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A quantum internet connects remote quantum processors that need to interact and exchange quantum signals
over a long distance through photonic channels. However, these quantum nodes operate at the wavelength ranges
unsuitable for long-distance transmission. Therefore, quantum wavelength conversion to telecom bands is crucial
for long-distance quantum networks based on optical fiber. Here, we propose wavelength conversion devices for
single-photon polarization qubits using continuous-variable quantum teleportation that can efficiently convert
qubits between near-infrared (780–795 nm suitable for interacting with atomic quantum nodes) and telecom
wavelength (1300–1500 nm suitable for long-distance transmission). The teleportation uses entangled photon
fields (i.e., nondegenerate two-mode squeezed state) that can be generated by four-wave mixing in a rubidium
atomic gas using a diamond configuration of atomic transitions. The entangled fields can be emitted in two
orthogonal polarizations with locked relative phase, making them especially suitable for interfacing with single-
photon polarization qubits. Our work may pave the way for the realization of long-distance quantum networks.
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I. INTRODUCTION

Quantum technologies have been intensively developed
in recent years [1–3]. Long-distance quantum communi-
cation is crucial for unconditional security as well as
connecting remote quantum processors through a quantum
internet [4,5]. A quantum internet is expected to be more pow-
erful than the simple sum of each quantum nodes, enabling
a number of revolutionary applications such as quantum
networks of clocks [6] and distributed quantum computing.
The realization of a quantum internet relies on the long-
distance communication between remote quantum processors
through photonic channels [4,5]. However, single-photon
qubits emitted from these quantum nodes (such as atomic
ensembles [7] and trapped ions [8]), often in the visible
or near-infrared (NIR) regions, are usually unsuitable for
long-distance transmission. Moreover, interconnections be-
tween disparate quantum systems are impossible due to their
mismatched emission wavelengths [2,4,5,9]. Quantum wave-
length conversion (QWC) [10], which enables the spectral
translation of a photon to a targeted wavelength without
disturbing its quantum properties, is a solution to these
issues.

QWC between NIR and telecom bands [11] is one of
the most important wavelength conversions since telecom
band photons remain the information carriers of choice for
long-distance transmission based on optical fibers, while NIR
photons not only interact with atomic quantum systems but
also fall into the working band of many high-performance
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single-photon detectors [12] and quantum memories [13].
For long-distance communication between remote quantum
nodes, one first uses the QWC device to convert the single-
photon qubit emitted by quantum node A from NIR to telecom
wavelength, then sends it to quantum node B through fiber
transmission, and finally converts its wavelength back to the
NIR band for interacting with the quantum processor (as il-
lustrated in Fig. 1). QWC between NIR and telecom bands
has been demonstrated for a wide range of quantum systems
(e.g., trapped ions and rubidium gas) [14–21]. However, these
QWC devices are usually directly realized through three- or
four-wave nonlinear optical mixing, which face difficulties of
noise photons and low conversion efficiency (30–70%) for the
photonic interface.

In this paper, we propose wavelength conversion de-
vices for single-photon polarization qubits using continuous-
variable (CV) quantum teleportation [22–26]. Such hybridiza-
tion of discrete variables (DVs) and CVs overcomes the
probabilistic restriction of DV-only teleportation which relies
on unambiguous two-qubit Bell-state measurement [27]. The
entangled fields of the CV teleportation are nondegenerate
two-mode squeezed vacuum (TMSV) states. By performing
a joint homodyne measurement of a single photon and one of
the entangled fields at the same NIR (telecom) wavelength,
we can teleport single-photon qubit into the telecom (NIR)
band by imprinting the measured joint quadratures into the
other entangled field at the shifted wavelength. The use of
a hybrid technique involving CV teleportation of a DV (i.e.,
polarization qubits) allows deterministic wavelength conver-
sion of photonic qubits with ∼100% efficiency. In addition to
teleportation, combining DVs and CVs in hybrid architectures
may offer significant advantages in quantum computation and
information processing [28–37].
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FIG. 1. Illustration of long-distance communication between re-
mote quantum nodes.

Homodyne measurements [38] require using light of
known polarization; therefore, two polarizations need to be
teleported parallelly, and each polarization component of the
qubit requires a TMSV entangled state for the teleportation.
Additional phase locking between the two polarization tele-
porters (i.e., the two TMSV entangled states) is necessary to
avoid any phase errors in the teleportation. Such phase locking
is still challenging even for ordinary CV teleportation without
wavelength conversion, where the degenerate TMSV entan-
gled fields are generated by mixing two identical single-mode
squeezed states at a 50:50 beam splitter.

To realized QWC, we need to use nondegenerate TMSV
states which cannot be generated by mixing single-mode
squeezed states. Here, we propose generating nondegenerate
TMSV entangled fields using a four-wave mixing (FWM) pro-
cess in a Rubidium atomic gas with a diamond configuration
of atomic transitions [39–42]. In this process, the wavelength
of one field matches the single photon emitted from the atomic
quantum nodes, while the other falls into the telecom-band
optical fields that are suitable for low-loss fiber transmission.
Because of the symmetry, the TMSV states can be emitted in
two orthogonal polarizations with fixed relative phase, mak-
ing them especially suitable for interfacing with polarization
single-photon qubits. Our approach provides an attractive al-
ternative to nonlinear crystal-based wavelength conversions
that typically have low efficiency and require tremendous
technical care. Note that, although we only discuss QWC
between NIR (780–795 nm) and telecom (1300–1500 nm)
wavelengths in this paper, the CV teleportation-based wave-
length conversion can be easily generalized to a wide range
of frequencies if suitable two-color squeezed states can be
generated using nonlinear optical mixing.

II. QWC THROUGH CV TELEPORTATION

Quantum teleportation [43] is a technique for transfer-
ring quantum information from a sender at one location to

a receiver some distance away, by sending only classical in-
formation and using a shared entangled state as a resource.
It has become one of the key elements of practical quantum
information protocols. Originally, quantum teleportation was
proposed for DV qubits, and significant progress has been
made in demonstrating quantum teleportation of photonic
qubits. However, most of these schemes share one fundamen-
tal restriction: they require unambiguous two-qubit Bell-state
measurements which are always probabilistic (with a success
probability of 50%) when linear optics is used [44].

The concept was later generalized to CV teleportation [22],
which relies on the quadrature-entangled states (i.e., two-
mode squeezed states) [45] and the measurements in the
quadrature bases using linear optics and homodyne detection,
leading to deterministic teleportation without postselection.
Homodyne measurement corresponds to projection measure-
ment of the field in the coherent state basis. Due to the
correlated quadratures of the two entangled fields (modes A
and B), a joint Homodyne measurement of a single photon
and mode A of the entangled fields projects mode B of the en-
tangled fields into a displaced single-photon state (intuitively,
the state of mode B after projection can be understood as a
certain combination of a single photon and a coherent state).
Therefore, we can perform proper displacement of mode B
to obtain a single-photon state. So far, CV teleportation has
been demonstrated for unconditional teleportation of quantum
states such as the nonclassical CV state and time-bin qubits
with fixed polarization [27,46–50]. Since homodyne measure-
ments require light of known polarization, one needs a pair of
such entangled states with locked relative phase to parallelly
teleport the two components of the polarization qubits.

We consider nondegenerate two-mode squeezed states gen-
erated by the following Hamiltonian:

Hsq =
∑

s=H,V

[iξsâ
†
A,sâ

†
B,s + H.c.], (1)

which leads to squeezing between modes A and B for both
polarizations H and V . Here, â†

A,B are the photon creation
operators of modes A and B, with corresponding frequen-
cies ωA,B falling in the NIR and telecom bands, respectively.
The entangled state |ES〉 = exp(−iHsqτ )|vac〉 is generated by
evolving the vacuum under the Hamiltonian Hsq for a certain
time period τ . We obtain a pair of TMSV states |ES 〉� =∏

s Ŝs(rs)|vac〉, with Ŝs(r) = exp(râ†
A,sâ

†
B,s − H.c.) as the two-

mode squeezing operator [45,51] for polarization s and rs =
ξsτ as the squeezing factor. We assume rH = rV = r are real;
therefore, a pair of in-phase nondegenerate TMSV states are
generated coherently.

In the photon number basis, the entangled fields can be
written as [25]

|ES〉 = (1 − q2)
∑

n,m

qn+m|n; m〉A|n; m〉B

= (1 − q2)
∑

n,N

qN |n; N − n〉A|n; N − n〉B, (2)

where |n; N − n〉 represents n photons in H polarization
and N − n photons in V polarization, and q = tanh(r).
We want to teleport a single-photon polarization qubit
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FIG. 2. Schematic illustration of the quantum wavelength conversion device based on continuous-variable (CV) quantum teleportation.
BS1 and BS2 represent the beam splitters with 50% and >99.5% transmittance, respectively; PBS, HD, and EOM represent polarizing beam
splitter, homodyne detector, and electro-optic modulator. LOx and LOp are local oscillators with frequency ωA for Homodyne detection of x and
p quadratures in mode A, respectively. LO is the local oscillator with frequency ωB for the displacement operation of mode B. In experiments,
these local oscillators are typically obtained in the same cell, and local oscillators with different frequencies are generated independently.

|ψ〉in = c1|1; 0〉in + c2|0; 1〉in and convert its frequency from
ωA to ωB.

The QWC device based on the CV teleportation process is
schematically illustrated in Fig. 2. First, we combine the input
mode |ψ〉in with mode A at a 50:50 beam splitter and make the
balanced homodyne detection of mode â±,s = âin ,s±âA,s√

2
, with

âin,s as the input field operator for polarization s. We use a
local oscillator with frequency ωA to measure x̂−,s = (â−,s +
â†

−,s)/
√

2 and p̂+,s = i(â†
+,s − â+,s)/

√
2, which generate the

control signal �β = (βH , βV ), where βs = 〈x̂−,s + i p̂+,s〉, and
〈·〉 corresponds to the detection projection. The homodyne
measurement projects the state of input |ψ〉in and A modes
to the state:

|�β〉in,A = 1

π

∑

n,m

D̂in(�β )|n; m〉in|n; m〉A, (3)

with displacement operator D̂in(�β ) = ∏
s exp(βsâ

†
in,s −

β∗
s âin,s). Then we perform the displacement g�β on mode B

using a local oscillator with frequency ωB and accomplish the
teleportation. Here, g is the gain factor, and the output state
(unnormalized) in mode B becomes

|ψ〉out = in,A〈�β|D̂B(g�β )|ES〉|ψ〉in = T̂q(�β )|ψ〉in, (4)

where

T̂q(�β ) = 1 − q2

π

∑

n,m

qn+mD̂B(g�β )|n; m〉B in〈n; m|D̂in(−�β )

is the transfer operator. In the strong squeezing limit, we
have T̂q(�β ) ∝ ∑

n,m |n; m〉B in〈n; m| for unit gain g = 1, and

the normalized output state reads

|ψ〉out = c1|1; 0〉B + c2|0; 1〉B, (5)

which is identical to the input state |ψ〉in, except that the
frequency of the qubit is shifted from ωA to ωB. The teleporta-
tion process corresponds to one-photon teleportation in H (V )
polarization and a vacuum teleportation in V (H) polarization.
Similarly, we can convert the wavelength of the photonic qubit
from ωB to ωA.

To generate the displacement on mode B, we can use
electro-optical modulators (EOMs) to modulate the local
oscillator (which has frequency ωB) according to the homo-
dyne detection signals and combine these phase-modulated
beams with mode B at a beam splitter of >99.5% transmit-
tance (as shown in Fig. 2). Moreover, we want to mention
that the ideal two-mode squeezing requires infinite energy,
and ideal CV entangled fields are physically unattainable;
thus, the teleportation fidelity is generally limited by the
squeezing factor. In this case, nonunit gain conditions are
useful [27,52,53]. With proper choice of the gain factor
g = q = tanh(r), no additional photons would be created in
the output, and the teleported single-photon qubit remains
undisturbed regardless of the squeezing level, with a success
probability q2 [27,52,53]. Therefore, the wavelength conver-
sion efficiency (i.e., q2) can be ∼100% for sufficiently strong
squeezing tanh(r) → 1.

We now discuss the dependence of the teleportation fidelity
on the squeezing factor. First, we consider the teleportation
with unit gain (i.e., g = 1) and assume the squeezing factors
for both polarizations are the same. The fidelity is defined as
the probability to successfully teleport a single-photon state in
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avg

FIG. 3. Averaged fidelity Favg of the teleportation as a function of
squeezing factor q. The blue solid (red dashed) line corresponds to
the unit (optimal) gain teleportation. The horizontal dash-dotted line
corresponds to the classical fidelity limit 2

3 .

polarization H (V ) and a vacuum state in polarization V (H).
Without loss of generality, we can consider the teleportation
of a single photon in H polarization with c1 = 1 and c2 = 0
. The probability to obtain the measurement value βH , βV

is Pq(�β ) = 〈ψ |ψ〉out = 1−q2

π
exp[−(1 − q2)|βH |2][(1 − q2)2

|βH |2 + q2] 1−q2

π
exp[−(1 − q2)|βV |2], and the probability to

obtain the desired output state (i.e., a single-photon state
in H polarization) is Pq(�β, 1H , 0V ) = |〈1H ; 0V |ψ〉out|2 =
Pq(�β ) exp[−(1 − q)2|βH |2] exp[−(1 − q)2|βV |2]. This means
that, for some measurement value �β, the probability to
successfully teleport a single-photon state in polarization
H (V ) and a vacuum state in polarization V (H) is Fβ =
Pq(�β, 1H , 0V )/Pq(�β ) = exp[−(1 − q)2|βH |2] exp[−(1 − q)2

|βV |2]. If we do not care what the value of �β is, the
averaged probability to obtain the desired output state
reads Pq(1H , 0V ) = ∫

d �βPq(�β, 1H , 0V ) = 1+q2

2 ( 1+q
2 )2, which

gives the averaged fidelity Favg = Pq(1H , 0V ), as discussed
in Ref. [25]. Here, Favg would exceed the classical limit
2
3 for q 
 0.8 (i.e., r 
 1.1), as shown in Fig. 3. The
averaged probability to obtain zero-photon and multiphoton
(�2) output states is Pq,0 = 1−q

2 ( 1+q
2 )2 and Pq,multi =

1 − 5−4q+3q2

4 ( 1+q
2 )2. In addition, there is probability of a

polarization flip while preserving the single-photon number
with Pq,flip = 1−q2

2 ( 1+q
2 )2 (see Ref. [25] for more details). We

see that a large q ∼ 1 is required to obtain high fidelity and
avoid creating additional photons.

On the other hand, one can use the optimal gain telepor-
tation g = q to avoid creating additional photons [27,52].
The output state now reads |ψ〉out = 1−q2

π
exp[−(1 −

q2) (|βH |2+|βV |2 )
2 ][(1 − q2)β∗

H |0H ; 0V 〉 + q|1H ; 0V 〉], and we
have considered the input state |1H ; 0V 〉 with c1 = 1.
For a general input state, the output state reads |ψ〉out ∼
(c1β

∗
H + c2β

∗
V )(1 − q2)|0H ; 0V 〉 + q|ψ〉in. The optimal gain

teleportation will not introduce additional photons to the
signal. It is easy to show that Fβ = q2

q2+(1−q2 )|βH |2 and

Favg = q2 (see Fig. 3). We want to mention that the fidelity

becomes 100% if we postselect the state with photons in the
signal channel, with the success probability q2. In this sense,
the efficiency of the wavelength converter is q2 with 100%
fidelity. Therefore, we can have high fidelity even for low
squeezing factors, though the conversion efficiency q2 would
be low.

III. ENTANGLED FIELDS FROM FWM

The key element of our scheme is to generate a pair of non-
degenerate TMSV states, where the wavelength of one mode
in the TMSV state matches photons emitted from the quantum
nodes, and the other mode falls into the telecom band. In
this section, we show how to generate such nondegenerate
two-mode squeezing through FWM.

As we discussed previously, homodyne measurements
require using light of known polarization; therefore, two
polarizations need to be teleported in parallel, and each po-
larization component of the qubit requires a TMSV entangled
state. The relative phase between the two TMSV states should
be locked. Suppose there is a random and unknown relative
phase between the two polarizing TMSV states (i.e., we re-
place âA,V and âB,V by exp(−iφA)âA,V and exp(−iφB)âB,V in
Eq. 1), then the entangled state becomes

|ES(φ)〉 = (1 − q2)
∑

n,m

qn+meimφ |n; m〉A|n; m〉B,

with φ = φA + φB a random and unknown phase. The final
output state becomes

|ψ (φ)〉out = c1|1; 0〉B + c2eiφ |0; 1〉B, (6)

with a phase error. Therefore, even the ordinary CV tele-
portation (without wavelength conversion) of a single-photon
polarization qubit is still challenging and has not been demon-
strated experimentally since a TMSV state generated by
mixing two identical single-mode squeezed states usually has
an unknown relatively phase with respect to other TMSV
states generated in the same way.

Here, we consider the FWM in a rubidium atomic
gas [39–42,54–56], with a diamond configuration of atomic
transitions, as shown in Fig. 4(a). The ground state 5S1/2

is coupled to the excited state 4D3/2 through a two-photon
process, with intermediate states 5P1/2 or 5P3/2. The setup
is schematically shown in Fig. 4(b). An ensemble of 87Rb

FIG. 4. Illustration of the four-wave mixing (FWM) process to
generate two-mode squeezing. (a) Level scheme for the FWM in
87Rb. (b) Schematic of the proposed entangled field generator. IF
represents the interference filter. The 3λ

4 and λ

4 wave plates are used
to convert σ± to H/V polarizations.
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atoms is trapped with a magneto-optical trap. All atoms are
initialized to ground state 5S1/2. In the FWM process, two
pump lasers (with NIR wavelength λ1 = 795 nm and telecom
λ2 = 1475 nm, respectively) are used to excite atoms to state
4D3/2 with intermediate state 5P1/2. Then state 4D3/2 decays
back to 5S1/2 through parametric down conversion with inter-
mediate state 5P3/2, followed by the generation of photon pairs
(with telecom wavelength λB = 1529 nm and NIR wavelength
λA = 780 nm, respectively). The Hamiltonian of the FWM
process can be written as

HFWM = χ (3) â1â2â†
Aâ†

B + H.c., (7)

where χ (3) is the third-order nonlinear coefficient, and a j is
the annihilation operator for optical field λ j . We can replace
the field operator â1,2 of the pump lasers by the coher-
ent amplitudes α̂1,2, then HFWM → iξ â†

Aâ†
B + H.c., with ξ =

−iχ (3) α̂1α̂2 to be real for proper gauge choice. Energy con-
servation requires that the generated photon pairs in modes
A and B have frequencies ωA and ωB, respectively, where
ω j = 2πc

λ j
satisfies ωA + ωB = ω1 + ω2, and c is the speed of

light.
Now we examine the polarizations of the two-mode

squeezing fields generated by FWM. We consider that the
four fields are in a copropagating geometry inside the atomic
cloud, which satisfies the phase matching, as shown in
Fig. 4(b). With the quantization axis along the beam propaga-
tion direction of all modes, we drive transitions with �mF =
±1 using two pump beams that are orthogonally circularly po-
larized. In the coherent parametric down-conversion process,
the final quantum state of the atoms remains the same as the
initial state. Furthermore, rotational symmetry of the atomic
cloud along the beam-propagation direction implies angular
momentum conservation. The angular momentum selection
rules limit the polarizations of the generated photon pairs, and
the Hamiltonian becomes

HFWM = iξ (â†
A,σ+ â†

B,σ− + sâ†
A,σ− â†

B,σ+ + H.c.), (8)

where σ± denote the left and right circular polarizations,
respectively, and s is determined by the Clebsh-Gordan
coefficients [41]. The pair generation process is coher-
ent, with â†

A,σ+ â†
B,σ− and â†

A,σ− â†
B,σ+ indistinguishable and

phase locked by the Clebsh-Gordan coefficients. That is s =
CFm ,1,Fe

mF +1,−1,mF
C

Fg,1,Fm
mF ,1,mF +1

CFm ,1,Fe
mF −1,+1,mF

C
Fg,1,Fm
mF ,−1,mF −1

, where Fg, Fe, and Fm are the total angular

momentum of the participating ground state 5S1/2, excited
state 4D3/2, and the intermediate state 5P1/2 or 5P3/2. If we
choose the initial hyperfine ground state |Fg, mF = 0〉, we
have s = 1 for all Fg, Fe, and Fm. The problem for choosing
mF = 0 as the ground state is that atoms may be pumped
to mF = −2 in the FWM process due to the strong pumping
laser, which can be overcome by using large detuned pump-
ings. It is worth mentioning that, for room temperature atoms,
the Doppler shift is comparable or larger than the hyperfine
splitting of the levels 5P3/2 and 4D3/2, which means that
different Fe and Fm hyperfine states would participate in the
process (even through the pump detunings are larger than
the Doppler shift). Fortunately, we have s = 1 for all these
hyperfine levels with mF = 0.

Alternatively, we can use |5S1/2, F = 1, mF = −1〉 as the
ground state and couple it to |5P1/2, F = 2, mF = −2〉 and
then to |5D3/2, F = 3, mF = −1〉 through pumping lasers,
followed by two-photon generation through |5P3/2, F =
2, mF = −2〉 or |5P3/2, F = 2, mF = 0〉. This FWM process
also leads to s = 1. However, the problem is that the pumpings
should be near resonance to avoid unwanted couplings with
other hyperfine states (e.g., |5D3/2, F = 2, mF = −1〉). As
a result, cold atoms must be used since room temperature
atoms have a Doppler shift comparable or larger than the
hyperfine splitting of the levels 5P3/2 and 4D3/2, which means
that different Fe and Fm hyperfine states would participate in
the process. In addition, pair generation may have multiple
decay paths through different hyperfine levels of 5P3/2, and
we need to use additional filters to select one decay path (i.e.,
5P3/2, F = 2).

Finally, with proper local operations on the entangled fields
âA,σ± → âA,HV and âB,σ∓ → âB,HV , HFWM reduces to Hsq in
Eq. (1), and the FWM process generates two-mode squeezing
for both polarizations with locked and known relative phase,
which makes them especially suitable for teleporting single-
photon polarization qubits. We can also use λ1 = 780 nm
and λ2 = 1529 nm for the pump beams with 5P3/2 as the
corresponding intermediate state, then obtain the two-mode
squeezing with wavelengths λA = 795 nm and λB = 1475 nm.
Moreover, we can choose a different atomic level such as 6S1/2

to be the high excited state [see Fig. 4(a)], which allows us to
generate telecom fields with wavelengths 1324 and 1367 nm.

Experimentally, the squeezing factor is determined by the
third-order nonlinear coefficient χ (3), pumping laser intensi-
ties, and propagation time in the atomic gas. Here, χ (3) and
propagation time can be increased by using higher atomic
density and longer atomic cell. To achieve averaged fidelity
(efficiency) of 2

3 for unit (optimal) gain teleportation, q 
 0.8
(r 
 1.15) is required. Improving the fidelity (efficiency) to
90% requires q 
 0.95 (r 
 1.8). We expect that the squeez-
ing at this level can be achieved in realistic experiments
with proper choices of the detunings and pumping intensities.
Experiments [15,16] operating in the regime of FWM fre-
quency conversion with Hamiltonian HFWM = ξ ′â2â†

A + H.c.
have achieved ξ ′τ 
 0.8 (since the FWM conversion effi-
ciency is >50%) even though the excited and intermediate
states are all far detuned (the detunings range from 10 to
40 MHz). For our FWM squeezing scheme, one of the inter-
mediate states is in resonance with effective detuning, given
by its level broadening which is about a few megahertz; there-
fore, ξ in the squeezing Hamiltonian HFWM = ξ âBâ†

A + H.c.
can be several times larger than ξ ′ in the FWM frequency con-
version scheme [15,16], leading to a squeezing parameter r =
ξτ > 2. The corresponding CV teleportation-based conver-
sion efficiency would be q2 > 0.93. Moreover, similar FWM
was explored for collimated blue light generation [57,58], in
which strong two-photon emission has been observed under
the range of experimental conditions, which also provides
optimism for our proposal.

IV. FINITE QUBIT BANDWIDTH

We have assumed a single-frequency photonic
qubit in the discussion above, while in practice the
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photonic qubit always has a finite frequency bandwidth.
In the Heisenberg picture, the balanced homodyne
detection corresponds to projection measurement βs(t ) =
〈exp(iωAt )âin,s(t ) − exp(−iωAt )â†

A,s(t )〉. After performing
the displacement on mode B, the output fields are

âout,s(t ) = âB,s(t )+ exp(−iω−t )â in,s(t )− exp(−iω+t )â†
A,s(t ),

(9)
with ω± = ωB ± ωA. In the frequency domain, we have

âout,s(ωB + �) = âin,s(ωA + �) + âB,s(ωB + �)

− â†
A,s(ωA − �). (10)

This means that we need two-mode squeezing between fre-
quency component ωA − � in mode A and the frequency
component ωB + � in mode B to convert a single-frequency
qubit from ωA + � to ωB + �.

Meanwhile, we can consider the finite squeezing band-
width of the FWM process, and the Hamiltonian reads

HFWM = iξ
∑

s,�

[â†
A,s(ωA − �)â†

B,s(ωB + �) + H.c.], (11)

due to energy conservation, with � taking values within the
squeezing bandwidth. The Hamiltonian in Eq. (11) leads to
exactly the desired squeezing. In the Heisenberg picture, the
TMSV state satisfies [âB,s(ωB + �) − â†

A,s(ωA − �)]TMSV =
e−r[âB,s(ωB + �) − â†

A,s(ωA − �)]vac. In the strong squeezing
limit, the output field in Eq. (10) becomes the same as the
input field âout,s(ωB + �) = â in,s(ωA + �), except the fre-
quency is shifted by ωB − ωA. Therefore, our proposal works
if the frequency bandwidth of the squeezing is sufficiently
wide to cover the qubit bandwidth.

Our proposal works when the frequency bandwidth of the
squeezing is comparable or greater than the frequency band-
width of the qubit. Let us first consider the optimal gain tele-
portation. We can write the input/output state in the frequency
domain as |ψ〉in = ∫

d�Ain(�)|ψ (ωA + �)〉in and |ψ〉out =∫
d�Aout(�)|ψ (ωB + �)〉out with

∫
d�|Ain/out(�)|2 = 1, and

the output state reads |ψ〉out ∼ q|ψ〉in. Successful telepor-
tation leads to the output state as |ψ〉out ∼ q|ψ〉in with
wavelength conversion, that is A out(�) ∼ q(�)Ain(�). The
successful probability (i.e., averaged fidelity without postse-
lection) is Favg = ∫

d�|q(�)Ain(�)|2. In the case that q(�)
has a much wider frequency bandwidth than Ain(�) (e.g., with
ratio 10:1), we roughly have Favg = q2(0) and Aout (�) ∼
q(0)Ain(�) [i.e., the output state satisfies Aout(�) 
 Ain(�)
with little distortion in temporal profile compared with the
input state]. Even if q(�) has a comparable frequency band-
width as Ain(�), we have Favg 
 0.7q2(0) [we assume both
Ain(�) and q(�) have a Gaussian profile]. In addition, the
temporal profile of the output state is distorted through
Aout(�) ∼ q(�)Ain(�). Fortunately, this does not affect the
information encoded in the polarization space. That is, once an
output photon is detected with reduced probability 0.7q2(0),
the corresponding fidelity (after postselection) is still 100%.
The effect of finite frequency bandwidth of the squeezing is
similar for the unit gain teleportation, which would lead to
temporal distortion and reduce the fidelity.

In experiments, the Doppler shift would broaden the fre-
quency bandwidth of the squeezing. For cold atoms, the

Doppler shift can be neglected, while for room temperature
atoms, the Doppler shift is ∼200–300 MHz. We want to
emphasize that, in the presence of a Doppler shift, the fre-
quencies of the squeezed two modes are still given by ωA + �

and ωB − �. To avoid resonant pumpings and reduce the
incoherent emission, we can use pump detunings larger than
the Doppler shift so that most atoms remain in the initial
ground state. In addition, polarization encoding would not
be affected by the Doppler effect during the teleportation
since the squeezing factors for two polarizations can still be
the same and their relative phase is still locked. Moreover, the
coherent two-photon emissions are exponentially amplified
along the phase-matching direction which are employed as
the entangled resource, while incoherent emissions with direc-
tions have negligible contributions along the phase-matching
direction. Due to the broadened frequency bandwidth of the
squeezing, the Doppler effects may degrade the squeezing and
so the teleportation, which can be overcome by increasing
atom numbers.

V. DISCUSSION AND CONCLUSIONS

We have shown how to realize the wavelength conversion
for single-photon polarization qubits through CV teleportation
and to generalize the nondegenerate two-mode squeezed en-
tangled fields using FWM. For long-distance communication
between remote quantum nodes, we can use the procedure
as illustrated in Fig. 1. Alternatively, we can first send the
telecom mode of the entangled fields from node A to B, then
teleport the photonic qubit from node A to B with wavelength
conversion, and finally convert the qubit back to the NIR
wavelength at node B. For the later approach, additional pho-
ton loss may be introduced to the entangled fields during the
transmission, which will reduce the teleportation fidelity [59].

In summary, we proposed a QWC device for single-
photon polarization qubits using CV quantum teleportation.
We considered a FWM process in rubidium atomic gas with
a diamond configuration of atomic transitions to generate
the entangled fields, which corresponds to a pair of in-phase
nondegenerate TMSV states. One of the entangled fields has
a wavelength of 780–795 nm, and the other has a wavelength
of 1300–1500 nm, allowing efficiently wavelength conversion
of single-photon qubits between NIR (suitable for interacting
with atomic quantum nodes) and telecom wavelength (suit-
able for long-distance transmission). Moreover, it is possible
to generate the wavelength conversion scheme to a wide range
of frequencies if the corresponding two-color squeezed states
can be generated by suitable nonlinear optical mixing. Our
work provides an attractive alternative to a nonlinear crystal-
based wavelength conversion that still has difficulty with noise
photons and conversion efficiency.
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