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We establish a relationship between the notion of universal quantum gates and the notion of unitary t-designs.
We show that a set of qudit gates S ⊂ U (d ) is universal if and only if S forms a δ-approximate t (d )-design,
where δ < 1, t (2) = 6, and t (d ) = 4 for d � 3. Moreover, we argue that from the application point of view sets
S with the δ close to 1 should be regarded as nonuniversal. We also provide a second, more algebraic, criterion
for the universality verification. It says that S ⊂ U (d ) is universal if and only if the matrices that commute
with {U ⊗t (d ) ⊗ Ū ⊗t (d )|U ∈ S} commute also with {U ⊗t (d ) ⊗ Ū ⊗t (d )|U ∈ U (d )}, where t (2) = 3, and t (d ) = 2
for d � 3. Finally, we show that the complexity of checking this algebraic criterion scales polynomially with the
dimension d .
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I. INTRODUCTION

Universal and efficient quantum gates play a central role
in quantum computing [1–14]. It is well known that in or-
der to construct a universal set of gates for many qudits it
is enough to take a universal set for one qudit and extend
it by a two-qudit entangling gate [15,16] (see Ref. [17] for
fermionic systems). On the other hand, it is a great challenge
to find a time-efficient procedure that enables deciding if a
given set of gates S ⊂ Gd := U (d ) is universal. Any unitary
matrix U can, up to a global phase factor, be written as the
exponent of a non-Hermitain traceless matrix X , i.e., U = eX .
Therefore, in a search for a universality checking algorithm
for quantum gates it is natural to consider first an analogous
universality problem for Hamiltonians, i.e., given a set of anti-
Hermitian traceless matrices, X ⊂ su(d ), we want to check
if by taking nested commutators and linear combinations of
elements form X we can obtain any anti-Hermitian traceless
matrix. The answer turns out to be relatively simple and can
be phrased in terms of the centralizer of the tensor squares
of the elements belonging to X [18–20] (cf. Refs. [21–23]).
It turns out that the approach through tensor powers can be
extended from Hamiltonians to quantum gates. To this end
one considers the centralizers of St,t = {U ⊗t ⊗ Ū ⊗t |U ∈ S}
and Gt,t

d = {U ⊗t ⊗ Ū ⊗t |U ∈ Gd} for any t , i.e., the sets of
matrices that commute with St,t and Gt,t

d . In Refs. [24,25] it
was shown that the equality of the centralizers of S1,1 and G1,1

d
implies that S is universal provided S generates an infinite
subgroup of Gd . We will call the equality of the centralizers
of S1,1 and G1,1

d the necessary universality condition. For S
satisfying the necessary universality condition, in order to
verify if the group generated by S is infinite, it is enough to
check if it forms an ε-net with ε = 1

2
√

2
in the Hilbert-Schmidt

distance [24–27]. To move further the notion of unitary t-
designs turns out to be crucial. A t-design is an ensemble of
unitaries with associated probabilities that mimics the Haar

measure, i.e., the natural group theoretic notion of random-
ness, in a sense that it acts exactly as the Haar measure up to
t th order in the statistical moments. A δ-approximate t-design
possesses this property only approximately, where δ is the
approximation quality parameter that takes values between
zero (perfect approximation) and one (no approximation). The
main interest in t-designs comes from the fact that sampling
from the Haar measure requires exponential resources [28],
but sampling from t-designs can be done efficiently (see, for
example, Ref. [29]). The connection between t-designs and
ε-nets has been recently established [30]. Using this connec-
tion, the authors of Ref. [30] rephrased the above-mentioned
requirement of 1

2
√

2
net in terms of δ-approximate t-designs

and showed that S is universal if and only if (1) S ⊂ Gd

satisfies the necessary universality condition, and (2) gates
belonging to S form a δ-approximate t (d )-design, with δ < 1
and t (d ) = O(d5/2).

In this paper, we show that actually the required t (d ) does
not grow with d . Utilizing the recent results regarding the so-
called unitary t-groups [31], i.e., t-designs that are also finite
groups, we formulate our first universality criterion (Theorem
1). It states that S ⊂ Gd is universal if and only if S forms a δ-
approximate t (d )-design, where δ < 1, t (2) = 6, and t (d ) =
4 for d � 3. Moreover, we argue that from the application
point of view sets S with the δ close to 1 should be regarded
as nonuniversal. This is because, as we show, the length of
a circuit needed to approximate any unitary with a given
precision ε for such S grows to infinity when δ approaches
1. Next, using further properties of t-designs, we formulate
our second universality criterion (Theorem 2) which says that
S ⊂ Gd is universal if and only if the centralizer of St (d ),t (d ) is
equal to the centralizer Gt (d ),t (d )

d , where t (2) = 3, and t (d ) = 2
for d � 3. The equality of the centralizers can be verified by
checking their dimensions. We calculate the dimensions of the
centralizers of Gt (d ),t (d )

d using representation theory methods,
for all t (d ) listed above and use them in our final criterion
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for universality, i.e., Theorem 3. Thus the problem reduces to
finding the dimension of the centralizer of St (d ),t (d ) which is a
standard linear algebra task.

II. UNIVERSALITY AND δ-APPROXIMATE t-DESIGNS

Let {S, νS} be an ensemble of quantum gates, where S is a
finite subset of Gd := U (d ) and νS is the uniform measure on
S . Throughout the paper we assume that S contains identity,
which of course does not influence the universality of S . An
ensemble {S, νS} is called δ(t, νS )-approximate t-design if
and only if

δ(t, νS ) := ‖TνS ,t − Tμ,t‖∞ < 1, (1)

where ‖ · ‖ is the operator norm and for any measure ν (in par-
ticular for the Haar measure μ) we define a moment operator

Tν,t :=
∫

Gd

dν(U )U ⊗t ⊗ Ū ⊗t . (2)

One can easily show that 0 � δ(t, νS ) � 1 [30]. When
δ(t, νS ) = 0 we say that S is an exact t-design and when
δ(t, νS ) = 1 we say that S is not a t-design. In order to give
an equivalent definition of an exact t-design [32,33], we recall
the definition of an St -twirl of an operator A:∫

Gd

dνS (U )U ⊗t A(U †)⊗t . (3)

S is an exact t-design if and only if for any operator A the
St -twirl and the Gt

d -twirl coincide, i.e.,∫
Gd

dνS (U )U ⊗t A(U †)⊗t =
∫

Gd

dμ(U )U ⊗t A(U †)⊗t . (4)

To proceed, we note that a map U �→ U ⊗t ⊗ Ū ⊗t is a
representation of the unitary group Gd . This representation
turns out to be reducible and as such it decomposes into some
irreducible representations π of Gd ,

U ⊗t ⊗ Ū ⊗t 

⊕

π

π (U )⊕mπ 
 (U ⊗ Ū )⊗t
, (5)

where mπ is the multiplicity of π . The representations
occurring in this decomposition are in fact irreducible rep-
resentation of the projective unitary group, PGd = Gd/∼,
where U ∼ V if and only if U = eiφV . One can show that
every irreducible representation of PGd arises this way for
some, possibly large, t [34]. For t = 1 the decomposition (5)
is particularly simple and reads U ⊗ Ū = AdU ⊕ 1, where 1
stands for the trivial representation and AdU is the adjoint
representation of Gd and PGd 
 AdGd . Next, we define the
notion of a group generated by a gate set.

Definition 1. Let S ⊂ Gd be a set of quantum gates. The
group GS generated by S is

GS := cl(〈S〉), (6)

〈S〉 :=
⋃
l∈N

Sl , Sl := {g1g2 · · · gl |gi ∈ S}. (7)

The closure in (6) corresponds to adding all the limiting
points of the sequences of words from Sl when l goes to
infinity. We next introduce the notion of a universal gate set.

Definition 2. A set S ⊂ Gd is universal if and only if
PGd 
 GS/∼, where U ∼ V if and only if U = eiφV .

In other words, a set S is universal if, up to a phase factor,
any unitary can be approximated to any precision by a finite
product of elements from S . Having a representation π of Gd

we can consider its restriction to GS , which we denote by
ResGd

GS
π . For any U ∈ GS we simply have

ResGd
GS

π (U ) = π (U ). (8)

A crucial observation here is that ResGd
GS

π can be a reducible
representation of GS even though π is an irreducible rep-
resentation of Gd . This observation plays a central role in
representation theory (cf. branching rules) and turns out to
be central in our context. For any irreducible representations
occurring in the decomposition (5) we can consider the re-
striction of TνS ,t to π which is given by

TνS ,t,π =
∫

Gd

dνS (U )π (U ). (9)

It follows directly from the definitions and discussion above
that

TνS ,t 

⊕

π

(TνS ,t,π )⊕mπ , (10)

where π goes over irreducible representations occurring in the
decomposition (5). Moreover,

δ(t, νS ) = supπ‖TνS ,t,π‖∞, (11)

where this time π goes over nontrivial irreducible representa-
tions occurring in the decomposition (5).

Lemma 1. Let S ⊂ Gd be an arbitrary set of quantum
gates. Then δ(t, νS ) = 1 if and only if for some nontrivial ir-
reducible representation π appearing in the decomposition (5)
representation ResGd

GS
π is reducible and contains a copy of the

trivial representation.
Proof. The implication “⇐” is obvious. For “⇒” assume

that δ(t, νS ) = 1. Then for some irreducible nontrivial rep-
resentation π appearing in the decomposition (5) we have
‖TνS ,t,π‖ = 1. There exists a vector of norm one, v ∈ Vπ , such
that

∑
g,h∈S π (gh†)v = |S|2v. Hence,

∑
g,h∈S〈v|π (gh†)v〉 =

|S|2. By the unitarity of π (gh†) we have |〈v|π (gh†)v〉| � 1,
for any v ∈ Vπ of norm one. Thus ∀g, h ∈ S π (g)v = π (h)v.
Note, however, that under the assumption that I ∈ S , this
implies ∀g ∈ S π (g)v = v which means v is a common eigen-
vector of all operators π (g), g ∈ S . This in turn means that
ResGd

GS
π is reducible and contains a copy of the trivial repre-

sentation. This ends the proof. �
Remark 1. The following is an equivalent way of for-

mulating Lemma 1 using Eq. (4): {S, νS} is not a t-design
if and only if there exists an operator A such that A =∫

Gd
dνS (U )U ⊗t A(U †)⊗t �= ∫

Gd
dμ(U )U ⊗t A(U †)⊗t .

Corollary 1. Assume S is universal. Then δ(t, νS ) < 1 for
any finite t .

Proof. When S is a universal set, PGd = GS/∼ and hence
the restriction of any irreducible representation π of PGd to
GS remains irreducible. �

Let us next define

St1,t2 = {U ⊗t1 ⊗ Ū ⊗t2 |U ∈ S},
Gt1,t2

d = {U ⊗t1 ⊗ Ū ⊗t2 |U ∈ Gd}.
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We will denote St,0 by St and Gt,0
d by Gt

d . For any set of
matrices B ⊂ B(Cn) let

C(B) = {X ∈ B(Cn)|[X,Y ] = 0, ∀Y ∈ B}. (12)

Using U ⊗ Ū = AdU ⊕ 1 we can rewrite Lemma 3.4 from
Ref. [24] as follows:

Lemma 2. Assume S is such that

C(S1,1) = C(G1,1
d ). (13)

Then S is universal if and only if GS is infinite.
In other words, whenever the condition (13) is satisfied,

S is either universal or GS is a finite subgroup of Gd . In
what follows we will call the condition (13) the necessary
universality condition. We note also that we always have
C(St,t ) = C(Gt,t

S ). Lemma 2 implies that finite groups satis-
fying the necessary universality condition play a central role
in deciding whether S is universal.

Definition 3. A finite subgroup G ⊂ Gd is a unitary t-group
if and only if δ(t, νG) = 0, where νG is the uniform measure
on G.

The concept of unitary t-groups will play a central role in
what follows.

Lemma 3. Assume that S is a generating set of a finite
subgroup of Gd . Then for any t , either δ(t, νGS ) = 0 or
δ(t, νGS ) = 1. Moreover, for any t (1) either δ(t, νS ) < 1 if
and only if δ(t, νGS ) = 0 or (2) δ(t, νS ) = 1 if and only if
δ(t, νGS ) = 1.

Proof. One can easily verify that for any measure ν,
δ(t, ν∗l ) = δ(t, ν)l , where ν∗l is the l-fold convolution of
measure ν. Under the assumption that GS is finite there is l0
such that Sl0 = GS . On the other hand, it is known [35] that
for l → ∞ the measure ν∗l

S converges to νGS . Thus we have
δ(t, νS )l → δ(t, νGS ). Note, however, that νGS = ν∗2

GS
. Thus

δ(t, νGS ) = 0 or δ(t, νGS ) = 1. The result follows. �
Recently there has been some development in the theory

of unitary t-groups. The main result of Ref. [31] states the
following:

Fact 1. There are no finite unitary t-groups in Gd for t � 6
and d � 2. Moreover:

(1) When d = 2 there is unitary 5-group but no unitary t-
group with t � 6.

(2) When d � 3 there is no unitary t-group with t � 4.
This leads to our first main result.
Theorem 1. Let S be a set of gates in Gd such that

C(S1,1) = C(G1,1
d ). Then S is universal if and only if

(1) {S, νS} is a δ-approximate 6-design with δ < 1, when
d = 2,

(2) {S, νS} is a δ-approximate 4-design with δ < 1, when
d � 3.

Proof. By Lemma 2 the set S can be either universal or GS
is a finite group. If S is universal, then by Corollary 1 we have
that δ(t, νS ) < 1 for any t � 1. On the other hand, if GS is a
finite group, then by Lemma 3 and Fact 1 we can only have
(1) δ(t, νS ) = 1 for t = 6 and d = 2, and (2) δ(t, νS ) = 1 for
t = 4 and d > 2. This finishes the proof. �

III. UNIVERSALITY AND CENTRALIZERS

In order to state our second universality criterion we will
need the following lemma.

Lemma 4. Assume that for some t � 2,

C(St,t ) = C
(
Gt,t

d

)
. (14)

Then any irreducible representation occurring in the de-
composition (5) remains irreducible when restricted to GS .
Moreover, C(S1,1) = C(G1,1

d ).
Proof. The fact that any irreducible representation oc-

curring in the decomposition (5) remains irreducible when
restricted to GS is obvious. For the second part of the state-
ment note that

U ⊗t ⊗ Ū ⊗t 
 (U ⊗t−1 ⊗ Ū ⊗t−1) ⊗ (AdU ⊕ 1)

= [(U ⊗t−1 ⊗ Ū ⊗t−1) ⊗ AdU ]

× ⊕ (U ⊗t−1 ⊗ Ū ⊗t−1). (15)

Repeating this decomposition we get that U ⊗ Ū is one of
the summands in the decomposition of U ⊗t ⊗ Ū ⊗t . Hence,
under condition (14) we have ResGd

GS
Ad is irreducible. Thus

C(S1,1) = C(G1,1
d ). �

We can now formulate a sufficient condition for universal-
ity in terms of centralizers.

Corollary 2. Let S be a set of gates in Gd . Then S is
universal if and only if for t (2) = 6 and t (d ) = 4 for d > 2
we have

C(St (d ),t (d ) ) = C
(
Gt (d ),t (d )

d

)
. (16)

Proof. The condition (16) combined with Lemma 4 implies
that the necessary condition for universality is satisfied and
that all irreducible representations occurring in the decom-
position (5) remain irreducible when restricted to GS , where
t (d ) is as in the statement of the theorem. Hence by Lemma 1
we have δ(6, νS ) �= 1 for d = 2 and δ(4, νS ) �= 1 for d > 2.
Assume GS is a finite group. Then by Lemma 3 and Fact 1
we have δ(6, νS ) = 1 for d = 2 and δ(4, νS ) = 1 for d > 2.
Thus we get a contradiction and S is universal. �

Corollary 2 can be further improved. For this, we will use
a technique connecting C(St1,t2 ) with C(St1−n,t2+n) through a
partial transpose map. To be more concrete, we will use the
following lemma:

Lemma 5. Let S be a set of gates in Gd , and let θ denote the
transposition operator on B(Cd ). Then for any non-negative
integer number n � t , we have that

id⊗(t−n) ⊗ θ⊗n[C(St )] = C(St−n,n). (17)

In particular, the dimensions of C(St ) and C(St−n,n) are equal.
Proof. Let X = ∑

i X 1
i ⊗ X 2

i · · · ⊗ X t
i be an element of

C(St ) (note that the upper index is indeed an index, not an ex-
ponent). Using the notations m = t − n and BT = θ (B) (and
noting that U T = Ū † for any unitary), we calculate the adjoint
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action of an arbitrary U ⊗m ⊗ Ū ⊗n ∈ Sm,n (with U ∈ S) on id⊗m ⊗ θ⊗n(X ),

U ⊗m ⊗ Ū ⊗n[id⊗m ⊗ θ⊗n(X )](U ⊗m ⊗ Ū ⊗n)† =
∑

i

UX 1
i U † ⊗ · · ·UX m

i U †⊗Ū
(
X m+1

i

)T
Ū † ⊗ · · · Ū (

X t
i

)T
Ū †

=
∑

i

UX 1
i U † ⊗ · · · ⊗(U †)T

(
X m+1

i

)T
U T ⊗ · · · (U †)T

(
X t

i

)T
U T

=
∑

i

UX 1
i U † ⊗ · · ·UX m

i U †⊗(
UX m+1

i U †)T ⊗ · · · (UX t
i U †)T

=
∑

i

id⊗m ⊗ θ⊗n
(
UX 1

i U † ⊗ · · · ⊗ UX t
i U †

)

= id⊗m ⊗ θ⊗n[U ⊗t X (U †)⊗t ] = id⊗m ⊗ θ⊗n(X ), (18)

where the last equality followed from the fact that X com-
mutes with U ⊗t . This means that for any X ∈ C(St ) we
have id⊗m ⊗ θ⊗n(X ) ∈ C(St−n,n). To prove that all the ele-
ments of C(St−n,n) can be obtained this way, one can note
that (id⊗m ⊗ θ⊗n) ◦ (id⊗m ⊗ θ⊗n) = id⊗t and then repeat a
completely analogous proof for showing that Y ∈ C(St−n,n)
implies (id⊗m ⊗ θ⊗n)(Y ) ∈ C(St ). �

Theorem 2. Let S be a set of gates in Gd . Then S is uni-
versal if and only if

C
(
St (d ),t (d )

) = C
(
Gt (d ),t (d )

d

)
, (19)

where t (2) = 3, and t (d ) = 2 for d � 3.
Proof. Suppose that the set of gates S ⊂ Gd is nonuni-

versal, and denote by GS the group generated by S . If
GS is infinite, then Lemma 2 guarantees that C(S1,1) �=
C(G1,1

d ), hence also C(Sn,n) �= C(Gn,n
d ) for any positive

integer n. If GS is finite, then we know that it can-
not form a k(d )-design with k(2) = 6 and k(d ) = 4 for
d � 3. From Remark 1 it follows that there exists an
operator A such that A = ∫

Gd
dνGS (U )U ⊗k(d )A(U †)⊗k(d ) �=∫

Gd
dμ(U )U ⊗k(d )A(U †)⊗k(d ). On the one hand, A ∈ C(Sk(d ) ),

since every Gk
S -twirled element commutes with the ele-

ments of Gk
S [36]. On the other hand, A /∈ C(Gk(d )

d ) since
A is not equal to its Gk(d )

d -twirl. Thus, C(Sk(d ) ) �= C(Gk(d )
d ).

Now using the last sentence of Lemma 5, we get that
C(St (d ),t (d ) ) �= C(Gt (d ),t (d )

d ), where t (d ) = k(d )/2. Therefore,
if C(St (d ),t (d ) ) = C(Gt (d ),t (d )

d ), then S has to be a universal gate
set. This concludes the proof. �

One can calculate explicitly the dimension of the central-
izer C(Gt,t

d ) from the following formula [37],

dim C
(
Gt,t

d

) =
∑
π

(mπ )2, (20)

where π are irreducible representations occurring in the de-
composition (5). Following Corollary 5.4 of Ref. [37] we
know that

dim C
(
Gt,t

d

) = (2t )!, d � 2t . (21)

We can reformulate Theorem 2 to a more computationally
friendly form:

Theorem 3. Let S be a set of gates in Gd . Then S is
universal if and only if (1) dim C(S3,3) = 132 for d = 2, (2)

dim C(S2,2) = 23 for d = 3, and (3) dim C(S2,2) = 4! = 24
for d � 4.

Proof. Obviously, for any S ⊂ Gd we have dim C(St,t ) �
dim C(Gt,t

d ). The equality of these dimensions is possible if
and only if the restrictions to GS of all irreducible representa-
tions occurring in the decomposition (5) are irreducible. Thus
dim C(St,t ) = dim C(Gt,t

d ) if and only if C(St,t ) = C(Gt,t
d ). We

are left with finding dimensions of C(Gt (d ),t (d )
d ), where t (d )

is as in the statement of Theorem 2. For d � 4 we use iden-
tity (21). For d = 2 we have

U ⊗t ⊗ Ū ⊗t =
⊕

0�ν�2t , ν−even

mπν
πν (U ), (22)

where dimπν = ν + 1 and mπν
�= 0 for every even ν satisfying

0 � ν � 2t . Moreover, AdU = π2(U ) and

U ⊗t ⊗ Ū ⊗t 
 [π2(U ) ⊕ 1]⊗t . (23)

In addition we known that πl (U ) ⊗ πk (U ) 
 πl+k ⊕
πl+k−2 ⊕ · · · ⊕ π|l−k|. Using these identities we find that

U ⊗3 ⊗ Ū ⊗3 
 π6(U ) ⊕ 5π4(U ) + 9π2(U ) ⊕ 5. (24)

Thus using formula (20) we get dim C(G3,3
2 ) = 132. A de-

composition similar to (22) can be found for PG3 [37,38].
We know that irreducible representations of PG3 are indexed
by pairs of non-negative integers λ = (λ1, λ2), where λ1 �
λ2 � 0. The adjoint representation of G3 has λ = (2, 1). Us-
ing the rules for decomposing a tensor product of π(λ1,λ2 ) ⊗
π(λ′

1,λ
′
2 ) into irreducible representations [37,38] we found that

for d = 3,

U ⊗2 ⊗ Ū ⊗2 
 π(4,2) ⊕ π(3,0) ⊕ π(3,3) ⊕ 4π(2,1) ⊕ 2, (25)

Thus using (20) we get dim C(G2,2
3 ) = 23. �

IV. CONCLUSIONS

We have presented two ways to verify the universality of a
gate set. They are given by Theorems 1 and 3. We now discuss
the advantages and disadvantages of both methods.

The approach through Theorem 3 is clearly computation-
ally simple. Calculation of dim C(St (d ),t (d ) ) boils down to
finding the dimension of the kernel of the |S|d4t (d ) × d4t (d )

matrix, where t (d ) is as in Theorem 3. Finding the dimension
of the kernel of the n × m matrix is the same as finding the
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number of nonzero singular values. The complexity of singu-
lar value decomposition of an n × m matrix is well known to
be at most O(mn2 + nm2 + n3). So the complexity we obtain
is O(d12t (d ) ). This means that our direct universality check
is much more efficient and more feasible than the previously
developed methods [24,25,30] with O(dd5/2

) scaling. We note,
however, that in a numerical implementation of this method, a
small numerical perturbation of gate entries can actually lead
to a step change of the centralizer dimension. It is known that
universal sets form an open set [24]. Therefore in order to be
sure that a gate set S identified by this method as universal
is actually universal, one should confirm that in an infinites-
imal neighborhood of S all sets are identified as universal as
well.

The approach given in Theorem 1 is computationally more
involved as it requires calculation of the norms given by (11).
On the other hand, the information contained in calculated
δ(t (d ), νS ) can be used to assess the efficiency of a gate set S .
The efficiency of a universal set S is measured by the length
of a circuit needed to approximate any unitary with a given
precision ε. The Solovay-Kitaev theorem [16] states that all
universal sets are roughly the same efficient. More precisely,
the length of a circuit that ε-approximates any U ∈ SU (d )
is bounded by A(S ) lnc(1/ε) [16], where c � 1. To estimate
the value of A(S ) one uses the concept of δ-approximate
t-designs [39]. The results of [30,35] ensure that for a given

precision ε the constant A(S ) is inversely proportional to
1 − δ(t (ε), νS ), where t (ε) = O(ε−1), and the constant c = 1.
The bigger is A(S ) the less efficient is a gate set S . More-
over, δ(t, νS ) is a nondecreasing function of t . Therefore, for
d � 3, a gate set S ⊂ U (d ) that is a δ(4, νS )-approximate
4-design with δ(4, νS ) very close to one is also very inef-
ficient in terms of approximating unitaries. Thus from the
point of view of applications, gate sets that are δ-approximate
4-designs with δ very close to one can be regarded as nonuni-
versal. In this respect, Theorem 1 is much more powerful
than Theorem 3 and other methods of universality verification
(cf. Ref. [40]).

Last but not least, we also expect that our simple algebraic
criterion for universality will allow general proofs about the
universal extension of different gate-set families going well
beyond the earlier results [15,17,41]. We leave this as future
work.
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