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Quantum frequency conversion with coherent transfer of time-bin encoding
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Time-bin encoding of photons offers a robust kind of long-distance quantum communication over lossy
channels. The diversity of material nodes in quantum networks operating at natural frequencies requires coherent
frequency and wave-form conversion of information-carrying photons to provide an efficient quantum interface
with optical fibers and various quantum memories, which has been extensively studied. However, the quantum
frequency conversion with transfer of time-bin encoding between single photons of different wavelengths has
not yet been explored. In this paper, we present a method for efficiently exchanging time-bin encoding in the
conversion process between two photons propagating in cold tripod atoms driven by a strong laser field. The latter
is designed to slow down photons and suppress their absorption due to electromagnetically induced transparency.
Photons interact parametrically through modified atomic coherence, which is utilized also to achieve equal
group velocities of photons. We demonstrate the ability of our model to generate entanglement between distant
atoms that equally share the original quantum information stored in the ground-state polarization qubits of
both atoms. The proposed method for frequency conversion based on modified atomic coherence is promising
because it can simplify the implementation of reliable and high-speed quantum communication protocols based
on single-photon entanglement.
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I. INTRODUCTION

Quantum information encoded in time-bin photonic qubits
is preserved over long distances due to the robustness of time-
bin superposition against decoherence in optical fibers [1–3],
which greatly benefits lossless quantum information sharing
among many users at predetermined times with control-
lable wave forms [4,5]. Besides, the employment of time-bin
entangled photons allows linear optical quantum comput-
ing (LOQC) to be performed in a single spatial mode [6],
providing scalable implementation of multiqubit protocols,
without creating unwieldy networks that inevitably arise in
all schemes of LOQC [7,8] due to many spatial modes. The
time-bin encoding is easily achieved for narrow-band pho-
tons at the visible to short near-infrared wavelengths, which
are the working wavelengths for the most efficient quantum
memories. In order to perform these tasks of quantum in-
formation memory processing and transmission over optical
fibers, the single photons (SP) of certain wavelengths carry-
ing information from and to memories must be coherently
transformed to and from the fiber-optic telecommunication
band 1.5 μm, where the photon losses are minimal. In recent
decades, a number of experiments have been performed in
nonlinear media on quantum frequency conversion (QFC)
of broadband photons from the visible and near-infrared
ranges to the telecom band [9–17]. Inverse up-conversions
are also realized [18–25]. The conversion between the vis-
ible and telecom wavelengths has been performed with
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narrow-band photons in cold Rb atoms using four-wave mix-
ing (FWM) [26,27]. Furthermore, a number of works have
demonstrated the ability of QFCs to retain a broad range of
photon properties [9,13,17,18,21,22]. However, QFC that pre-
serves time-bin encoding has not yet been explored. Besides,
only few studies have been carried out on the frequency con-
version between visible photons (see, for example, Ref. [28]),
while the QFC in the visible range is highly demanded for
entanglement generation and swapping between nodes of a
hybrid quantum network, as the quantum internet [29].

In this paper, we propose and theoretically develop a fre-
quency converter for narrow-band visible photons that aims
to solve both problems. In our scheme, the visible photons are
efficiently converted into photons of various wavelengths in
the visible or telecommunication bands with coherent trans-
fer of time-bin encoding due to three-wave mixing that is
triggered by a collective atomic-spin excitation. We consider
an ensemble of tripod-type cold atoms (Fig. 1), where the
signal and converted photons interact with atoms on the tran-
sitions |1〉 → |3〉 and |2〉 → |3〉, correspondingly, while a
control laser field Ec resonantly driving atoms on the |4〉 →
|3〉 transition slows down the photons and suppresses their
absorption due to electromagnetically induced transparency
(EIT). The parametric interaction between photons is ini-
tiated by a prearranged coherence between two metastable
states |1〉 and |2〉 (Fig. 1), which acts as an auxiliary field in
three-wave mixing with the two quantum fields. For closely
spaced levels 1 and 2 separated by several GHz, when the
converted photon is also in the visible range, this coher-
ence can be created directly with microwave fields. For the
converted photon in the telecom band, the two-photon stimu-
lated Raman transitions can be used for this goal. Although
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FIG. 1. Tripod level configuration with parametric interaction of
two single photons E1 and E2 through the coherence between two
metastable states |1〉 and |2〉 induced by a driving field �eff. The
�c control field creates electromagnetically induced transparency for
photons.

it is difficult to find a tripod-level configuration in neutral
atoms with transitions at telecom wavelengths, the solid-state
crystals doped with rare-earth ions can provide an important
alternative [14,30,31], especially as they are easily integrated
into the quantum repeater architecture [32]. It is worth noting
an interesting possibility of frequency conversion between
infrared photons at wavelengths 1500 and 1100 nm in bar-
ium atoms with tripod configuration of four-level manifold
(6s2) 1S0, (6s6p) 1P1, (6s5d ) 1D2 and (6s5d ) 3D2 [33]. Below
we carry out a general solution of the problem, which is
applicable to all specific situations.

In our model, the prepared coherence is also adjusted ap-
propriately to make the group velocities of the photons equal.
In this case, the efficiency of QFC is close to unity, whereas, as
shown in Ref. [34], in the general case of unequal group veloc-
ities, the frequency conversion ceases after some propagation
distance because of the temporal walk-off of photons caused
by the group velocity mismatch, which is notably large for
slow photons. For the same reason, an imperfect conversion
between the visible and telecommunication photons should
be expected in the FWM scheme used in Refs. [26,27], if the
equality of group velocities of the photons is not ensured. A
detailed analysis of this effect is given in Ref. [35]. Note that
a tripod medium driven by classical fields and prepared in a
coherent superposition of the two ground states of the atoms
has been studied with regard to parametric generation of new
fields [36]. In this case also, the group velocity mismatch
between the driving and newly created fields can significantly
reduce the efficiency of the parametric process, especially in
the case of short pulses.

In the next section, we present the interaction setup and
formulate the theory. We make the necessary approximations
providing lossless QFC in our model and analytically solve
the propagation equations for quantum field amplitudes. In
Sec. III, we examine the coherent transfer of time-bin encod-
ing from the signal to the converted photon for various initial
wave forms. Here we also study the storage of time-bin en-

coding in two distant atoms, which provides the transmission
of quantum information without loss over long distances. Our
conclusions are summarized in Sec. IV.

II. PROPOSED SCHEME

Here we extend the primary tripod system [37] to the case
of modified atomic coherence between the two metastable
states |1〉 and |2〉 (Fig. 1) that engenders the parametric inter-
action between two quantum fields at the single-photon level,
causing a coherent transformation of the frequency and tem-
poral shape of single photons. All the atoms are assumed to
be optically pumped, for example, into the state |1〉, while the
state |4〉 remains always empty. Then, the atoms are prepared
in a superposition of the states |1〉 and |2〉 by driving the |1〉 →
|2〉 transition either directly with a resonant microwave pulse
or by two Raman pulses resonantly exciting the corresponding
two-photon transition with an effective pulse area

θ (t ) =
∫ t

−∞
�eff(t

′)dt ′, (1)

where �eff(t ) is the Rabi frequency of the microwave field or
of the effective field of Raman-coupling laser pulses. Here it
is taken into account that the driving pulses are incomparably
shorter than the lifetime of metastable states and also, without
loss of generality, it is assumed that all Rabi frequencies are
real. After turning off the driving fields, the superposition state
|ψ〉 = cos θ (∞)|1〉 + sin θ (∞)|2〉 is formed, where the state
populations ρii, i = 1, 2, and induced coherence ρ12 are

ρ11 = cos2 θ (∞), ρ22 = sin2 θ (∞), (2a)

ρ21 = ρ12 = ρ0 = √
ρ11ρ22 = 1

2
sin 2θ (∞). (2b)

Since the number of photons in quantum fields is much less
than the number of atoms, we can regard the atomic popula-
tions ρii, i = 1, 2, and the coherence ρ0 as constant throughout
the evolution of the system. Obviously, this approximation is
valid within the atomic ground-state coherence lifetime.

We describe the quantum fields by slowly varying dimen-
sionless operators Êi(z, t ), i = 1, 2,

Êi(z, t ) =
√

h̄ωi

2ε0V
Êi(z, t ) exp[i(kiz − ωit )] + H.c.,

where V = πw2
aL is the volume of interaction region of the

length L and wa is the width of the atomic transverse distribu-
tion. Along with those, the control beam is assumed to have
a constant transverse profile, much wider than that of the SP
pulses. The operators Êi(z, t ), i = 1, 2, obey the commutation
relations

[Êi(z, t ), Ê+
j (z, t ′)] = L

c
δi jδ(t − t ′), (3)

which are valid in free space and are preserved in the medium
[see below, Eqs. (15)].

The interaction Hamiltonian in the rotating wave picture is
given by

H = h̄[δ1σ̂11 + δ2σ̂22 − g1Ê1σ̂31

− g2Ê2σ̂32 − �cσ̂34 + H.c.],
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where σ̂i j = |i〉〈 j| are the atomic operators, δi = ωi − ω3i, i =
1, 2, is one-photon detuning and gi = μ3i

√
ωi

2h̄ε0V is the atom-
photon coupling constant for ith photon, respectively, and
�c = μ34Ec/h̄ is the Rabi frequency of the control field.

In the slowly varying envelope approximation, the propa-
gation equations for the quantum field operators are given by

(
∂

∂z
+ 1

c

∂

∂t

)
Êi(z, t ) = i

gi

c
N σ̂i3(z, t ), (4)

where N is the total number of atoms. In the weak field
limit giÊi � �c and for constant ρi j, i, j = 1, 2 [Eqs. (2)],
one can set 〈σ̂33〉 = 〈σ̂44〉 = 〈σ̂43〉 	 0. Then the equations for
the atomic operators take the form

∂

∂t
σ̂13 = (iδ1 − �)σ̂13 + ig1Ê1ρ11 + ig2Ê2ρ0 + i�cσ̂14 + F̂13,

(5)

∂

∂t
σ̂14 = (iδ1 − γc)σ̂14 + i�∗

c σ̂13 + F̂14. (6)

The equations for σ̂23 and σ̂24 are similar to Eqs. (5) and (6)
with the substitution 1 ↔ 2 everywhere. Here 2� is the atomic
spontaneous decay rate from the upper level 3, γc is the
ground-state coherence damping rate, and F̂i j are the atomic
noise operators associated with relaxations.

Applying the approach developed in Ref. [37], we solve
the atomic equations perturbatively with small parameters
giÊi/�c and in the adiabatic limit, while preserving the first
time derivative of the field amplitudes in order to obtain the
correct group velocities of the photons. From Eq. (6), we have

σ̂13 = − i

�∗

(
∂

∂t
− iδ1 + γc

)
σ̂14 + i

�∗ F̂14.

Substituting this expression into Eq. (5), we solved this equa-
tion, neglecting the spin relaxation γc � δi < � and using the
EIT conditions |�c|2 � �δi, δ

2
i , i = 1, 2. The final solutions

for atomic operators are obtained in the following form,

σ̂13 = g1Ê1ρ11

|�c|2
(

δ1 + i�
δ2

1

|�c|2
)

+ g2Ê2ρ0δ1

|�c|2

+ i
g1ρ11

|�c|2
∂ Ê1

∂t
− i

δ1

|�c|2 F̂13 + i
1

�∗
c

F̂14, (7a)

σ̂14 = −g1Ê1ρ11

�c

(
1 + i�

δ1

|�c|2
)

− g2Ê2ρ0

�c
+ i

1

�c
F̂13, (7b)

and

σ̂2(3,4) = σ̂1(3,4)(1 ↔ 2). (8)

For simplicity, we consider the case δ1 = δ2 = δ. Then the
equations for quantum fields are reduced to(

∂

∂z
+ 1

v1

∂

∂t

)
Ê1 = −

(
k1

2
− iδs1

)
Ê1 + iβÊ2 + F̂1, (9)(

∂

∂z
+ 1

v2

∂

∂t

)
Ê2 = −

(
k2

2
− iδs2

)
Ê2 + iβÊ1 + F̂2, (10)

where

ki = 2g2
i Nρii�

c|�c|2
δ2

|�c|2 , si = g2
i Nρii

c|�c|2 (11)

are, respectively, the linear absorption and phase-modulation
coefficients for ith field, i = 1, 2,

β = g1g2Nρ0

c|�c|2 δ (12)

is the constant of parametric interaction between quantum
fields gained by the prepared coherence ρ0 on the transition
|1〉 ↔ |2〉, and

v1,2 = (1/c + s1,2)−1 (13)

are the group velocities of the photons. The δ-correlated
commutator-preserving noise operators ˆF1,2 of the fields have
the properties [38]

〈F̂i(z, t )〉 = 〈F̂i(z, t )F̂ j (z
′, t ′)〉 = 0, i, j = 1, 2,

〈F̂i(z, t )F̂ j
†
(z′, t ′)〉 = 2kiδi jδ(z − z′)

L

c
δ(t − t ′),

indicating that they give no contribution in the absence of
photon losses.

The complete conversion of photons is achieved at their
equal group velocities v1 = v2 = v, which occurs if s1 = s2 =
s or the condition g2

1ρ11 = g2
2ρ22 is satisfied, as can be seen

from Eqs. (11) and (13). The implementation of this condition
is easily controlled by the pulse area of the driving fields
defined in Eq. (1). From the populations of metastable states,
we find the required value of θ (∞)

ρ11 = cos2 θ (∞) = g2
2

g2
1 + g2

2

, ρ22 = 1 − ρ11.

In this case, the absorption coefficients are also equal k1 =
k2 = k. In what follows, we will require negligible absorption
of photons by imposing the condition kL � 1. In addition,
the phase modulation s can be eliminated in Eqs. (9) and (10)
upon replacing Ê1,2 → exp[iδsz]Ê1,2. Then, the final equa-
tions for quantum fields are cast to a simple form(

∂

∂z
+ 1

v

∂

∂t

)
Ê1,2(z, t ) = iβÊ2,1(z, t ), (14)

the solution of which in terms of the retarded time τ = t −
z/v depends on the initial amplitudes Êi(z = 0, τ ) = Êi(τ ) as

Êi(z, τ ) = Êi(τ ) cos βz + iÊ j (τ ) sin βz, i, j = 1, 2, j 
= i,
(15)

revealing the periodic complete conversion between the pho-
tons at the points z = π

2β
(2n + 1), where n is an integer. It is

easy to check that Ei(z, τ ) satisfy the commutation relations
in Eq. (3).

The feasibility of our scheme is confirmed by comparing
Eqs. (11) and (12), from which it follows that under EIT
conditions k/β = 2�δ/|�c|2 � 1. This allows proper sup-
pression of the absorption of photons, but retaintion of their
strong parametric interaction.

III. STORAGE OF TIME-BIN ENCODING IN TWO
DISTANT ATOMS

A. QFC with coherent transfer of time-bin encoding

Here, we analyze the evolution of an input single-photon
state | ψin〉 =| 1ω1〉 | 0ω2〉, where | 0ω2〉 and | 1ω1〉 denote
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states with zero and one photon, respectively. Similar results
are clearly obtained in the case of one input ω2-photon and
zero photon in the ω1 field. We assume that initially the ω1

wave packet is localized around z = 0 with a given temporal
profile f1(t ),

〈0 | Ê1(0, t ) | ψin〉 = 〈0 | Ê1(0, t ) | 1ω1〉 | 0ω2〉 = f1(t ),

which is normalized as c
L

∫ | f1(t )|2dt = 1, indicating that the
number of impinged ω1 photons is one. Here | 0〉 =| 0ω1〉 |
0ω2〉 is the vacuum state of the two frequency modes.

In free propagation with velocity v, we have

〈0 | Ê1(0, t − z/v) | 11〉 = 〈0 | Ê1(τ ) | 11〉 = f1(τ ). (16)

The dimensionless intensities and mean photon numbers in
the single-photon pulses at any distance 0 � z � L are ob-
tained from Eqs. (15) and (16) as

Ii(z, τ ) = 〈ψin|Ê†
i (z, τ )Êi(z, τ )|ψin〉 = |�i(z, τ )|2, (17)

ni(z) = 〈ψin | n̂1(z) | ψin〉 = c

L

∫
dτ Ii(z, τ ) i = 1, 2,

where �i(z, τ ) are the photons’ wave functions

�1(z, τ ) = 〈0 | Ê1(z, τ ) | ψin〉 = f1(τ ) cos βz,

�2(z, τ ) = 〈0 | Ê2(z, τ ) | ψin〉 = i f1(τ ) sin βz, (18)

and n̂i(z) = c
L

∫
dτ Ê†

i (z, τ )Êi(z, τ ) are the operators of the
number of photons in the modes that pass each point on the
z axis in the whole time.

Now, suppose that the input ω1 photon has a modal struc-
ture consisting of temporally separated coherent pulses (time
bins), which have, in the general case, different temporal
profiles. The latter are localized at time positions τJ > τJ−1 >

· · · > τ1 with a separation between them much larger than
their lengths such that f1(τ ) is a coherent superposition of
time-bin functions ϕk in the form

f1(τ ) =
J∑

k=1

αkϕk (τ − τk ), (19)

where ϕk are real and orthonormal

c

L

∫
ϕk (τ − τk )ϕk′ (τ − τk′ )dτ = δkk′ ,

and the amplitudes αk of the probabilities describing the
occupation of the corresponding kth temporal mode satisfy

the normalization condition
J∑

k=1
|αk|2 = 1. We believe that the

distance between the temporal bins is significantly greater
than the response time of photon detectors, thus providing a
direct readout of quantum information encoded in the arrival
time of photons. Such states can be created by retrieving a
stored photon into multiple time bins, the number of which is
evidently limited by the photon coherence time [5,39].

We can describe the input photon with the temporal profile
f1(t ) as follows:

| 1ω1 ; f1〉 = c

L

∫
dτ f1(τ )Ê†

1 (τ ) | 0〉. (20)

Then, using the unitary mode-transformation Eq. (15), the
single-photon state at any point z is obtained in the form

| ψ (z)〉 = c

L

∫
dτ f1(τ )[Ê†

1 (τ ) cos βz − iÊ†
2 (τ ) sin βz] | 0〉.

(21)
We assign to each time-bin function ϕk in Eq. (19) a photon

creation operator defined by

b̂†
k (ωi ) = c

L

∫
dτϕk (τ − τk )Ê†

i (τ ), i = 1, 2. (22)

These operators obey the commutation relations
[b̂k (ωi ), b̂†

k′ (ω j )] = δkk′δi j and produce one-photon states
b̂†

k (ω1,2) | 0〉 =| 1ω1,2 ; ϕk〉.
Substituting Eq. (19) into Eq. (21) and using Eq. (22), we

obtain the photon output state in time basis as

| ψ (L); time〉 =
J∑

k=1

αk[| 1ω1 ; ϕk〉 | 0ω2〉 cos βL

− i | 0ω1〉 | 1ω2 ; ϕk〉 sin βL]. (23)

It is seen that the ω2 photon is generated at z = L = π/(2β )
with a wave form identical to that of the input ω1 photon,
whereas the latter passes into the vacuum state. In the ideal
case, the transfer of the time-bin encoding and pulse wave
form from the signal photon to the converted one occurs
with unit efficiency. In a broader sense, the z dependence of
the frequency conversion given by Eq. (23) provides ample
opportunities for creating the desired states for both photons.
In particular, the QFC is incomplete at βL = π/4, which
causes the two frequency modes to share the original time-bin
encoding equally, with the desired value of βL being easily
regulated by the intensity of the control field, as Eq. (12)
implies. As a result, the quantum information encoded in
the state of the input photon can be stored in two quantum
memories operating at different wavelengths that generates
the entangled state of the memory nodes. The fact that a single
photon in the superposition of two frequency modes is capable
of creating an entangled state, for example, of two separated
atoms, thereby revealing the “single-photon” nonlocality, was
demonstrated in Ref. [40] in the case of a single-pulse pho-
ton. Unlike this simple case, the state (23) contains many
separate temporal modes, which are the basis for creating
high-dimensional time-bin encoding, thus increasing the re-
silience of transmitted quantum information to noise.

B. Mapping two-color time-bin qubits into
and out of atomic memories

A simple setup demonstrating the ability of the state (23) to
distribute the entanglement over long distances is the storage
of two time-bin qubits at frequencies ω1 and ω2 in two atomic
memories with corresponding resonant transitions. The ω1

photon is stored in a local memory (node A) for further
measurement, while the ω2 photon is directed toward a distant
memory (node B) [Fig. 2(a)], where it is subsequently stored,
thus creating an entanglement between two memory nodes.
The successful entanglement creation needs atomic quantum
memories with long storage times. Single-atom-cavity sys-
tems with commonly used alkali atoms provide the required
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(a)

(b)

FIG. 2. Experimental procedure for storage of two color time-bin encoding in two distant atoms. (a) At first, the incoming visible ω1 photon
in the state of right-circularly copolarized two time bins is converted in the tripod medium into ω2 photon with the same time-bin encoding.
The two frequency components of the outgoing photon are separated and sent to the local and remote nodes A (ω1) and B (ω2), respectively.
By passing through the TPC (time-to-polarization converter), the time-bin qubits are converted into the polarization qubits. (b) In each node,
the π polarized control laser (CL) converts the superposition of polarization states |σ+〉, |σ−〉 of photons into a superposition of the atomic
F = 2, mF = ±1 states via a stimulated Raman adiabatic passage

long-lived coherence between the ground hyperfine states,
while also featuring the strong atom-photon coupling and high
retrieval efficiency [41,42].

The mapping of the state (23) onto the states of single alkali
atoms trapped in high-finesse optical cavities at local and
remote nodes is carried out in two stages. At first, the time-
bin-polarization converter (TPC) transforms the superposition
of two temporal modes into the superposition of polarization
states for each frequency component of the photon, using only
linear optics elements (for similar schemes, see, for example,
Refs. [43–45]). Then, the photon polarization qubit is mapped
onto the ground-spin state of the corresponding atom via
a Raman adiabatic passage using a stimulating laser pulse
[Fig. 2(b)].

The microwave field in Fig. 1 is usually chosen to res-
onantly drive the transition between two clock states |F =
1, mF = 0 > and |F = 2, mF = 0 > of alkali atoms to sup-
press magnetic-field-induced decoherence. This determines
the same polarization of both photons. For definiteness, we
consider below the case of right-circularly polarized (σ+)
incoming ω1 photon. Suppose now that the latter is initially
in a superposition of the two temporal modes

| 1ω1,in〉 = α1 | 1ω1 ; ϕ1(τ − τ1)〉 + α2 | 1ω1 ; ϕ2(τ − τ2)〉,
with τ2 > τ1 and |α1|2 + |α2|2 = 1. In the output photon from
the tripod medium [Fig. 2(a)], the two frequency components
ω1 and ω2 are separated and pass through TPC1 and TPC2,
respectively. Here, the right-circularly polarized “late” pho-
tons (σ+) are converted to be left-circularly (σ−) polarized
using an electro-optical modulator with a needed modulation
period [43]. In addition, the time delay τ2 − τ1 is deleted
using an unbalanced Mach-Zender interferometer, thereby

converting the qubit of copolarized time-bin states into the su-
perposition of time-coincident polarization states |σ+〉, |σ−〉
of photons

| 1ωi ; polar〉 = α1 | σ+
ωi

〉 + α2 | σ−
ωi

〉, i = 1, 2. (24)

This transforms the final photonic state (23) into a polarization
basis of the form

| ψ (L); polar〉 =| 1ω1 ; polar〉 | 0ω2〉 cos βL

− i | 0ω1〉 | 1ω2 ; polar〉 sin βL. (25)

At the last step, the generated polarization qubits Eq. (24) are
mapped onto a superposition of ground Zeeman states of the
atoms, which are prepared in different initial states |gA〉 =
|F = 1, mF = 0〉A and |gB〉 = |F = 2, mF = 0〉B [Fig. 2(b)],
respectively, while the cavities are correspondingly tuned to
the frequencies ω1 and ω2. This is accomplished by applying
to each atom a π -polarized control laser pulse resonant to
the transition F ′ = 1 → F = 2 [41]. The system is initialized
in the state |gA〉 ⊗ |gB〉⊗ | ψ (L); polar〉. The control lasers
convert the polarization of frequency components Eq. (24) of
the photons from | ψ (L); polar〉 into the atomic-spin qubits
represented by

| ψA,B〉 = α1 | F = 2, mF = 1〉A,B

+ α2 | F = 2, mF = −1〉A,B. (26)

As a result, the entangled state of the two atoms is generated
in the form

| �atom〉 =| ψA〉 ⊗ |gB〉 cos βL − i|gA〉⊗ | ψB〉 sin βL. (27)

The amount of entanglement in the state (27) is controlled by
the parameter βL and takes a maximum value at βL = π/4.
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Ideally, the discovery of the atom at node A in the |gA〉 state
heralds the successful encoding of the quantum information
carried by the incoming ω1 photon in the ground-spin state of
the remote atom. If the A atom is in the excited state | ψA〉,
the remote atom at node B is still ready to receive a photonic
qubit at the frequency ω2. However, the photon losses in long-
distance fiber links limit the rate at which the entanglement
generation is successful. Therefore, the entanglement between
two remote nodes predicted by Eq. (27) can be verified by
simultaneously measuring the states of both atoms, which
can be done using known methods for atomic state detection
(see, for example, Ref. [46]). This will also allow one to
determine the entanglement lifetime. After storage in the atom
B, the photon can be retrieved in the polarization state (24)
and converted back to a copolarized time-bin qubit with the
same initial amplitudes α1, α2 by reversing the TPC scheme
described above.

IV. CONCLUSIONS

We proposed a fundamentally different mechanism for
QFC of narrow-band single photons, which provides a loss-
less reversible transfer of high-dimensional time-bin encoding
between the photons due to three-wave parametric interaction
in the laser-controlled tripod-type atoms. As a result, an in-
coming single photon ended up in the superposition of two
distant frequency modes, each of which is a superposition of

many temporal modes. We demonstrated a novel regime of
single-photon entanglement that extends over long distances
by storing two time-bin qubits of different wavelengths in
two remote atomic memories, which is of key interest for
hybrid quantum networks based on the operation of entan-
glement between photons of different colors. An important
advantage of our scheme is to generate in a simple manner
any desired entanglement by manipulating the control field
intensity and the value of initially prepared atomic coherence.
In our approach, unlike many devices used for QFC, the
parametric interaction between photons is not based on optical
nonlinearities, thus avoiding unwanted background processes
usually associated with strong laser fields. In addition, a high-
visibility destructive interference of two photons with initially
different colors can be observed in our model that provides a
different tool for exploiting the Hong-Ou-Mandel interferom-
etry in the frequency domain. Our scheme seems feasible with
current technology and could simplify the implementation
of quantum communication protocols based on single-photon
entanglement.

ACKNOWLEDGMENTS

This work was supported by the RA Science Committee, in
the framework of the Research Project No. 20TTAT-QTc004.
We also acknowledge financial support from the Basic Foun-
dation of Science of the Government of the Republic of
Armenia.

[1] I. Marcikic, H. de Riedmatten, W. Tittel, H. Zbinden, and N.
Gisin, Nature (London) 421, 509 (2003).

[2] T. Inagaki, N. Matsuda, O. Tadanaga, M. Asobe, and H.
Takesue, Opt. Express 21, 23241 (2013).

[3] Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W.
Yang, H. Liu, M.-Y. Zheng, X.-P. Xie et al., Nature (London)
578, 240 (2020).

[4] M. Hosseini, B. M. Sparkes, G. Hétet, J. J. Longdell, P. K. Lam,
and B. C. Buchler, Nature (London) 461, 241 (2009).

[5] K. F. Reim, J. Nunn, X.-M. Jin, P. S. Michelberger, T. F. M.
Champion, D. G. England, K. C. Lee, W. S. Kolthammer, N. K.
Langford, and I. A. Walmsley, Phys. Rev. Lett. 108, 263602
(2012).

[6] P. C. Humphreys, B. J. Metcalf, J. B. Spring, M. Moore, X.-M.
Jin, M. Barbieri, W. S. Kolthammer, and I. A. Walmsley, Phys.
Rev. Lett. 111, 150501 (2013).

[7] E. Knill, R. LaFlamme, and G. J. Milburn, Nature (London)
409, 46 (2001).

[8] P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling,
and G. J. Milburn, Rev. Mod. Phys. 79, 135 (2007).

[9] R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M.
Koashi, and N. Imoto, Nat. Commun. 2, 537 (2011).

[10] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C.
Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, and
C. Becher, Phys. Rev. Lett. 109, 147404 (2012).

[11] A. S. Clark, S. Shahnia, M. J. Collins, C. Xiong, and B. J.
Eggleton, Opt. Lett. 38, 947 (2013).

[12] B. Albrecht, P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani,
and H. de Riedmatten, Nat. Commun. 5, 3376 (2014).

[13] A. Lenhard, J. Brito, M. Bock, C. Becher, and J. Eschner, Opt.
Express 25, 11187 (2017).

[14] N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and
H. de Riedmatten, Nature (London) 551, 485 (2017).

[15] M. Bock, P. Eich, S. Kucera, M. Kreis, A. Lenhard, C. Becher,
and J. Eschner, Nat. Commun. 9, 1998 (2018).

[16] P. C. Strassmann, A. Martin, N. Gisin, and M. Afzelius, Opt.
Express 27, 14298 (2019).

[17] C. Morrison et al., Appl. Phys. Lett. 118, 174003 (2021).
[18] S. Tanzilli, W. Tittel, M. Halder, O. Alibart, P. Baldi, N. Gisin,

and H. Zbinden, Nature (London) 437, 116 (2005).
[19] T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O.

Tadanaga, M. Asobe, and K. Inoue, Opt. Express 15, 13957
(2007)

[20] K. Huang, X. R. Gu, M. Ren, Y. Jian, H. F. Pan, G. Wu, E. Wu,
and H. P. Zeng, Opt. Lett. 36, 1722 (2011).

[21] S. Ramelow, A. Fedrizzi, A. Poppe, N. K. Langford, and A.
Zeilinger, Phys. Rev. A 85, 013845 (2012).

[22] W. Liu, N. Wang, Z. Li, and Y. Lia, Appl. Phys. Lett. 107,
231109 (2015).

[23] F. Steinlechner, N. Hermosa, V. Pruneri, and J. Torres, Sci. Rep.
6, 21390 (2016).

[24] M. Allgaier, V. Ansari, L. Sansoni, C. Eigner, V. Quiring, R.
Ricken, G. Harder, B. Brecht, and C. Silberhorn, Nat. Commun.
8, 14288 (2017).

[25] H. Rütz, K.-H. Luo, H. Suche, and C. Silberhorn, Phys. Rev.
Applied 7, 024021 (2017).

[26] A. Radnaev, Y. Dudin, R. Zhao, H. Jen, S. Jenkins, A. Kuzmich,
and T. Kennedy, Nat. Phys. 6, 894 (2010).

052606-6

https://doi.org/10.1038/nature01376
https://doi.org/10.1364/OE.21.023241
https://doi.org/10.1038/s41586-020-1976-7
https://doi.org/10.1038/nature08325
https://doi.org/10.1103/PhysRevLett.108.263602
https://doi.org/10.1103/PhysRevLett.111.150501
https://doi.org/10.1038/35051009
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1038/ncomms1544
https://doi.org/10.1103/PhysRevLett.109.147404
https://doi.org/10.1364/OL.38.000947
https://doi.org/10.1038/ncomms4376
https://doi.org/10.1364/OE.25.011187
https://doi.org/10.1038/nature24468
https://doi.org/10.1038/s41467-018-04341-2
https://doi.org/10.1364/OE.27.014298
https://doi.org/10.1063/5.0045413
https://doi.org/10.1038/nature04009
https://doi.org/10.1364/OE.15.013957
https://doi.org/10.1364/OL.36.001722
https://doi.org/10.1103/PhysRevA.85.013845
https://doi.org/10.1063/1.4937569
https://doi.org/10.1038/srep21390
https://doi.org/10.1038/ncomms14288
https://doi.org/10.1103/PhysRevApplied.7.024021
https://doi.org/10.1038/nphys1773


QUANTUM FREQUENCY CONVERSION WITH COHERENT … PHYSICAL REVIEW A 105, 052606 (2022)

[27] Y. O. Dudin, A. G. Radnaev, R. Zhao, J. Z. Blumoff, T. A. B.
Kennedy, and A. Kuzmich, Phys. Rev. Lett. 105, 260502
(2010).

[28] J. D. Siverns, J. Hannegan, and Q. Quraishi, Phys. Rev. Applied
11, 014044 (2019).

[29] H. J. Kimble, Nature (London) 453, 1023 (2008).
[30] N. Maring, D. Lago-Rivera, A. Lenhard, G. Heinze, and H. de

Riedmatten, Optica 5, 507 (2018).
[31] K. Zhang, J. He, and J. Wang, Opt. Express 28, 27785 (2020).
[32] G. Corrielli, A. Seri, M. Mazzera, R. Osellame, and H. de

Riedmatten, Phys. Rev. Applied 5, 054013 (2016).
[33] S. De, U. Dammalapati, K. Jungmann, and L. Willmann, Phys.

Rev. A 79, 041402(R) (2009).
[34] D. Aghamalyan and Y. Malakyan, Proc. SPIE 7998, 799815

(2010).
[35] A. Gogyan and Y. Malakyan, Phys. Rev. A 77, 033822 (2008).
[36] E. Paspalakis and P. L. Knight, J. Mod. Opt. 49, 87 (2002); E.

Paspalakis, N. J. Kylstra, and P. L. Knight, Phys. Rev. A 65,
053808 (2002).

[37] D. Petrosyan and Y. P. Malakyan, Phys. Rev. A 70, 023822
(2004).

[38] M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge
University Press, Cambridge, UK, 1997).

[39] S. Petrosyan and Y. Malakyan, Phys. Rev. A 88, 063817 (2013).
[40] S. J. van Enk, Phys. Rev. A 72, 064306 (2005).
[41] S. Ritter, C. Nolleke, C. Hahn, A. Reiserer, A. Neuzner, M.

Uphoff, M. Mucke, E. Figueroa, J. Bochmann, and G. Rempe,
Nature (London) 484, 195 (2012).

[42] L. Giannelli, T. Schmit, T. Calarco, C. P Koch, St. Ritter, and
G. Morigi, New J. Phys. 20, 105009 (2018).

[43] J. S. Hodges, S. P. Pappas, Y. S. Weinstein, and G. Gilbert,
in Conference on Lasers and Electro-Optics (CLEO 2012, San
Jose, California, USA), OSA Technical Digest (Optica Publish-
ing Group, 2012), paper QF3F.3.

[44] M. A. M. Versteegh, M. E. Reimer, A. A. van den Berg, G.
Juska, V. Dimastrodonato, A. Gocalinska, E. Pelucchi, and V.
Zwiller, Phys. Rev. A 92, 033802 (2015).

[45] C. Kupchak, P. J. Bustard, K. Heshami, J. Erskine, M. Spanner,
D. England, and B. Sussman, Phys. Rev. A 96, 053812
(2017).

[46] J. Volz, R. Gehr, G. Dubois, J. Estève, and J. Reichel, Nature
(London) 475, 210 (2011).

052606-7

https://doi.org/10.1103/PhysRevLett.105.260502
https://doi.org/10.1103/PhysRevApplied.11.014044
https://doi.org/10.1038/nature07127
https://doi.org/10.1364/OPTICA.5.000507
https://doi.org/10.1364/OE.402355
https://doi.org/10.1103/PhysRevApplied.5.054013
https://doi.org/10.1103/PhysRevA.79.041402
https://doi.org/10.1117/12.890874
https://doi.org/10.1103/PhysRevA.77.033822
https://doi.org/10.1080/09500340110060092
https://doi.org/10.1103/PhysRevA.65.053808
https://doi.org/10.1103/PhysRevA.70.023822
https://doi.org/10.1103/PhysRevA.88.063817
https://doi.org/10.1103/PhysRevA.72.064306
https://doi.org/10.1038/nature11023
https://doi.org/10.1088/1367-2630/aae725
https://doi.org/10.1103/PhysRevA.92.033802
https://doi.org/10.1103/PhysRevA.96.053812
https://doi.org/10.1038/nature10225

