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Efficient exciton generation in a semiconductor quantum-dot–metal-nanoparticle composite
structure using conventional chirped pulses
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We consider a nanostructure consisting of a semiconductor quantum dot coupled to a metal nanoparticle,
and we show with numerical simulations that the exciton state of the quantum dot can be robustly generated
from the ground state even for small interparticle distances, using conventional chirped pulses with a Gaussian
envelope. The asymmetry observed in the final exciton population with respect to the chirp sign of the applied
pulses is explained using the nonlinear density matrix equations describing the system and is attributed to the
real part of the parameter emerging from the interaction between excitons in the quantum dot and plasmons
in the metal nanoparticle. The simplicity of Gaussian chirped pulses, which can also be easily implemented in
the laboratory, makes the proposed robust quantum control scheme potentially useful for the implementation of
ultrafast nanoswitches and quantum information processing tasks with semiconductor quantum dots.
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I. INTRODUCTION

An intense field of research is devoted to studies re-
garding the optical properties of complex systems composed
of plasmonic nanostructures coupled to quantum entities
like molecules or semiconductor quantum dots (SQDs) [1].
When the quantum part of these composite nanosystems is
coherently controlled, they behave as active nanophotonic
structures and are expected to have important applications in
many fields, including nanotechnology and modern quantum
technologies. For example, it has been found that a composite
structure which consists of a SQD and a metal nanoparti-
cle (MNP) is more efficient than a quantum dot alone for
optical phenomena like the creation of single photons on
demand [2,3] and polarization-entangled photons [4]. The
coupled SQD-MNP nanostructure serves also as the basic
system for the plasmonic nanolaser (spaser) [5,6]. In order
to exploit the advantages offered by the coupled SQD-MNP
system for these important quantum technology applications,
a crucial problem is the efficient controlled population transfer
from the ground state to the exciton state of the quantum dot,
in the presence of the nanoparticle. This important problem
has been explored in a series of studies [7–18], with emphasis
put on the effect of the interparticle distance.

More precisely, by studying a nanostructure containing a
CdTe SQD and a rodlike Au MNP, it was discovered that the
period of Rabi oscillations exhibited by the exciton popula-
tion is modified with the interparticle distance [7], an effect
that was later associated with the development of plasmonic
metaresonances [8,9]. Moreover, this last phenomenon was
linked to optical bistability that may take place in a SQD-
MNP nanosystem [10–12,19]. It was also shown that properly
tailored pulses with a hyperbolic secant envelope can achieve
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high fidelity exciton state preparation in a SQD coupled to
a spherical MNP [14]. The application of ultrashort pulse
trains or amplitude-modulated laser pulses to the same system
results in distance-dependent modulation of the exciton pop-
ulation in the SQD, a phenomenon which can be exploited
for the implementation of efficient nanoswitches [15,16]. In
another study considering a three-level V-type SQD, the MNP
was exploited in order to obtain selective population transfer
to one of the exciton states by applying resonant fields [13].
In a related work, optimal control was used for the effective
transfer of population between the two lower states of a �-
type SQD placed close to a spherical MNP [18].

In the majority of the previously discussed works, resonant
methods have been employed for the preparation of the SQD
exciton state in the presence of a MNP. The main advantage
of these methods is the fast, and with high fidelity, population
transfer to the exciton state, something which occurs only
when using finely tuned pulse amplitudes and widths. The
efficiency of resonant methods is rather sensitive to changes
in the characteristics of the applied fields. A way to overcome
these drawbacks and obtain robust population inversion in a
two-level system is to use adiabatic methods [20,21] or the
closely related shortcuts to adiabaticity [22], where the latter
are essentially accelerated versions of the former, while both
are implemented using chirped pulses. In our recent work we
used the shortcut method of transitionless quantum driving
and showed that efficient preparation of the exciton state in
the SQD-MNP system can be accomplished [23].

In the current article we use conventional chirped pulses
with Gaussian envelopes and linear chirp, and we demon-
strate that they also can robustly prepare the exciton state
in a SQD coupled to a MNP. The reason for considering
such pulses is their simplicity and easiness to implement in
the laboratory, compared to the more sophisticated chirp and
envelopes needed by the shortcut pulses. Note that these type
of pulses have been used for the efficient preparation of the
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exciton [24–31] and biexciton [32–35] states in a SQD in the
absence of a MNP. In the present study involving the coupled
SQD-MNP system and for the employed chirped pulses we
observe an asymmetry in the final exciton population, which
depends on the sign of the chirp parameter, positive or nega-
tive. In the nonlinear density matrix equations describing the
coupled SQD-MNP system [7–12,14–17,36–46], we explic-
itly identify the symmetry-breaking term as the real part of the
nonlinearity self-interaction parameter, where the latter is due
to the dipolar exciton-plasmon interaction [36,37]. Using the
familiar two-level system terminology, this term corresponds
to an effective “longitudinal” field which breaks the z symme-
try in the Bloch sphere, affecting differently the “longitudinal”
field associated with positive- and negative-chirp parameters.

The present work has the following structure. In Sec. II we
provide the nonlinear density matrix equations which describe
the interaction of the SQD-MNP system with the applied
electromagnetic field. In Sec. III we describe the applied
chirped pulses and also discuss the symmetry breaking in
the equations for opposite-sign chirp parameters. In Sec. IV
we provide numerically obtained fidelity diagrams of the ex-
citon state final population, for various pulse durations and
SQD-MNP distances. Section V summarizes the results of our
research.

II. COUPLED SEMICONDUCTOR
QUANTUM-DOT–METAL

-NANOPARTICLE MODEL

The system under consideration is displayed in Fig. 1
and consists of a classical spherical MNP with radius α and
dielectric function εm(ω), and a SQD with dielectric con-
stant εs which is modeled as a two-level system, with states
|0〉 and |1〉 corresponding to the ground and single-exciton
states, respectively, an approximation used in several pre-
vious works [7–12,14–17,36–46]. The two components of
the nanosystem are embedded in an environment with the
dielectric constant εenv, with their centers separated by a
distance R.

A linearly polarized external electric field, �E (t ) =
ẑE0 f (t ) cos[ωt + φ(t )], is applied to the nanostructure,
where E0 is the electric field amplitude, f (t ) is the
dimensionless pulse envelope, ω is the angular frequency,
and φ(t ) is the time-dependent phase. Using the method-
ology of the density matrix, we find the following
set of equations for the population difference between
the ground and the single-exciton states, �(t ) = ρ00(t ) −
ρ11(t ), and the slowly varying off-diagonal matrix element
σ (t ) = ρ10(t )ei[ωt+φ(t )] [14,23,36,37,47]:

�̇(t ) = i
∗(t )σ (t ) − i
(t )σ ∗(t ) + 4GIσ (t )σ ∗(t )

− �(t ) − 1

T1
, (1a)

σ̇ (t ) = i(δ + φ̇(t ))σ (t ) + i

(t )

2
�(t ) + iG�(t )σ (t )

− σ (t )

T2
, (1b)

where δ = ω − ω0 is the detuning of the applied field, with
h̄ω0 being the exciton state energy, while T1 and T2 denote the

FIG. 1. Spherical metal nanoparticle with radius α and dielectric
constant εm(ω) coupled to a semiconductor quantum dot with radius
b � α and dielectric constant εs. R denotes the interparticle distance,
εenv denotes the dielectric constant of the surrounding, and �E (t )
denotesthe externally applied field.

relaxation times corresponding to spontaneous emission and
dephasing in the SQD, respectively. Also, 
(t ) denotes the
time-dependent complex Rabi frequency given by [36,37,47]


(t ) = 
0 f (t ), 
0 = μE0

h̄εeffS

(
1 + saγ1α

3

R3

)
, (2)

while G is the self-interaction parameter defined as [37]

G =
N∑

n=1

1

4πεenv

(n + 1)2γnα
2n+1μ2

h̄ε2
effSR2n+4

. (3)

In the above formulas, μ is the dipole moment for the
ground to exciton transition in the SQD, which without
loss of generality is assumed to be real. Also, the quantity
εeffS = 2εenv+εS

3εenv
represents the SQD effective dielectric con-

stant; γn = εm (ω)−εenv
εm (ω)+(n+1)εenv/n , with n = 1, 2, 3, . . . ; and sa =

2 since the external field is parallel to the center line of
the system (z axis). In addition, GI is the imaginary part
of G = GR + iGI . Observe that nonlinear terms arise in the
above equations due to the parameter G. At t = 0 the initial
conditions starting from the ground state are �(0) = 1 and
σ (0) = 0, while complete exciton preparation at the final time
t = t f corresponds to the target value �(t f ) = −1. The quan-
tity that we are interested in is the final exciton population
ρ11(t f ) = [1 − �(t f )]/2.

The two parts of the complex Rabi amplitude correspond
to the applied field and the field induced by the polariza-
tion of the MNP (caused also by the external field). If we
write 
0 = |
0|eiβ , where β is the corresponding phase, then
the complex Rabi frequency can be expressed as 
(t ) =
|
(t )|eiβ , where |
(t )| = |
0| f (t ), a relation which we use
in the following section. The self-interaction parameter G
emerges from the interaction between SQD excitons and MNP
plasmons [7,36,37]. Particularly, the external field induces a
dipole on the SQD, proportional to the off-diagonal elements
of the density matrix, which also induces a dipole on the MNP,
which subsequently interacts with the SQD dipole [36,47].
In Eq. (3) we actually consider that the SQD dipole induces
multipole moments on the MNP [37,48], and we use the
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FIG. 2. Real (a) and imaginary (b) parts of the nonlinear self-
interaction parameter G, as a function of the interparticle distance.

value N = 20 in the subsequent calculations in order to get
converging results. In Fig. 2 we display the real and imaginary
parts of G as a function of the interparticle distance, for the
parameter values later used in Sec. IV.

III. CONVENTIONAL CHIRPED PULSES
AND SYMMETRY BREAKING

In this section we explain how chirped pulses can be used
for the efficient preparation of the exciton state, as well as why
opposite-sign chirp parameters lead to different final fidelities,
due to the symmetry breaking of the system caused by the
presence of the MNP. Observe that for G = 0 and T1, T2 →
∞, Eqs. (1) reduce to the Bloch equations for the two-level
system:

i

(
ȧ1(t )

ȧ2(t )

)
= 1

2

(−φ̇(t ) 
(t )


∗(t ) φ̇(t )

)(
a1(t )

a2(t )

)
, (4)

with the mapping �(t ) = |a1(t )|2 − |a2(t )|2 and σ (t ) =
a1(t )a∗

2(t ). The exciton state preparation from �(0) = 1 to
�(t f ) = −1 corresponds to inverting the population in this
two-level system. The instantaneous eigenstates of the two-
level system and the corresponding eigenvalues are

|ψ+(t )〉 =
(

cos θ (t )
2

sin θ (t )
2 e−iβ

)
, (5a)

|ψ−(t )〉 =
(

sin θ (t )
2

− cos θ (t )
2 e−iβ

)
, (5b)

and

A±(t ) = ± 1
2

√
φ̇2(t ) + |
(t )|2, (6)

where

tan θ (t ) = |
(t )|
−φ̇(t )

. (7)

If the applied electric field is selected such that the mixing
angle is slowly varied from θ (0) = 0 to θ (t f ) = π , then the
population inversion takes place adiabatically along the eigen-
state |ψ+(t )〉. If θ (0) = π is slowly modified to θ (t f ) = 0,
then the inversion occurs along the eigenstate |ψ−(t )〉.

In order to achieve the desired population inversion, and
thus the exciton state preparation, we use linearly chirped

Gaussian pulses

E (t ) = h̄εeffS

μ

�√
2πτ0tp

exp

[
− (t − t0)2

2t2
p

]
cos [ωt + φ(t )],

(8)

which are obtained after passing a constant frequency Gaus-
sian pulse with area � and initial duration τ0 through a chirp
filter with a chirp constant a [26,49]. The pulse duration is
modified from τ0 to [26,50]

tp =
√

τ 2
0 + a2

τ 2
0

, (9)

while its frequency acquires a linear chirp,

φ̇(t ) = c(t − t0), (10)

with rate [26,50]

c = a

a2 + τ 4
0

. (11)

The final time of the pulse is taken to be t f = 2t0, where t0 is
large enough and defines the pulse center.

Observe that for c > 0 (a > 0) the mixing angle changes
from 0 to π for both types of pulses, and thus the system
evolves along |ψ+(t )〉, while for c < 0 (a < 0) it changes
from π to 0 and the system evolves along |ψ−(t )〉. For G = 0
the two paths are equivalent but the presence of G = GR + iGI

with GR �= 0 breaks this symmetry, as we immediately show.
Let �(t ) and σ (t ) be the solution of system (1), with δ = 0
and ignoring relaxation:

�̇(t ) = i
∗(t )σ (t ) − i
(t )σ ∗(t ) + 4GIσ (t )σ ∗(t ), (12a)

σ̇ (t ) = iφ̇(t )σ (t ) + i

(t )

2
�(t ) + iG�(t )σ (t ), (12b)

when starting from �(0) = 1 and σ (0) = 0 and with the chirp
φ̇ given by Eq. (10). Let also �′(t ) and σ ′(t ) be the solution
when starting from the same initial conditions �′(0) = 1 and
σ ′(0) = 0, but with the opposite-sign chirp φ̇′ = −φ̇, i.e.,
when using −c (or −a) in Eq. (10). The primed variables
satisfy the equations

�̇′(t ) = i
∗(t )σ ′(t ) − i
(t )σ ′∗(t ) + 4GIσ
′(t )σ ′∗(t ), (13a)

σ̇ ′(t ) = −iφ̇(t )σ ′(t ) + i

(t )

2
�′(t ) + iG�′(t )σ ′(t ), (13b)

where we observe that the difference with system (12) is
that φ̇ is replaced by −φ̇. Now let us consider the following
transformation:

�′′(t ) = �′(t ), (14a)

σ ′′(t ) = −σ ′∗(t )e2iβ. (14b)

It is not hard to show that the transformed variables satisfy the
equations

�̇′′(t ) = i
∗(t )σ ′′(t ) − i
(t )σ ′′∗(t ) + 4GIσ
′′(t )σ ′′∗(t ),

(15a)

σ̇ ′′(t ) = iφ̇(t )σ ′′(t ) + i

(t )

2
�′′(t ) − iG∗�′′(t )σ ′′(t ). (15b)
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Observe that in Eqs. (15) the chirp sign has been restored
(+φ̇), and the only difference with Eqs. (12) is that G is re-
placed by −G∗ = −GR + iGI . For GR = 0, Eqs. (12) and (15)
are identical, and since the transformed variables satisfy also
the same initial conditions �′′(0) = 1, σ ′′(0) = 0, we obtain
that �′′(t ) = �(t ). But also �′(t ) = �′′(t ), and thus �′(t ) =
�(t ) and the solutions corresponding to the opposite-sign
chirp are equivalent. For GR �= 0 this symmetry breaks down.
Note also that mathematically the symmetry is preserved if G
is replaced by G′ = −G∗.

There is actually a simple intuitive explanation why the
presence of GR breaks the “z symmetry” of the two-level
system (Bloch sphere), which is revealed when we rewrite
Eq. (12b) for the coherence as

σ̇ (t ) = i[φ̇(t ) + GR�(t )]σ (t ) + i

(t )

2
�(t ) − GI�(t )σ (t ),

(16)
using that G = GR + iGI . Now it is obvious that GR �= 0
results in an extra time-dependent field GR�(t ) in the “z
direction,” defined with respect to the two-level system (4),
which breaks the corresponding symmetry for positive- and
negative-chirp φ̇(t ). In the two-level Schrodinger equation (4)
the φ̇(t ) term should be replaced by φ̇(t ) + GR�(t ) and the
instantaneous “eigenvalues” (6) become state dependent:

A±(t ) = ±1

2

√
[φ̇(t ) + GR�(t )]2 + |
(t )|2, (17)

where for the latter term we use quotation marks since in
the presence of the MNP the system is nonlinear. In the
next section we present specific examples of how the added
term GR�(t ) modifies the gap between the “eigenvalues” for
the different chirp signs. Note that in Eq. (4), the term φ̇(t )
multiplies the −σz Pauli spin matrix while the term 
(t )
multiplies a linear combination of the σx and σy matrices,
and this is why we characterize them as the “longitudinal”
and “transverse” fields, respectively. Nevertheless, we point
out that the “transverse” field 
(t ) for the two-level system
corresponds to the applied field, which points in the z direction
in the real space.

IV. NUMERICAL SIMULATIONS
AND RESULTS ANALYSIS

Here, we test the performance of the previously discussed
chirped pulses with numerical simulations of the system in
Eqs. (1), including the effect of nanoparticle as well as relax-
ation. For the parameters that appear in these equations and
are necessary in the simulations, we use numerical values
typically corresponding to CdSe-based SQD, which have
also been used in many other works regarding similar sys-
tems: T1 = 0.8 ns, T2 = 0.3 ns, εenv = ε0, εs = 6ε0, h̄ω0 =
2.5 eV, μ = 0.65 e nm, and α = 7.5 nm, where as usual ε0

denotes the vacuum dielectric constant. For εm(ω), we use
the experimental value corresponding to gold [51], which is
specifically εm(ω) = −2.278 29 + i3.812 64.

In Fig. 3 we display contour plots of the final exciton
population ρ11(t f ) versus the pulse area and chirp, when
applying the chirped Gaussian pulse (8) with τ0 = 1 ps to
the SQD-MNP system, for several interparticle distances.
Observe that for the smallest distance R = 11 nm [Fig. 3(a)],

FIG. 3. Contour plot of the final exciton population when using
the Gaussian chirped pulse with τ0 = 1 ps, versus the pulse area and
the chirp parameter a, for different values of the interparticle dis-
tance: (a) R = 11 nm, (b) R = 12 nm, (c) R = 13 nm, (d) R = 15 nm,
(e) R = 30 nm, and (f) R = 80 nm.

efficient population transfer is achieved only at some narrow
strips corresponding to specific combinations of pulse area
and chirp, resembling the performance of resonant pulses. The
reason is that for such small distances the nonlinear term G is
very strong and practically destroys the adiabatic following
and cancels the beneficial effect of the chirp. The situation is
drastically improved for a small change in the interparticle
distance [see Fig. 3(b) corresponding to R = 12 nm]. Due
to the reduction of G, now the high-fidelity stripes become
wider and occupy a larger portion of the contour diagram.
For distances as small as 13 and 15 nm [see Figs. 3(c)
and 3(d), respectively], robust population transfer is accom-
plished for sufficiently large absolute chirp values and pulse
areas larger than a chirp-dependent lower threshold. For larger
distances, where the effect of the MNP weakens, the contour
diagrams become almost independent of R [see, for example,
Figs. 3(e) and 3(f) corresponding to R = 30 nm and R = 80
nm, which look identical]. Figure 4 is obtained similarly to
Fig. 3 by applying a linearly chirped Gaussian pulse with
shorter τ0 = 0.75 ps. Obviously, the overall performance and
robustness are now improved. This can be understood by
using the analysis of the previous section. Specifically, from
Eq. (11) we see that, for fixed a, the chirp rate c is larger
for smaller τ0. Accordingly, the initial and final chirp values,
|φ̇(0)| = |φ̇(2t0)| = |c|t0, are larger for smaller τ0. But from
the discussion at the end of the previous section, we know
that the unwanted term affecting the dynamics has the form
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FIG. 4. Contour plot of the final exciton population when using
the Gaussian chirped pulse with τ0 = 0.75 ps, versus the pulse area
and the chirp parameter a, for different values of the interparticle
distance: (a) R = 11 nm, (b) R = 12 nm, (c) R = 13 nm, (d) R = 15
nm, (e) R = 30 nm, and (f) R = 80 nm.

GR�(t ), and thus it is stronger at the beginning and at the
end, where |�| is close to unity. The larger chirp for smaller
τ0 during the same time intervals cancels more effectively the
undesirable action of this term.

Probably the most striking feature of Figs. 3 and 4 is the
asymmetry for positive and negative chirp, evident for small
values of the interparticle distance, where the symmetry-
breaking term GR�(t ) identified in the previous section is
stronger. In order to numerically confirm the previous the-
oretical analysis, we manually set GR = 0 while keeping
nonzero GI in Eqs. (1). The results for GR = 0 are displayed
in Figs. 5(a) and 5(b), where we show contour plots of the
final exciton population versus the pulse area and chirp, for
a distance of R = 12 nm and a Gaussian chirped pulse with
τ0 = 1 ps and τ0 = 0.75 ps, respectively. Comparing these
to the corresponding figures with nonzero GR [Figs. 3(b)
and 4(b)], it becomes obvious that the asymmetry has been
disappeared. We also observe that, if we manually invert the
sign of GR, the chirp asymmetry is also inverted, as shown
in Figs. 5(c) and 5(d), where the same parameters as those in
Figs. 3(b) and 4(b) are used. We emphasize, of course, that
these manual changes in GR are performed only for demon-
stration reasons, while the real values of this parameter are
displayed in Fig. 2(a). Another interesting observation which
can be made from Figs. 3(a) and 3(b) and Figs. 4(a) and 4(b)
is that, for negative chirp, once the (larger) pulse area thresh-
old is surpassed and for higher chirp parameter values, the

FIG. 5. Contour plot of the final exciton population versus the
pulse area and the chirp parameter a for R = 12 nm when (a), (b)
manually enforcing GR = Re{G} = 0 and (c, d) manually inverting
the sign of GR = Re{G}. The initial pulse duration is taken to be
τ0 = 1 ps in panels (a) and (c) and τ0 = 0.75 ps in panels (b) and (d).

population transfer is more robust compared to positive chirp.
This can be explained since for negative chirp the “detuning”
φ̇(t ) and the term GR�(t ) evolve in the same direction, i.e.,
from positive to negative values, while for positive chirp they
evolve in opposite directions [recall that GR > 0, see Fig. 2(a),
while �(t ) changes from its maximum value one to negative
values]. This is also demonstrated in Fig. 6, where we display
the modified “eigenvalues” (17) for the positive chirp (red

FIG. 6. Modified “eigenvalues” (17) for opposite-sign chirp val-
ues. Red dashed curves correspond to the positive chirp while blue
solid curves correspond to the opposite negative chirp. The param-
eters used for each case correspond to (a) the upper symmetric pair
marked in Fig. 3(a); (b) the lower symmetric pair marked in Fig. 3(a);
(c) the upper symmetric pair marked in Fig. 3(b); and (d) the lower
symmetric pair marked in Fig. 3(b).
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dashed curves) and the opposite negative chirp (blue solid
curves). Specifically, in Fig. 6(a) we plot the “eigenvalues”
for the upper pair of opposite-sign chirp values marked in
Fig. 3(a), while in Fig. 6(b) we plot the eigenvalues for the
lower pair marked in Fig. 3(a). Analogously, in Figs. 6(c)
and 6(d) we plot the eigenvalues for the opposite chirp pairs
marked in Fig. 3(b). Observe that in all the displayed cases, the
gap between the eigenvalues is larger for the negative chirp
(blue solid curves) than for the positive chirp (red dashed
curves). We also observe that the difference in the gap for
the opposite chirp is larger for R = 11 nm, upper row in
Fig. 6, than for R = 12 nm, lower row in Fig. 6, since the
symmetry-breaking parameter GR is stronger for smaller dis-
tances. By manually inverting the sign of GR this asymmetry
is also inverted, as is demonstrated in Figs. 5(c) and 5(d).
At this point it is worth noting that asymmetry in the final
exciton population with respect to the chirp sign has also been
observed for a SQD without the presence of a MNP, where
the main source of decoherence is taken to be the coupling to
acoustic phonons [26,28].

In closing, we would like to point out that similar results
can be obtained using chirped pulses with a hyperbolic secant
envelope and a hyperbolic tangent chirp [14].

V. CONCLUSION

In this article, we showed with numerical simulations the
efficient generation of the exciton state in a coupled semi-
conductor quantum-dot–metal-nanoparticle system, even for
short interparticle distances, using linearly chirped Gaus-
sian pulses. The asymmetry observed in the final exciton
population with respect to the chirp sign of the applied
pulses was also explained using the system equations. The
symmetry-breaking term was identified as the real part of
the nonlinearity parameter emerging from the interaction be-
tween excitons in the quantum dot and plasmons in the metal
nanoparticle. This robust quantum control scheme, involving
the easily implementable chirped pulses, can find applica-
tion in the implementation of ultrafast nanoswitches and
quantum information processing tasks with semiconductor
quantum dots.
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