.45 −44.5490384746501491 1.70 −8.8375048531073833 2.95 −5.51818980322643993 4.20 −5.34863138128002584
0.50 −40.2710819788872559 1.75 −8.5391906977447463 3.00 −5.48184882610666476 4.25 −5.36170209623029187
0.55 −36.5297231045446188 1.80 −8.2647694632039667 3.05 −5.44916765105193533 4.30 −5.37557540494242218
0.60 −33.2527185045808470 1.85 −8.0121032479359465 3.10 −5.41993244895295341 4.35 −5.39019332833313161
0.65 −30.3763935052245251 1.90 −7.7792839978640807 3.15 −5.39394396828117659 4.40 −5.40550003025016080
0.70 −27.8455359036944480 1.95 −7.5646052307100206 3.20 −5.37101623503049416 4.45 −5.42144172053575057
0.75 −25.6127144763335920 2.00 −7.3665376307026090 3.25 −5.35097538022926582 4.50 −5.43796656894539199
0.80 −23.6373874480319195 2.05 −7.1837079333992589 3.30 −5.33365858154336776 4.55 −5.45502462883235896
0.85 −21.8849832650076221 2.10 −7.0148806141308055 3.35 −5.31891310709145427 4.60 −5.47256776958247562
0.90 −20.3260390746755839 2.15 −6.8589419712531499 3.40 −5.30659545098689629 4.65 −5.49054961685173189
0.95 −18.9354315392755268 2.20 −6.7148862598532203 3.45 −5.29657055133523823 4.70 −5.50892549972265814
1.00 −17.6917086864986668 2.25 −6.5818035851749282 3.50 −5.28871108247578041 4.75 −5.52765240395459001
1.05 −16.5765189239048591 2.30 −6.4588693097269201 3.55 −5.28289681418178407 4.80 −5.54668893055877092
1.10 −15.5741278636581426 2.35 −6.3453347653767748 3.60 −5.27901403134357336 4.85 −5.56599525898221531
1.15 −14.6710118162609399 2.40 −6.2405190930066166 3.65 −5.27695500836772192 4.90 −5.58553311423485584
1.20 −13.8555168671494631 2.45 −6.1438020585500913 3.70 −5.27661753314668177 4.95 −5.60526573734309895
1.25 −13.1175733519842682 2.50 −6.0546177163079877 3.75 −5.27790447599794821 5.00 −5.62515785855980919

by Korobov is not known. However, our result for the α6-order
coefficient confirms the value and uncertainty estimate of
Mark and Becker [26]. In total, at R = 2 a.u., the FEM result
is approximately 0.3 kHz smaller than the perturbation result.

B. Electronic binding energy curve

The R dependence of the Dirac energy for H2
+ has received

little attention after the early works by Luke et al. [28] and
Bishop [29] because, after the experiment of Wing et al.
in 1976 [30], for several decades no precision spectroscopy

TABLE VII. Comparison of present and literature values for
the ground-state energy of the H2

+ molecular ion at R = 2. This
work: FEM result computed with ν = 6, Dmax = 40 . All results were
obtained for α−1 = 137.0359895.

Reference Erel

This work −1.10264158103360758005
Mironova et al. (2015) [37] −1.1026415810330
Tupitsyn et al. (2014) [38] −1.1026415810330
Fillion-Gourdeau et al. (2012) [39] −1.102641580782
Artemyev et al. (2010) [40] −1.1026409
Ishikawa et al. (2008) [41] −1.102641581033598
Kullie and Kolb (2001) [11] −1.10264158103358
Parpia and Mohanty (1995) [42] −1.1026415801
Sundholm (1994) [43] −1.102641581
Yang et al. (1991) [34] −1.1026415810336

experiments were performed that could challenge the the-
ory. The work of Howells and Kennedy is one of the few
exceptions [31]. In the early 2000s, Korobov computed the
R-dependent precise perturbation theory in connection with
the new generation of experiments that had started. The result
consists of the α2 coefficient [9], whose updated values have
been provided by Korobov for this work, and the α4 coeffi-
cient [10,25]. We denote the relativistic shift computed from
this data by �Erel,Korobov.

We have computed by FEM the relativistic shift for R val-
ues from R = 0.05 to R = 5.0 in steps of 0.05; see Table VI.
From the smallest to the largest R, the absolute uncertainties
vary from 7 × 10−20 to 1.2 × 10−23, i.e., from 7 × 10−16 to
3 × 10−18 in fractional terms.

V. DISCUSSION AND CONCLUSION

A. Comparison with other work

Historically, the first numerical solution of the Dirac equa-
tion for the two-center problem was undertaken by Pavlik and
Blinder [32], followed by Luke et al. [28] and by Müller et al.
[33]. Two decades later, the precision had improved by five
orders with the work of Yang et al. [34]. Another one order of
improvement followed in the next decade, reported by Kullie
and Kolb [11]. In the two decades from that work until the
present work, no other independent result was published with
comparable or lower uncertainty, to the best of our knowledge.
Several studies of the Dirac equation were undertaken, but

052801-8



SOLUTION OF THE TWO-CENTER DIRAC EQUATION … PHYSICAL REVIEW A 105, 052801 (2022)

TABLE VIII. Some results on the relativistic shift at R = 2 a.u. The value of α used for the computation is indicated. ”Rescaled” means
that the original computation was made for a different value of α. We rescaled the original value of the shift by (α/αorig )2 in order to allow
comparison of the shift values. This rescaling is adequate, given the moderate number of significant digits in the quoted works. The uncertainty
indicated in parentheses is either taken from a statement of the authors or, in absence, the unit of the last digit of the reported shift value is
assumed. Notation: ”7.38(3)” means an uncertainty of 0.03.

they were not aimed towards record precision for the H2
+

system. Table VII presents some results on the total energy
that were published in the last 25 years. For earlier listings
of results on the Dirac equation for H2

+, see, e.g., Rutkowski
and Rutkowska [35], Sundholm [36], and Mironova et al. [37].
Table VIII instead focuses on the relativistic shift, going back
to the earliest works. We see that the present result is not or
only marginally in agreement with Refs. [10,11,37], perhaps
because their uncertainties were underestimated.

Figure 2 plots in red the difference between the FEM result
and Erel,Korobov for some of the available values of R. The
same value of c is used. The difference is less than 1.5 kHz
in magnitude for the range of R values where the considered
nuclear wave functions have significant probability. Note that
the uncertainty of the FEM values is estimated to be of the
order of 10−22 a.u. � 10−9 kHz, completely negligible on the
scale of the plot. We have not analyzed the origin of the visible
small deviations of the values from a smooth dependence,
especially near R = 1, as they do not impact the following
discussion. For concreteness, Table IX compares our values
of the relativistic shift with the previous result, for selected
values of internuclear distance.

TABLE IX. Relativistic shifts: column 2 is the perturbation
results �Erel,Korobov; column 3 is the deviations of the FEM re-
sults, �Erel, from the perturbation results. For the FEM values, see
Table VI. Note: 1 × 10−14 a.u. corresponds to 66 Hz.

R �Erel,Korobov (10−6 a.u.) �Erel − �Erel,Korobov (10−14 a.u.)

0.5 −40.2710800643 −193.577
1.0 −17.6917083247 −36.1806
2.0 −7.36653763008 −4.9999
3.0 −5.48184882611 −1.77565
4.0 −5.30561552817 −1.21509
5.0 −5.62515785856 −0.522041

B. Relativistic shift of transition frequencies

A key question is whether the highly accurate results ob-
tained in this work affect the interpretation of the experiments
performed so far. Those interpretations were based on the
theoretical treatment of Korobov [1] and co-workers.

We compute the relativistic shift to any rotational-
vibrational level energy as the average over the nuclear
rotational-vibrational probability density,

�Erel(v, L) =
∫ Rmax

Rmin

�Erel(R)[ψv,L(R)]2R2dR. (18)

Here, ψv,L(R) is the nuclear wave function, and v, L are the
vibrational and rotational quantum numbers of the level. The

FIG. 2. Black triangles: FEM relativistic energy shift �Erel for
the two-center problem as a function of nuclear distance R. Red
circles: difference between FEM and perturbation theory. The units
of these two quantities are stated in the labels. The values of a
selection of red circle points is given in column 3 of Table IX. Other
lines: the nuclear radial probability densities and density differences
for some relevant rotational-vibrational levels and transitions of the
HD+ molecule.
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TABLE X. Correction δν to the transition frequencies of HD+ arising from the present treatment of the relativistic shift, to be added to the
perturbation result of Korobov. The fractional correction is the contribution normalized to the respective transition frequency.

Transition Correction δν (Hz) Fractional correction

(v = 0, L = 0) → (v′ = 0, L′ = 1) 0.9 7 × 10−13

(v = 0, L = 0) → (v′ = 5, L′ = 1) 60 2 × 10−13

(v = 0, L = 3) → (v′ = 9, L′ = 3) 110 3 × 10−13

relativistic shift of a transition frequency between an upper
level (v′, L′) and a lower level (v, L) is �νrel(v, L, v′, L′) =
�Erel(v′, L′) − �Erel(v, L). This relativistic shift is not com-
plete: there are finite-nuclear-mass corrections to it. However,
the fixed-nuclei shifts that we treat here are the dominant ones.
As they turn out to be small (see below), we do not need to
consider their corrections.

We apply this expression to the molecule HD+, since pre-
cision spectroscopic results on rovibrational transitions are so
far available only for it. The range {Rmin, Rmax} over which we
computed the relativistic energy shift is sufficiently large for
the levels investigated experimentally so far. The HD+ wave
functions ψv,L(R) were obtained by averaging over the elec-
tronic degrees of freedom the full nonrelativistic three-body
wave function computed by Korobov.

We show in Fig. 2 the differences between the squared
wave functions of a few levels that have recently been stud-
ied experimentally. Because these differences oscillate as a
function of R and because the theory difference �Erel −
�Erel,Korobov is a slowly varying function over the range of
R values where the levels in question have a substantial
probability density, the differences (corrections) δν = �νrel −
νrel,Korobov turn out to be small. The values are reported in
Table X.

We conclude that the corrections δν are negligible com-
pared to today’s uncertainty of the QED contributions, which
amount to � 1 × 10−11 relative to the transition frequencies.
Nevertheless, we expect that in the not-too-distant future, the
precise results obtained here will become relevant, given that
the QED calculations may improve and that experiments defi-
nitely have the potential to improve their precision by several

TABLE XI. Energy and relativistic shift at R = 2 a.u. for different values of c = α−1. Values Erel, �Erel are extrapolations to an
infinitely dense grid. Column 4 lists the estimated uncertainty of the relativistic shift, u(�Erel ), where the notation (X ) stands for ×10X .
C18 = 137.035999084 is the CODATA 2018 value. For α−1 = 5–100, the calculations were performed with Dmax = 40, ν = 8; for the
remaining values, D = 50, ν = 6 was used. The uncertainty is estimated as u = |�Erel − �Erel (densest grid)|.

c Erel (a.u.) �Erel (10−6 a.u.) u (a.u.) c Erel (a.u.) �Erel (10−6 a.u.) u (a.u.)

5 −1.10823616628281245725 −5601.95178786599669 1(-20) 160 −1.10263961819119284065 −5.40369624637914234 5(-23)
10 −1.10402174575200841030 −1387.53125706194975 2(-21) 170 −1.10263900115369296245 −4.78665874650093787 4(-23)
15 −1.10324985455012380333 −615.640055177342779 9(-22) 180 −1.10263848407154501463 −4.26957659855311778 3(-23)
20 −1.10298030822228538131 −346.093727338920758 5(-22) 190 −1.10263804646585469507 −3.83197090823356170 3(-23)
25 −1.10285565422468955126 −221.439729743090708 3(-22) 200 −1.10263767284587354132 −3.45835092707980879 3(-23)
30 −1.10278796937627037902 −153.754881323918467 2(-22) 250 −1.10263642783353080771 −2.21333858434620445 1(-23)
35 −1.10274716721032824078 −112.952715381780223 1(-22) 300 −1.10263575153336329279 −1.53703841683127793 1(-23)
40 −1.10272068892299195324 −86.4744280454926898 1(-22) 350 −1.10263534374665671285 −1.129251710251342481 8(-24)
45 −1.10270253726390794456 −68.3227689614840043 8(-23) 400 −1.10263507907778813941 −0.864582841677900829 6(-24)
50 −1.10268955437077065101 −55.3398758241904579 7(-23) 450 −1.10263489762185970781 −0.683126913246303846 4(-24)
55 −1.10267994897141281291 −45.7344764663523530 5(-23) 500 −1.10263476782758958165 −0.553332643120139307 3(-24)
60 −1.10267264354692895289 −38.4290519824923411 4(-23) 550 −1.10263467179455575659 −0.457299609295080670 2(-24)
65 −1.10266695836994784029 −32.7438750013797330 3(-23) 600 −1.10263459875358473660 −0.384258638275091429 2(-24)
70 −1.10266244745636394391 −28.2329614174833596 3(-23) 650 −1.10263454191055032518 −0.327415603863668284 1(-24)
75 −1.10265880834615650990 −24.5938512100493472 2(-23) 700 −1.10263449680735263922 −0.282312406177710643 1(-24)
80 −1.10265583004409394271 −21.6155491474821583 2(-23) 750 −1.10263446042040077440 −0.245925454312894882 1(-24)
85 −1.10265336172953448692 −19.1472345880263714 2(-23) 800 −1.10263443064035125509 −0.216145404793583294 1(-24)
90 −1.10265129327838995379 −17.0787834434932376 1(-23) 850 −1.10263440595937777350 −0.191464431311990959 8(-25)
95 −1.10264954276284737702 −15.3282679009164686 1(-23) 900 −1.10263438527648397256 −0.170781537511048560 7(-25)
100 −1.10264804821164058439 −13.8337166941238396 1(-23) 950 −1.10263436777255322485 −0.153277606763340967 5(-25)
110 −1.10264564725880168723 −11.4327638552257233 1(-22) 1000 −1.10263435282798205741 −0.138333035595908438 5(-25)
120 −1.10264382115409753260 −9.60665915107108865 9(-23) 1050 −1.10263433996708407279 −0.125472137611282305 4(-25)
130 −1.10264240002530585058 −8.18553035938906732 7(-23) 1100 −1.10263432881976328289 −0.114324816821377799 3(-25)
C18 −1.10264158103257716412 −7.36653763070260900 7(-23) 1150 −1.10263431909458761106 −0.104599641149552752 3(-25)
140 −1.10264127240938096226 −7.05791443450075182 6(-23) 1200 −1.10263431055954565992 −0.096064599198404129 2(-25)
150 −1.10264036271043522934 −6.14821548876783325 5(-23)
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orders. Another application of the present results is to use the
obtained wave functions to compute quantities of relevance
for a more precise treatment of the QED corrections.

Note added: Extending Table I, we ob-
tained the energies for an even larger grid,
Ne/N = 800/40401, using D = 50, ν = 6, α =
137.035999084. The more precise extrapolated values
are Erel = −1.10264158103257716411725691, Enrel =
−1.102634214494946461508144410, �Erel =
−7.36653763070260911 × 10−6. The value �Erel has
an estimated uncertainty of 2.3 × 10−23 a.u., fractionally
3 × 10−18.
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