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Entanglement-enhanced quantum rectification
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Quantum mechanics dictates the band structure of materials that is essential for functional electronic com-
ponents. With increased miniaturization of devices, it becomes possible to exploit the full potential of quantum
mechanics through the principles of superposition and entanglement. We propose a class of quantum rectifiers
that can leverage entanglement to dramatically increase performance by coupling two small spin chains through
an effective double-slit interface. Simulations show that rectification is enhanced by several orders of magnitude
even in small systems, and that the effect survives in a noisy environment. Realizable using several of the
quantum technology platforms currently available, our findings reveal the importance of quantum entanglement
in seemingly contradictory applications such as heat and noise control.
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I. INTRODUCTION

Classical electronic components such as transistors and
diodes are based on the band structure of materials [1], and
their integration into circuits and chips constitutes the first
quantum revolution. Presently, increased miniaturization re-
quires us to deal with the quantum nature of the information
carriers themselves. This is particularly important, as we push
towards the new paradigm of quantum computing and a new
toolbox of quantum components needs to be developed.

Transport properties are one of the most basic and essential
features of versatile components, and it is hoped that not only
charge but also magnetic (spin) [2–4] and thermal (phonon)
[5–8] currents can be leveraged in future technologies. A key
component is a current rectifier, well known in electronics
as the diode, which features an asymmetry in its forward
and reverse transport ability. Schottky or p-n junction diodes
are common, commercially available designs based on semi-
conductor materials. However, in recent years, the interest
in rectification has spread to other fields such as molecular
junctions where molecular diodes have achieved competitive
rectification factors [9]. Furthermore, important steps towards
acoustic [10–13] and thermal [14–19] diodes have been re-
ported recently.

A particularly promising platform for rectification is quan-
tum spin chains coupled to thermal baths [20–22]. Here, a
number of spins or two-level systems are connected though
XXZ couplings as well as to thermal baths or magnetic reser-
voirs. These setups are particularly versatile, and the spin or
heat transport can realize components such as minimal motors
[23], thermal transistors [24], thermal diodes [25–28], and
spin current diodes [29–31]. Rectification effects have been
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found in systems ranging from only one anharmonic molecule
[32] and a system of two spins [33] to larger two-dimensional
geometries [34] and linear chains in the thermodynamic limit
[31]. A common mechanism of these rectifiers is a mismatch
of energetics in the vibrational spectra [7], or in the electronic
[1] or the magnetic (spin excitation) band gap [29].

The theoretical interest is spurred by the increased abil-
ity to experimentally study the interplay between quantum
degrees of freedom and thermal reservoirs. This includes ex-
perimental studies of Maxwell’s demon [35–37], heat engines
[38–40], and heat rectification [41]. Here, thermal baths or
reservoirs are either simulated through stochastic coherent
interaction [36] or used directly through, e.g., resistors for
superconducting circuit platforms [41] or ferromagnetic leads
for spin systems [42].

Here, we introduce a class of rectifiers that utilizes the
quintessential quantum mechanical property of entanglement.
By coupling two segments of a quantum spin chain through
a two-way junction that entangles the interface spins, we
demonstrate boosts of spin and thermal current rectification
factors of at least three orders of magnitude, even for few-spin
systems. The mechanism behind the large spin rectification
can be broken into two parts. First, the interface spins be-
come entangled in only one bias. Second, this entanglement
blocks transport due to almost perfect destructive interference.
Furthermore, we show that the proposed diode has many vari-
ations. The effect is seen for a wide range of parameters and
in noisy environments, and therefore it should be realizable
using several of the current quantum technology platforms.

II. MODEL AND RESULTS

To illustrate the mechanism, we concentrate on the few-
spin example shown in Fig. 1. It consists of six spin-1/2
particles in a two-segment chain connected by a “double-slit”
interface and described by an XXZ Heisenberg Hamiltonian
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FIG. 1. Illustration of a few-spin model of a quantum rectification device consisting of two segments, i.e., the XXZ chain on the left and
XX chain on the right, connected by a “two-way” interface. The device is connected to thermal baths at each end: one at low and one at high
temperature. The exchange coupling is J , while the two spins in the interface are coupled with an exchange coupling J34. The Z coupling
(anisotropy) is � J and controls the left-right asymmetry of the diode. The dimensionless δ measures the up-down symmetry breaking in the
system. During operation in reverse bias, as shown here, the central interface spins are in the maximally entangled Bell state illustrated in the
top left-hand corner. In the bottom right-hand corner, the numbering of the spins is shown.

of the form

Ĥ/J = X̂12 + (1 + δ)X̂23 + X̂24 + J34/JX̂34 + X̂35 + X̂45

+ X̂56 + �Ẑ12, (1)

where X̂i j = σ̂ (i)
x σ̂

( j)
x + σ̂ (i)

y σ̂
( j)
y is the XX spin exchange op-

erator, while Ẑi j = σ̂ (i)
z σ̂

( j)
z is the Z coupling that induces

relative energy shifts. The Pauli matrices for the ith spin are
denoted σ̂ (i)

α for α = x, y, z, and we are using units where
h̄ = kB = 1. The exchange coupling J gives the overall scale
of the problem, while the exchange between the interface
spins is J34. A prerequisite of rectification is a breaking of
left-right symmetry which we implement by a nonzero Z
coupling parametrized by �, although we note that this may
as well have been provided by local magnetic fields applied
to spins 1 and 2 [25,26]. Due to the interface, we also have
to consider up-down symmetry, i.e., the symmetry between
the upper and lower part, and we parametrize its breaking by
adding δ to the exchange between spins 2 and 3 in Fig. 1.
To study rectification of currents in the system, we couple it
locally to thermal baths on the left and right; see Fig. 1. One
bath is cold and forces the adjacent spin to point down, while
the other is hot and forces the adjacent spin into a statistical
mixture of up and down. The presence of the baths means we
have an open (nonunitary) quantum system that we describe
using the density operator ρ̂ and the corresponding Lindblad
master equation formalism. The evolution of the density op-
erator ρ̂ of the system is determined by the Lindblad master
equation [43,44],

∂ρ̂

∂t
= L[ρ̂] = −i[Ĥ , ρ̂] +D1[ρ̂] +D6[ρ̂], (2)

where [•, •] is the commutator, L[ρ̂] is the Lindblad superop-
erator, andDn[ρ̂] is a dissipative term describing the action of
the baths,

Dn[ρ̂] = γ
[
λn

(
σ̂

(n)
+ ρ̂σ̂

(n)
− − 1

2 {σ̂ (n)
− σ̂

(n)
+ , ρ̂})

+ (1 − λn)
(
σ̂

(n)
− ρ̂σ̂

(n)
+ − 1

2 {σ̂ (n)
+ σ̂

(n)
− , ρ̂})], (3)

where σ̂
(n)
+ = (σ̂ (n)

− )† = (σ̂ (n)
x + iσ̂ (n)

y )/2 and {•, •} denotes
the anticommutator. γ is the strength of the interaction
with the baths, which we have set to γ = J unless otherwise
stated. The nature of the interaction is determined by λn, and
we have focused on λ1 and λ6 set to either 0 or 0.5. If λn = 0,
the bath will force the spin to tend down (|↓〉n〈↓|) corre-
sponding to a low-temperature bath, and if λn = 0.5, the bath
will force the spin into a statistical mixture of up and down
((|↓〉n〈↓| + |↑〉n〈↑|)/2) corresponding to a high-temperature
bath. The baths induce currents and the system is generally in
a nonequilibrium state. However, after sufficient time, it will
reach a steady state (ss), ˙̂ρss = 0. It is this steady state that
determines the rectification properties. For δ �= 0, the steady
state will be unique and independent of the initial state (see
Appendix A for further details). We define the steady-state
spin current [25] J = tr{ ĵ12ρ̂ss} as the expectation value of
the operator ĵi j = 2J (σ̂ (i)

x σ̂
( j)
y − σ̂ (i)

y σ̂
( j)
x ) in the steady state.

Since the Hamiltonian is spin conserving, the current can
be calculated in several ways, e.g., J = tr{ ĵ56ρ̂ss} or J =
tr{[ ĵ23 + ĵ24]ρ̂ss}. By forward bias, we denote the situation
where the hot bath interacts with spin 1, while the cold bath
interacts with spin 6, and a current Jf flows from left to right.
In reverse bias, the cold bath is at spin 1 and the hot bath is
at spin 6, with a (generally negative) current Jr flowing from
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FIG. 2. (a) R as a function of � and J34 for δ = 0.01. (b) R as a
function of � for different values of δ and J34 = Jc

34(�) (solid lines).
The dashed line displays R for a linear chain with spin 3 removed.
(c) Steady-state currents Jf and Jr for δ = 0.01 and J34 = Jc

34(�).
The keys obey the vertical ordering of the graphs.

right to left; see Fig. 1. To obtain a well-functioning diode, we
must demand that

(i) no spin current is allowed to flow in reverse bias,Jr ∼0,
and

(ii) an appreciable spin current can flow in forward bias,
Jf � −Jr .
A measure of quality that contains both requirements is the
rectification

R = −Jf

Jr
, (4)

which tends to R = 1 when transport is symmetric, while a
good diode yields R� 1. An alternative quality measure is
the contrast defined as

C =
∣∣∣∣Jf +Jr

Jf −Jr

∣∣∣∣, (5)

such that C = 0 is equivalent to R = 1, while C = 1 forJr →
0, i.e., for the perfect diode.

The rectification results for the six-spin implementation
of Fig. 1 are shown in Fig. 2 as a function of the relevant
parameters of the model. The contour plot in Fig. 2(a) shows
R for a small up-down symmetry breaking of δ = 0.01 as
a function of J34 and �. Our key discovery is the region
in the bottom right-hand corner where values of R > 106

are reached. Further inspection of the two lines of large R
shows that they occur for J34 = −(� ± 1)J for large �; this
precise number will be justified later. However, very large
anisotropy values can be experimentally challenging. There-
fore, to keep the model general, we keep � � 5 for which a
better parametrization is J34 = Jc

34(�), where

Jc
34(�) = −(� + 1.3)J. (6)

Figure 2(b) demonstrates the dependence on � using J34 =
Jc

34(�), showing that δ 
 1 gives higher R as a function of

FIG. 3. (a) Population Pr (|
−〉) (top), contrast C (middle), and
concurrence T (bottom) as a function of � where δ = 0.01. (b) In-
terface population as a function of time in reverse bias for an initial
state of | ↑↑〉, δ = 0.1, � = 50, and J34 = −(� + 1)J . (c) R as a
function of hn and δ′ with δ = 0.03 and � = 5. (d) Rectification
R as a function of the coherence time T for δ = 0.1 and � = 5.
This is done without error correction (bottom black) and with error
correction (top red). For plots (a), (c), and (d), the parametrization
J34 = Jc

34(�) was used.

�. This may be advantageous for experimental realization
as a small asymmetry in the up-down symmetry is likely to
occur and is a useful control parameter. We also confirm that
large rectifications are mainly due to suppression of Jr; see
Fig. 2(c).

In previous studies [25,31], it has been shown that signifi-
cant rectification can occur in linear two-segment chains as a
function of � due to the band gap induced by the Z coupling
in one segment. For comparison, the dashed line in Fig. 2(b)
shows the rectification when spin 3 in Fig. 1 is removed, ef-
fectively yielding a linear chain. The increase in rectification,
and hence diode quality, of the two-way design that includes
spin 3 is seen to be three orders of magnitude or more, and
is one of our main findings. Removing spin 3 also removes
part of the left-right asymmetry through δ. However, removing
spin 4 instead results in a linear chain with rectification factors
within 1% of the dashed line in Fig. 2(b). Therefore, δ does not
contribute significantly for the linear chain.

A. Understanding the mechanism

To explain the above observations, we first note that the
biggest change in current occurs in reverse bias. Therefore,
this is the situation we will focus on. To motivate entan-
glement as a cause of the large rectification, we plot the
entanglement measure T for the interface alongside the con-
trast C in Fig. 3(a). The entanglement measure used is called
the concurrence [45,46],

T
(
ρ̂ (34)

ss,r

) = max(0, λ1 − λ2 − λ3 − λ4), (7)
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where λ1, . . . , λ4 are eigenvalues, in decreasing order, of the
non-Hermitian matrix,

ρ̂ (34)
ss,r

(
σ (3)

y σ (4)
y

)
ρ̂ (34)∗

ss,r

(
σ (3)

y σ (4)
y

)
.

The concurrence is a widely used measure of entanglement
which is 1 only for a maximally entangled state. The state
of the interface, ρ̂ (3,4)

ss,r = tr(1,2,5,6){ρ̂ss,r}, is found by tracing
over the Hilbert space of spins 1, 2, 5, and 6. In Fig. 3(a),
we observe a strong correlation between the amount of en-
tanglement and the diode being in a working regime. An
inspection of the density matrix shows that the entanglement
is in the form of the entangled Bell state, |
−〉 = (|↑↓〉 −
|↓↑〉)/

√
2. This is further backed by the steady-state popu-

lation for the interface, Pr(|
−〉) = 〈
−|ρ̂ (3,4)
ss,r |
−〉, plotted

in Fig. 3(a). To see that the rectification is indeed due to
entanglement through |
−〉, the explanation can be broken
into two parts:

(1) The entangled state |
−〉 prevents transport between
the baths.

(2) In reverse bias, the interface is driven into the entangled
state |
−〉.
For the first part, the Hamiltonian is used on a compound
state where spins 1 and 2 are down due to the cold bath, the
interface is in the entangled state, and spins 5 and 6 are in a
general state,

Ĥ |↓↓ 
− S〉 = E |↓↓ 
− S〉 +
√

2δJ|↓↑↓↓ S〉, (8)

where S ∈ {|↓↓〉, |
−〉, |
+〉, |↑↑〉}. This state is unaffected
by the left bath, and the right bath can only couple these four
states to each other. Remarkably, the state |↓↓ 
− S〉 is close
to being a stationary state of Ĥ for δ 
 1 with energy E .
Therefore, the entangled state cannot propagate to spin 2 due
to destructive interference, and the transition, |↓↓ 
− S〉 ↔
|↓↑↓↓ S〉, is further forbidden by energy conservation. Fur-
thermore, any spin excitation at spin 5 cannot propagate to the
interface due to perfect destructive interference. This destruc-
tive interference can be summed up by the relations

(X̂23 + X̂24)|↓↓
− S〉 = 0, (9a)

(X̂45 + X̂35)|↓↓
− S〉 = 0, (9b)

which show up directly when deriving Eq. (8). Therefore, a
spin excitation is prevented from traveling between the baths,
resulting in a suppressed spin current. Due to the second
part of Eq. (8), the entangled state will decay weakly and,
therefore, we expect δ 
 1 to be preferable.

For the second part of the explanation, we already verified
that the interface is indeed driven into the entangled state
|
−〉. The reason for the system being driven into the entan-
gled state can be found by looking at the transition,

|↓↓↑↑ S〉 ↔ |
±
− S〉 → |↓↓ 
− S〉. (10)

In Fig. 3(b), the population of the interface spins is plotted
as a function of time for an initial state of |↓↓↑↑↓↓〉. A
population of Pr (|
−〉) � 0.9 is quickly reached, t < 50J−1,
at timescales which are much shorter then the usual relaxation
time t ∼ 103J−1; see Appendix A. We can write the matrix

elements of the Hamiltonian as

〈↓↓↑↑ S|Ĥ | ↓↓↑↑ S〉 = �J + ES, (11a)

〈↓↓↑↑ S|Ĥ |
±
− S〉 = ∓δJ, (11b)

〈
±
− S|Ĥ |
±
− S〉 = −�J − 2J34 ± 2J + ES, (11c)

where ES is the energy of |S〉. For the first part of the transi-
tion, |↓↓↑↑ S〉 ↔ |
±
− S〉, to be favorable, it needs to obey
energy conservation, and the transition matrix element needs
to be large. The two states are at resonance when

〈↓↓↑↑ S|Ĥ | ↓↓↑↑ S〉 = 〈
±
− S|Ĥ |
±
− S〉 (12a)

or J34 = −(� ± 1)J. (12b)

These two solutions correspond to the two bands of large recti-
fication in Fig. 2(a) mentioned previously. The minus solution
is almost the same as Jc

34(�) with a discrepancy of 0.3. From
the matrix element 〈↓↓↑↑ S|Ĥ |
±
− S〉, we would expect a
larger δ to yield a larger rectification. However, picking δ is
clearly a balance. While a larger δ results in the state |
−〉
recovering faster, a larger δ also results in a decay of |
−〉, as
can be seen in Eq. (8). Apparently, the present setup requires
the smallest nonzero value of δ achievable for this balance
to be optimal, i.e., δ → 0. If decoherence is included, this
balance is changed and a larger δ is required to compensate.
The same is true for other imperfections, e.g., a magnetic
field on spin 3 or 4. Now that the mechanism is understood,
many alternative versions and expansions of the setup can be
found using the same logic. Some of these are studied in the
Appendices B and C.

B. Sensitivity to perturbations and noise

Next, we study the sensitivity of the rectification to local
magnetic fields, coupling strength perturbations, and finite
coherence times. Since the rectification mechanism relies on
entanglement and interference, we can expect the rectifica-
tion to be sensitive towards decoherence and perturbations
that break the interference conditions in Eq. (9). Therefore,
we can expect spins 3 and 4 to be most sensitive to mag-
netic fields, while the coupling of spins 4 and 5 should be
the more sensitive coupling parameter. Hence, we add to
Eq. (1) perturbations of the form Ĥ ′ = ∑6

n=1 hnσ̂
(n)
z + δ′JX̂45.

Figure 3(c) shows R as a function of hn and δ′, where, for each
line, the other perturbations are kept at zero. As expected,
the rectification is stable towards changes in h1, h2, h5, and
h6. The largest R requires magnetic fields h3 and h4 of less
than 20% of J , which is within experimental precision for,
e.g., superconducting circuits [47]. Figure 3(c) also shows R
as a function of δ′ and indicates that δ′ < δ is the region of
large rectification. The rapid decrease in R could be used to
detect variations in couplings in the system. The sensitivity
towards variation in γ and the special case of δ = δ′ is studied
in Appendices D and E. Decoherence is included by adding to
Eq. (2) the perturbation

L′[ρ̂] = 1

T

6∑
n=1

(
σ̂

(n)
− ρ̂σ̂

(n)
+ − 1

2
{σ̂ (n)

+ σ̂
(n)
− , ρ̂}

)

+ 1

4T

6∑
n=1

(
σ̂ (n)

z ρ̂σ̂ (n)
z − 1

2
{σ̂ (n)

z σ̂ (n)
z , ρ̂}

)
. (13)
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The coherence time is T = T1 = T2 for both decay T1 and
dephasing T2. In Fig. 3(d), the rectification for the diode is
plotted as a function of T . Current quantum technologies
have an estimated T J ∼ 4×104 for superconducting circuits
[48] and T J ∼ 104 for trapped ions [49,50], for which the
entanglement-enhanced diode performs better than the linear
version (see Appendix F for more detail). For near-term de-
vices, we provide an autonomous error correction scheme that
may enhance the rectification as seen in Fig. 3(d), the details
of which are given in Appendix F. With improving coherence
times in future devices, the rectification and thus the benefit
of the diode increases essentially linearly.

C. Generalization to heat currents

Finally, we generalize to heat currents. The Hamiltonian is
modified such that we still have the energy gap created by the
Z coupling, but break the spin-flip symmetry,

ĤQ = Ĥ (� = 0) + h
(
σ̂ (1)

z + σ̂ (2)
z

) + �

6∑
i=1

σ̂ (i)
z . (14)

To study rectification of heat currents in the system, we couple
the system to thermal baths at finite temperature. One can
define the heat current as the heat exchanged between the
system and one of the baths,

K = tr{ĤQD1[ρ̂ss]} = −tr{ĤQD6[ρ̂ss]}. (15)

Like before, the heat rectification is defined asRQ = −Kf/Kr.
The system is now coupled to thermal baths addressing the
eigenstates of the entire system instead of just those of spins
1 and 6,

Dn[ρ̂] = 1
2

|ω−ω′|/�τ−1
R∑

ω,ω′
γn(ω)[Ân(ω)ρ̂Â†

n(ω′)

− Â†
n(ω′)Ân(ω)ρ̂] + H.c., (16a)

Ân(ω) =
∑

ω=ε′−ε

�(ε)σ (n)
x �(ε′), (16b)

for n ∈ {1, 6}. �(ε) is the projection operator onto the space
of eigenstates of ĤQ with eigenenergy ε. The first sum is done
over all pairs of frequencies for which |ω − ω′| is not much
greater than the inverse relaxation time of the diode τ−1

R . The
second sum is carried out over all pairs of projection operators
�(ε) and �(ε′) with the energy difference ω = ε′ − ε. The
coupling strength for transitions of frequency ω is

γn(ω) =
{

J (ω)[1 + Nn(ω)], ω � 0
J (ω)Nn(ω), ω < 0.

(17)

Nn(ω) = [exp(|ω|/Tn) − 1]−1 is the Bose-Einstein distribu-
tion describing the mean number of phonons in the bath mode
with frequency ω, and J (ω) is the spectral function. Here
we consider an ohmic bath for which J (ω) = γ |ω|. This is
called the global master equation because the baths address
eigenstates of the entire system. For � � h, J34, J , the baths
are approximately local, similar to the original model, and the
rectification values are similar to those seen in Fig. 2(b). For
� = 0, spins 1 and 6 are coupled to two thermal baths using
the global master equation. For � < 5, the optimal rectifica-
tion is achieved for J34 = h + 1.3J . The rectification of the

FIG. 4. (a) Heat current rectification as a function of h for dif-
ferent values of δ (solid lines). The dashed line displays RQ for a
linear chain with spin 3 removed. (b) Steady-state heat currents for
δ = 0.01. For both plots, J34 = h + 1.3J was used. The keys obey
the vertical ordering of the graphs.

heat diode is shown in Fig. 4(a) for a cold bath of temperature
0.1J and a hot bath of temperature 10.1J . For comparison, the
rectification of the reduced system where spin 3 is removed
is shown with a dashed line in Fig. 4(a). In Fig. 4(b), it
is verified that large rectification is due to a suppression of
Kr . The proposed diode thus generalizes very well to heat
currents where rectifications of >108 can be reached. For a
more detailed analysis of the global master equation approach
and the parametrization, J34 = h + 1.3J; see Appendix G.

III. CONCLUSIONS

We have proposed a class of rectifier exploiting the
quantum mechanical effects of entanglement and interference.
The rectifier is comprised of two segments of quantum spin
chain coupled through a two-way interface. Rectification fac-
tors of R > 105 for realistic anisotropy factors � < 5 were
achieved. The mechanism was found to rely on an entangled
Bell state developing in reverse bias, thus blocking transport.
The effect was found for a large set of parameters and in
noisy environments, and the rectification is present even for
heat currents using the global master equation approach. The
entanglement-enhanced rectification diode proposed here has
many variations (see Appendix B) and generalizes to larger
systems of N = 7 spins (see Appendix C). It is built within a
generic model with no particular implementation in mind and
could be realized with several of the current quantum tech-
nology platforms, including surface chains of atoms [42,51],
trapped ions [52,53], semiconductor structures, doped silicon
systems, quantum dots, and NV centers [54,55], Rydberg
atoms [56], and superconducting circuits [48]. Finally, we
note that the rectification found here is due to loss in reverse-
bias conductance from the increase in exchange between spins
3 and 4. Interestingly, this unintuitive behavior has a classical
analog known as the Braess paradox [57] and is seen to a
lesser extend in traffic, mechanical, electrical, and microflu-
idic networks [58–60].

ACKNOWLEDGMENTS

We thank Philip Hofmann and Jill Miwa for feedback on
the text, as well as Kristen Kaasbjerg and Antti-Pekka Jauho
for discussion. We are particularly grateful to Sai Vinjanam-
pathy, Suddhasatta Mahapatra, and Bhaskaran Muralidharan

052605-5



POULSEN, SANTOS, KRISTENSEN, AND ZINNER PHYSICAL REVIEW A 105, 052605 (2022)

for careful feedback and discussions on the setup and tech-
nical details. K.P. and N.T.Z. acknowledge funding from The
Independent Research Fund Denmark DFF-FNU. A.C.S. ac-
knowledges financial support from the São Paulo Research
Foundation (FAPESP) (Grants No. 2019/22685-1 and No.
2021/10224-0). L.B.K. acknowledges financial support from
the Carlsberg Foundation.

APPENDIX A: UNIQUENESS OF THE STEADY STATE

In this section, we focus on the following question: Is the
steady state dependent on the initial state? To answer this
question, we define the superoperator L, which describes the
evolution of the density matrix ρ̂ of the diode through

∂ρ̂

∂t
= L[ρ̂] = −i[Ĥ, ρ̂] +D1[ρ̂] +D6[ρ̂], (A1)

as defined in the main text. Likewise, the Hamiltonian is
given by

Ĥ/J = X̂12 + (1 + δ)X̂23 + X̂24 + J34/JX̂34

+ X̂35 + X̂45 + X̂56 + �Ẑ12, (A2)

where X̂i j = σ̂ (i)
x σ̂

( j)
x + σ̂ (i)

y σ̂
( j)
y is the XX spin exchange op-

erator, while Ẑi j = σ̂ (i)
z σ̂

( j)
z is the Z coupling that induces

relative energy shifts. The Pauli matrices for the ith spin
are denoted σ̂ (i)

α for α = x, y, z, and we are using units
where h̄ = kB = 1. The exchange coupling J gives the overall
scale of the problem, while the exchange between the interface
spins is J34. Dn[ρ̂] is another superoperator describing the
action of the environment on our system and is defined by

Dn[ρ̂] = γ
[
λn

(
σ̂

(n)
+ ρ̂σ̂

(n)
− − 1

2 {σ̂ (n)
− σ̂

(n)
+ , ρ̂})

+(1 − λn)
(
σ̂

(n)
− ρ̂σ̂

(n)
+ − 1

2 {σ̂ (n)
+ σ̂

(n)
− , ρ̂})]. (A3)

Thus, L contains operators acting from both left and right,
making Eq. (A1) difficult to solve in the current form. There-
fore, one can define the operation |ρ〉〉 = vec(ρ̂) that stacks
the columns of ρ̂ on top of each other, resulting in a vector of
length D2 = 22×6. For example, one would get

vec

(
ρ1,1 ρ1,2

ρ2,1 ρ2,2

)
=

⎛
⎜⎝

ρ1,1

ρ2,1

ρ1,2

ρ2,2

⎞
⎟⎠. (A4)

Using this operation, one can show that

vec(Âρ̂Ĉ) = (Ĉ† ⊗ Â)vec(ρ̂). (A5)

With this identity, we can write Eq. (A1) as

∂

∂t
|ρ〉〉 = L̂|ρ〉〉, (A6)

where L̂ is now a D2×D2 matrix, with D = 26, that acts on
|ρ〉〉 only from the left. It can be written as

L̂ = −i(11 ⊗ Ĥ − Ĥ ⊗ 11) + D̂1 + D̂6, (A7a)

D̂n = γ
{
λn

[
σ̂+

n ⊗ σ̂+
n − 1

2 (11 ⊗ σ̂−
n σ̂+

n + σ̂−
n σ̂+

n ⊗ 11)
]

+(1 − λn)
[
σ̂−

n ⊗ σ̂−
n − 1

2 (11 ⊗ σ̂+
n σ̂−

n + σ̂+
n σ̂−

n ⊗ 11)
]}

.

(A7b)

FIG. 5. Eigenvalues νn for the Lindbladian L plotted for (a) for-
ward and (b) reverse bias. Below the fidelity Ff/r (t ) between the
density matrix ρ̂(t ) and the desired steady state ρ̂ss,f/r for each of the
10 states as initial states is plotted both in (c) forward bias and (d) re-
verse bias. For this, the values δ = 0.1, � = 5, J34 = Jc

34(� = 5),
and γ = J were used.

Since L is not Hermitian, it is not necessarily diagonalizable,
but if we assume that it is, we can write the initial state as an
expansion in right eigenvectors |en〉〉 of L,

|ρ(0)〉〉 =
D2∑

n=1

cn|en〉〉. (A8)

Using this, the differential Eq. (A6) can easily be solved,

|ρ(t )〉〉 =
D2∑

n=1

cneνnt |en〉〉. (A9)

Here, νn are eigenvalues of L such that L|en〉〉 = νn|en〉〉. The
eigenvalues νn are generally complex. The imaginary part of
νn thus gives a time-dependent phase. The real part of νn

[Re(νn) � 0] gives an exponential decay of the corresponding
eigenvector until, after a sufficient time, only eigenstates with
eigenvalue νn = 0 are left. Therefore, the steady state is found
to be a zero eigenvector of L,

L|ρss〉〉 = 0. (A10)

If only one such vector exists, all initial states will eventually
decay to this vector and, consequently, the steady state will be
unique. If more than one null vector exists, the steady state
will depend on the specific expansion coefficients cn of the
initial state. Usually, only one null vector exists [61], but this
is not a given. For δ = 0, the system has up-down symmetry,
resulting in multiple steady states. As an illustration, we have
plotted the D2 = 22×6 eigenvalues of L in forward and reverse
bias in Figs. 5(a) and 5(b), respectively. Even though it is
difficult to see from the figure, it is easily verified from the
data used to plot Figs. 5(a) and 5(b) that there is, in fact, only
one null eigenvector and thus only one unique steady state.
The discussion here assumes that L can be diagonalized. A
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more rigorous approach can be used in general [62–65], but
the above is sufficient for the present problem.

To further emphasize that the system discussed here does
in fact only exhibit one steady state for δ �= 0, we consider
some different initial states. The initial states considered are

|ψ1〉 = |↑↑↑↑↑↑〉, |ψ2〉 = |↓↓↓↓↓↓〉, (A11a)

|ψ3〉 = (|ψ1〉 + |ψ2〉)/
√

2, |ψ4〉 = |+ + + + ++〉,
(A11b)

|ψ5〉 = |− − − − −−〉, |ψ6〉 = |↑↓↑↓↑↓〉, (A11c)

|ψ7〉 = |↓↑↓↑↓↑〉, |ψ8〉 = (|ψ6〉 + |ψ7〉)/
√

2, (A11d)

where |±〉 = (| ↑〉 ± |↓〉)/
√

2 and the state |ψ3〉 is the max-
imally entangled Greenberger-Horne-Zeilinger (GHZ) state
for 6 spins. Furthermore, we also consider starting from the
steady state in forward bias ρ̂ss,f and reverse bias ρ̂ss,r . First,
we compute the steady state ρ̂ss by solving the eigenvalue
problem from Eq. (A10). From this result, we numerically
evolve each state in Eq. (A11) in time to obtain the density
operator at a later time ρ̂(t ). Then we compute the distance
measure from each state ρ̂(t ) to ρ̂ss using the fidelity measure
as provided by

Ff/r (t ) =
(

tr
√√

ρ̂ss,f/rρ̂(t )
√

ρ̂ss,f/r

)2

. (A12)

The results in Figs. 5(c) and 5(d) show that the steady state for
each of the initial states ρ̂n,ss in Eq. (A11) is close to ρ̂ss after
sufficient time.

APPENDIX B: ALTERNATIVE VERSIONS OF THE DIODE

So far, we have explored one configuration of the setup
that exhibits large rectification and which is given by the
Hamiltonian (1). However, many other sets of parameters will
work just as well, some of which will lend themselves more
suitably to different physical implementations. Here we want
to explore some of these alternative versions.

So far, we have chosen � > 0, which then led to the
critical value J34 = −(� + 1.3)J . Alternatively, we could
have chosen � < 0, in which case we would have gotten
the critical value J34 = (−� + 1.3)J . This corresponds to
the transformation (�, J34) → (−�,−J34). A more general
parametrization would, therefore, be

J34 =
{

(−� + 1.3)J, � < 0
−(� + 1.3)J, � > 0.

(B1)

From Fig. 2(a), it is seen that even more parametrizations give
large rectification. However, for simplicity, we will stop here.

The purpose of the Z coupling between spins 1 and 2 is to
create an energy gap between the state where both spins are
down and the state where one spin excitation is present. This
energy gap can instead be created with local magnetic fields.
Thus we may define the new Hamiltonian

Ĥ1/J = X̂12 + (1 + δ)X̂23 + X̂24 + J34/JX̂34 + X̂35

+ X̂45 + X̂56 + h/J
(
σ̂ (1)

z + σ̂ (2)
z

)
. (B2)

Note that Ĥ1 = ĤQ is the Hamiltonian used for heat rectifica-
tion in the main text with ω = 0. With this Hamiltonian, one

FIG. 6. (a) R for the two alternative versions of the diode defined
by Ĥ1 and Ĥ2. For Ĥ1, we vary h with J34 = h + 1.3J , while for Ĥ2,
we vary � with J34 = (� + 1.3)J . (b) Reverse bias population Pr

(top) and contrast C (bottom) as a function of � for the Hamiltonian
Ĥ2 with the parametrization J34 = (� + 1.3)J . (c) Rectification R
as a function of � for the two extensions corresponding to the
Hamiltonians Ĥ−X X and ĤX X−, where J34 = Jc

34(�). (d) Rectification
R as a function of � and J34 for the Hamiltonian ĤX X Z−. For all plots,
δ = 0.01 and γ = J .

parametrization for h � 5J becomes

J34 =
{−(−h + 1.3J ), h < 0

h + 1.3J, h > 0.
(B3)

The sign difference between this and the parametrization from
before is due to how a Z coupling and a magnetic field create
the energy gap. If two spins are coupled through a Z coupling
with strength �J , then the energy gap between the state |↓↓〉
and the state |↓↑〉 is −2�J . If these two spin are instead
coupled to a magnetic field with strength h, then the energy
gap between the same two states is 2h. Thus, going from a Z
coupling to a local magnetic field, we need to set h = −�J .
The rectification for this model is plotted in Fig. 6(a) (black
dashed line), showing that this model gives rectification values
of the same order of magnitude as the original model.

Another more subtle alternative version is defined by the
Hamiltonian

Ĥ2/J = X̂12 − (1 + δ)X̂23 + X̂24 + J34/JX̂34 − X̂35

+ X̂45 + X̂56 + �Ẑ12. (B4)

For this Hamiltonian, one possible parametrization for � � 5
becomes

J34 =
{−(−� + 1.3)J, � < 0

(� + 1.3)J, � > 0.
(B5)

To explain this, we note that the state |
−〉 no longer closes
the diode. Instead, one can go through the same steps as in the
main text to show that the state |
+〉 now causes the diode
to close. Therefore, the roles of |
−〉 and |
+〉 switch around
such that |
−〉 now needs to be in resonance with the rest
of the diode. This is insured by letting J34 → −J34, which
leads to the above parametrization. To illustrate this, we have
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plotted R for this version in Fig. 6(a) (red solid line). Fur-
thermore, the contrast C (see main text) and fidelity between
ρ̂+ = |
+〉〈
+| and the reduced steady-state density matrix
in reverse bias ρ̂ (34)

ss,r = tr(1,2,5,6)[ρ̂ss,r] are plotted in Fig. 6(b).

APPENDIX C: SCALABILITY OF THE DIODE

Here we test the scalability of the diode proposed in the
main text. Since open quantum systems become difficult to
simulate very fast when increasing the number of spins, the
strategy is as follows: Understanding the rectification mech-
anism for the six-spin diode, we can generalize to larger
systems. Afterwards, the generalized theory is compared to
results from three different seven-spin versions. The diode
can be expanded at either end. Adding a spin to the right
will change the energy spectrum of the right chain segment.
However, this energy spectrum is unimportant for the diode
mechanism, and adding additional spins to the right should
neither increase nor decrease the rectification. Adding a spin
to the left will change the energy spectrum of the left chain
segment, which is important for the diode mechanism. For
the largest rectification, the parameters of the left chain seg-
ment have to be chosen appropriately such that there is a
transition resonant with the interface transition, |↑↑〉 ↔ |
−〉.
While the largest rectification is found at resonance, large
rectification is achieved for a large set of parameters; see
Fig. 2(a). Therefore, spins can be added to the left with
coupling strength ∼J without dramatically affecting the rec-
tification. Next, we look at the seven-spin version, where
there are three such obvious choices. First, one could add a
seventh spin at the end of the chain with an XX coupling of
strength J between the sixth and seventh spins. Thus the new
Hamiltonian is given from the original Hamiltonian Ĥ defined
in Eq. (1),

Ĥ−XX /J = Ĥ/J + X̂67. (C1)

This system will then be coupled to the heat baths through
spins 1 and 7, replacing D6[ρ̂] with D7[ρ̂] in Eq. (2). Alter-
natively, one could put a zeroth spin at the beginning of the
chain with an XX coupling of strength J between the zeroth
and first spin. Thus we define the Hamiltonian

ĤXX−/J = Ĥ/J + X̂01. (C2)

The last obvious way of extension is again with an extra zeroth
spin at the beginning of the chain, but this time with an XXZ
coupling, giving the Hamiltonian

ĤXXZ−/J = Ĥ/J + X̂01 + �Ẑ01. (C3)

The last two systems will then be coupled to the heat baths
through spins 0 and 6 replacing D1[ρ̂] with D0[ρ̂] in Eq. (2).
The found rectification factors for the first two versions can
be seen in Fig. 6(c). Here we see that these two versions al-
most have the same rectification as the original chain [seen in
Fig. 2(b)], as expected from the discussion above. For the case
of a spin added to the left of the chain coupled through an XXZ
coupling (obeying the Hamiltonian ĤXXZ−), we cannot expect
the usual parametrization to hold. Therefore, the rectification
is plotted as a function of both � and J34 in Fig. 6(d). We
see that the rectification is significantly higher than for the
six-spin diode. Already at � ∼ 4 (and J34 ∼ −4.5J) do we

FIG. 7. (a) Rectification as a function of J34 for different values
of δ = δ′ and � = 5. (b) Rectification R as a function of � for differ-
ent interaction strengths γ between the system and the bath, where
δ = 0.01 was used. The dashed lines denote the case λn ∈ {0, 0.2},
and the solid lines denote the case λn ∈ {0, 0.5}. (c) Rectification R
as a function of � for different values of T where δ = 0.1. Solid
lines denote the rectification for a model without error correction,
while dashed lines denote a model with error correction. For (b) and
(c), the parametrization J34 = Jc

34(�) was used. The keys obey the
vertical ordering of the graphs.

achieve a rectification of R > 106. Note that this model has a
resonance between a spin excitation on spins 0, 1, and 2 and
the transition |↑↑〉 ↔ |
−〉 for the interface if J34 ∼ −�J ,
similar to what is found in the main text. This explains why
we get large R around J34 ∼ −�J .

APPENDIX D: δ = δ′ SYMMETRY

In this section, we study the case where a small perturba-
tion is added to the coupling between spins 4 and 5 such that
the diode is now described by the Hamiltonian

Ĥδ′/J = X̂12 + (1 + δ)X̂23 + X̂24 + J34/JX̂34 + X̂35

+ (1 + δ′)X̂45 + X̂56 + �Ẑ12. (D1)

The dependence of the rectification on δ′ alone was studied
in the main text, so here we will focus on δ = δ′. From the
results in the main text, we expect the rectification to be lower
than for δ′ = 0. However, with δ = δ′, the system exhibits a
symmetry that might be preferable to certain implementations.
In Fig. 7(a), the rectification is plotted as a function of J34 for
different values of δ = δ′. Although the rectification drops by
an order of magnitude, it is still >104 for δ = δ′ = 0.01.

APPENDIX E: INTERACTION STRENGTH
BETWEEN DIODE AND BATHS

Here we study the effect of changing the interaction
strength γ between the baths and the system, as defined in
Eq. (2), as well as the nature of the baths λn. This can be
seen in Fig. 7(b), where R is plotted for different interac-
tion strengths and λn. We see that the general behavior of
the rectification is still achieved. However, for small γ , the
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rectification becomes more sensitive to the inner structure of
the system. Generally, the rectification is slightly increased for
weaker interaction strengths or larger λ1 + λ6. Interference in
these types of systems is known to often disappear at stronger
interaction. An example of this is molecular junctions, which
can be tuned such that interference effects cause the cur-
rent in one bias to be zero to lowest order in the applied
voltage V [66,67]. However, to second order in V , the effect
is broken and rectification can be difficult to achieve [68,69].
In Fig. 7(b), we see that large rectification is achieved for
couplings γ well beyond 1J .

APPENDIX F: DECOHERENCE AND PROTECTION
OF THE ENTANGLED STATE

To study how a limited lifetime of the spins affect the
rectification factors, we add both decay and dephasing on all
spins. This is done by letting the density matrix evolve as

∂ρ̂

∂t
= L[ρ̂] + 1

T

6∑
n=1

(
σ̂

(n)
− ρ̂σ̂

(n)
+ − 1

2
{σ̂ (n)

+ σ̂
(n)
− , ρ̂}

)

+ 1

4T

6∑
n=1

(
σ̂ (n)

z ρ̂σ̂ (n)
z − 1

2

{
σ̂ (n)

z σ̂ (n)
z , ρ̂

})
, (F1)

which insures that if L[ρ̂] = 0, then the lifetime for all
spins for decay (T1) and dephasing (T2) is T = T1 = T2.
The rectification as a function of � is plotted in Fig. 7(c)
for different values of T J . To put this plot into perspec-
tive, superconducting circuits have T1 ∼ T2 ∼ 100 μs and
J/2π � 60 MHz [48], resulting in T J ∼ 4×104. Ion-trap-
based quantum computers have T1 ∼ T2 ∼ 1 s and J/2π ∼
1 kHz [49,50], resulting in T J ∼ 104. However, as technology
improves and coherence times increase, the rectification and
thus the benefit of the diode also increase linearly.

The drop in rectification is mainly due to decoherence of
the entangled Bell state |
−〉. To protect against this, we
can employ error correction by forcing the transition |↓↓〉 →
|
−〉. This is done by adding a shadow qubit with driving that
allows the transition. We further add an excitation energy of
2ω to all spins, since this will be present in most experimental
setups,

ĤEC = Ĥ + Aσ̂ (3)
x σ̂ (S)

x cos {2(2ω + �)t} + ω
∑

k

σ̂ (k)
z , (F2)

where the sum is over all spins and ω � �. Moving into
the interacting picture with respect to the Hamiltonian Ĥ0 =
(ω + �)σ̂ (S)

z + ω
∑6

k=1 σ̂ (k)
z and performing the rotating wave

approximation on terms rotating with angular frequency ∼ω,
we get

ĤEC,I = eiĤ0t (ĤEC − Ĥ0)e−iĤ0t

� Ĥ + A(σ̂ (3)
+ σ̂

(S)
+ + σ̂

(3)
− σ̂

(S)
− ) − �σ̂ (S)

z . (F3)

Likewise, the Lindblad equation and spin current operator can
be transformed. We let the shadow qubit decay with rate γS =
J and the coupling be weak, A = 0.1J . If we let � = −J34,
the two gate spins and the shadow qubit will undergo the
transition

|↓↓〉|↓〉S ↔ |
−〉|↑〉S → |
−〉|↓〉S. (F4)

Numerical simulations show that the best result is achieved
for � = (� + 1.2)J . The rectification with error correction
is plotted in Fig. 7(c) for different coherence times T . The
error correction works best for short coherence times, where
it results in about twice the rectification.

APPENDIX G: HEAT DIODE USING
THE GLOBAL MASTER EQUATION

In this section, we want to explore how the diode pro-
posed in the main text can also be used as a heat rectifier
using a global master equation. First, we change the diode
Hamiltonian (1) slightly such that we still have the energy gap
created by the ZZ coupling, but break the spin-flip symmetry.
This is done by using the Hamiltonian (14), with � = 0, given
by

ĤQ/J = X̂12 + (1 + δ)X̂23 + X̂24 + J34/JX̂34 + X̂35

+ X̂45 + X̂56 + h/J
(
σ̂ (1)

z + σ̂ (2)
z

)
. (G1)

The energy gap is now created by a local magnetic field on
spins 1 and 2 described by h. This Hamiltonian is the same as
Ĥ1 explored in Appendix B. However, in this section, we will
couple spins 1 and 6 to two thermal baths and use the global
master equation where the baths address the eigenstate of the
total system instead of just those of spins 1 and 6. Here it does
not make sense to define a spin current, so instead we examine
how heat is transferred through the diode. This is again done
through the master equation [44],

∂ρ̂

∂t
= −i[ĤQ, ρ̂] +D1[ρ̂] +D6[ρ̂],

FIG. 8. (a) RQ as a function of h and J34 for TC = 0.1J and
TH = 10.1J . (b),(c) The rectification RQ plotted for different cold
bath temperatures TC with hot bath temperature TH = TC + �T .
First, (b) h is varied keeping �T = 10J , and next, (c) �T is varied
keeping h = 5J . In (b) and (c), the values 0.1 (top), 0.5 (middle top),
1 (middle bottom), and 3 (bottom) were used for TC/J . For all plots,
J34 = JQ

34(h), γ = J , and δ = 0.01.
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where the dissipators are now defined as

Dn[ρ̂] = 1
2

|ω−ω′|/�τ−1
R∑

ω,ω′
γn(ω)[Ân(ω)ρ̂Â†

n(ω′)

− Â†
n(ω′)Ân(ω)ρ̂] + H.c., (G2)

for n ∈ {1, 6}. Here the sum is done over all pairs of frequen-
cies for which |ω − ω′| is not much greater than the inverse
relaxation time of the diode τ−1

R . This is due to the secular
approximation, which essentially comes from a rotating wave
approximation. The operators Ân(ω) are eigenoperators of ĤQ

defined as

Ân(ω) =
∑

ω=ε′−ε

�(ε)σ (n)
x �(ε′), (G3)

with �(ε) being the projection operator onto the space of
eigenstates of ĤQ with eigenenergy ε. This sum is carried out
over all pairs of projection operators �(ε) and �(ε′) with the
energy difference ω = ε′ − ε. These operators describe the
transitions induced by the baths with coupling strength

γn(ω) =
{

J (ω)[1 + Nn(ω)], ω � 0
J (ω)Nn(ω), ω < 0.

(G4)

Nn(ω) = [exp(|ω|/Tn) − 1]−1 is the Bose-Einstein distribu-
tion describing the mean number of phonons in the bath mode
with frequency ω, and J (ω) is the spectral function. Here
we consider an ohmic bath for which J (ω) = γ |ω|. We let
the cold bath have temperature TC and the hot bath have
temperature TH . Like before, we denote TH = T1 > T6 = TC

as forward bias and TC = T1 < T6 = TH as reverse bias. The
total change in mean energy of the diode is given by

dE

dt
= d

dt
tr{ĤQρ̂} =

〈
dHQ

dt

〉
+ tr

{
ĤQ

d ρ̂

dt

}
. (G5)

The first part is interpreted as the work done on the diode.
However, since we have a constant Hamiltonian, this is zero.
The second part is interpreted as the total heat going into the

system. In the steady state, ˙̂ρss = 0, and therefore the total heat
exchanged between the diode and baths is zero. However, by
noting that

0 = tr

{
ĤQ

d ρ̂ss

dt

}

= tr{HQD1[ρ̂ss]} + tr{HQD6[ρ̂ss]}, (G6)

we can define the heat current as the heat exchanged between
the diode and the left bath,

K = tr{ĤQD1[ρ̂ss]} = −tr{ĤQD6[ρ̂ss]}. (G7)

Again, here we denote the heat current in forward bias K f

and the heat current in reveres bias Kr . Likewise, we define
the rectification as

RQ = −K f

Kr
. (G8)

The heat current rectification of the diode is shown in Fig. 8
as a function of the relevant parameters. The contour plot in
Fig. 8(a) shows RQ for a small vertical symmetry breaking of
δ = 0.01 as a function of J34 and h. Unlike for the spin current
case, we clearly see multiple resonances that makes the plot
chaotic for small J34 and h. However, in the upper right corner,
many of the resonances merge and create thicker, more stable
lines of large rectification of >108. We note that the region
of largest RQ follows the same parametrization as before,
which we call JQ

34(h) = h + 1.3J . In Figs. 8(b) and 8(c), the
rectification as a function of the bath parameters is studied.
In Fig. 8(b), it can be seen that the largest rectification is
achieved for TC < J . Since J sets the energy scale of the diode,
for TC < J the cold bath will predominantly induce decay,
while the hot bath will induce both decay and excitation in the
energy levels. Therefore, we expect a better diode for smaller
TC . In Fig. 8(c), we see that the rectification is stable over the
first order of magnitude in �T , but decreases slightly for very
large �T .
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