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Quantum decoherence of a two-level system in colored environments
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In this paper, we investigate quantum decoherence dynamics of a two-level system in colored environments
described by stochastic processes. We present the extension of the theoretical framework of the stochastic
Liouville approach, and we employ the approach in studying the decoherence dynamics of the two-level
system in typical colored environments: the Ornstein-Uhlenbeck environment, a simple fluctuating bottleneck
environment, and the dichotomic (two-state) environment. The analytical expressions of the decoherence factor
of a two-level system in colored environments are obtained by introducing the marginal average operator, whose
eigenvalues and eigenfunctions provide different viewpoints from which to understand the behavior of the
decoherence factor. In addition, the investigations provide us a potential way to manipulate the decoherence
of the quantum system in colored environments.

DOI: 10.1103/PhysRevA.105.052443

I. INTRODUCTION

Quantum coherence, as one of the important phenomena
of quantum physics, plays an essential role in a variety of
physical processes. Specially, with the advance of quantum
technologies, the creation and evolution of quantum coher-
ence play a central role in a range of quantum community,
such as quantum information processing, quantum simula-
tion, the coherent control, etc. [1–11]. However, the coupling
between the quantum system and the environment always
destroys the coherence. That is, the quantum system is suscep-
tible to decoherence by the perturbation of the environment.
In recent years, the quantum decoherence of open quantum
systems has drawn increasing attention in a wide variety of
fields because of its potential applications, such as quantum
computing, quantum measurements and quantum information
science, and potential effects in the harvesting and transport
of electronic energy in photobiological systems [6–12].

The dynamical decoherence of open quantum systems has
been widely investigated based on the assumption of equilib-
rium and a white noise environment [13–26]. Some stochastic
processes have been employed to model the effect of an
equilibrium environment in a large variety of physical sys-
tems for a wide class of problems, such as low-frequency
noise in Josephson, solid-state, and superconducting qubits
[13–16], and intermittent fluorescence of single molecules and
nanocrystals [27–29].

The environmental effect on the quantum system is usu-
ally described by the stochastic processes [30–34], which
could let us note the stochastic environments using the
same name as the stochastic processes. With the develop-
ment of experimental technologies, researchers have found
that the nonequilibrium environment and the colored envi-
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ronment are becoming more important for some physical
situations. The dynamical decoherence of quantum systems
living in a nonequilibrium environment is interesting to sci-
entists [35–39]. A nonequilibrium environment could induce
non-Markovian quantum dynamics and speedup the quantum
evolution [38,39]. In addition, the light-induced coherent elec-
tronic process in biological systems is too short to consider the
thermal environment as an equilibrium [35,36,40].

Some typical colored environments of quantum systems
are ideal to use in investigations. For example, the 1/ f noise
and the time-independent colored noise process have been
employed to investigate coherence properties of optical fields,
the shot effect of transport in random media, stochastic res-
onance, and so on [41–43]. It is a challenge to explore the
quantum decoherence dynamics of a quantum system within
a colored environment. Here, by using a colored environment,
we employ the usual implication. Namely, its correlation time
is of the same timescale or longer than the internal dynamical
time and cannot be approximated by the Dirac δ function
[17,44–50]. Some analytical and numerical approaches have
been developed, such as the path-integral method under a non-
interacting blip approximation, the variational method based
on unitary transformation, the quantum Monte Carlo method,
etc. [51–53]. The decoherence dynamics has been analytically
investigated for some typical nonequilibrium environments
and colored environments-a thermal nonequlibrium environ-
ment described by a Fourier series with random coefficients
[35–38].

In this paper, we investigate the dynamics of the quantum
decoherence of a two-level system in colored environments.
The dephasing of the two-level system is represented by a
stochastic process. Based on the two-level system, the de-
coherence factor satisfies a Kubo-oscillator-type stochastic
differential equation. We derive the analytical solutions of
the off-diagonal density element ρ21(t ) of a two-level system
interacting with the environments: the Wiener environment
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(Gaussian white noise), the Ornstein-Uhlenbeck environment,
a simple fluctuating bottleneck environment, and the di-
chotomic (two-state) environment. Based on our analytical
solutions, we present a potential way to manipulate the de-
coherence of a quantum system under the perturbation of
the environment. In addition, we present the extension of
the stochastic Liouville methodology suggested by Kubo and
Zwanzig [54,55]. We investigate the decoherence dynamics of
a two-level system within colored environments using the ex-
tended stochastic Liouville methodology. A marginal average
operator H is introduced; its eigenvalues and eigenfunctions
provide us different viewpoints from which to understand the
behavior of the decoherence dynamics of a quantum system
in colored environments.

The organization of the paper is as follows. In Sec. II we
introduce the general model and the stochastic model of the
environments. The dynamical decoherence and the analytical
expressions of decoherence factors are derived for the envi-
ronments: the Wiener environment, the Ornstein-Uhlenbeck
environment, a simple fluctuating bottleneck environment,
and the dichotomic (two-state) environment. In Sec. III, we
discuss the decoherence dynamics of a quantum system in
colored environments. The numerical results of decoherence
dynamics are shown for different environments according to
the analytical expressions. In Sec. IV we give the conclusions
drawn from the present study.

II. MODEL AND GENERAL THEORETICAL
FRAMEWORK

A. General considering of the stochastic Liouville methodology

The general form of a stochastic differential equation can
be written as follows [33,34]:

u̇ = F [u, t ; X (t )], (1)

where u = {u1, u2, . . . , un} and F = {F1, F2, . . . , Fn} could be
vectors, and X (t ) stands for one or more random functions
where the stochastic properties are known. Generally, F is
linear in u and does not explicitly depend on time in natural
science; that is, Eq. (1) takes the form

u̇ν =
∑

μ

Aν,μ(X (t ))uμ, (2)

where u j are the elements of the vector u, and Aν,μ are the
elements of the coefficient matrix A.

To solve the stochastic differential Eq. (2), we here
present the extension of the stochastic Liouville method-
ology [54,55]. In this work, we suppose the transi-
tion probability density �(x, t ) [generally, the transition
probability density is denoted as �(x, t |x0, t0); for sim-
plicity, we denote it as �(x, t )] of the stochastic pro-
cess X (t ), assumed to be a Markovian process, can be
written as

�̇(x, t ) = W�(x, t ), (3)

where W is an operator, and x is supposed to be the sample of
X (t ) at time t .

Based on the stochastic Liouville equation suggested by
Kubo [56], the joint probability density ℘(u, x, t ) can be

written as [33,57]

∂

∂t
℘(u, x, t ) = −

∑
ν,μ

Aν,μ(x)
∂

∂uν

uμ℘(u, x, t ) + W℘(u, x, t ).

(4)
By defining the marginal averages of uν [33,57],

ūν (t ) =
∫

uν℘(u, x, t )dnu, (5)

where dnu stands for integral to all elements in vector u. We
can, after multiplying Eq. (4) with uν and integrating, derive

∂ ūν (x, t )

∂t
=

∑
μ

Aν,μ(x)ūμ(x, t ) + W ūν (x, t )

≡ Hūν (x, t ), (6)

where H = ∑
μ Aν,μ(x)

∑
ν δν,μ + W . We here define H as

the marginal average operator. This type of differential equa-
tion can be effectively solved by the eigenfunction expansion
approach, which has been employed to solve the Schrödinger
equation with a time-independent Hamiltonian.

Typically, for the case that the marginal average operator
H is time independent and non-Hermitian, there are different
ways to deal with a dynamical equation with a non-Hermitian
operator [58–61]. Here, we employ the biorthogonal bases
method.

The eigenvalue equation of H reads [60,61]

Hgn(x) = λngn(x), (7)

where λn and gn(x) are the eigenvalues and the eigenfunctions,
respectively. The eigenfunctions satisfy∫

dxg̃m(x)gn(x) = δn,m, (8)

where g̃n(x) is the left eigenfunction (adjoint function) for the
non-Hermitian operator H, the Hermitian conjugate of gn(x)
for the Hermitian operator H.

Correspondingly, the marginal average ūν (x, t ) can gener-
ally be expressed as

ūν (x, t ) =
∑

m

cν,m(t )gm(x). (9)

By multiplying g̃n(x) on both sides, and integrating with re-
spect to x, one has

cν,n(t ) =
∫

g̃n(x)ūν (x, t )dx. (10)

Immediately, one could obtain the coefficient cν,n(t ) by

ċν,n(t ) = λncν,n(t ). (11)

The marginal average ūν (x, t ) can be written as

ūν (x, t ) =
∑

n

cν,n(0)eλnt gn(x), (12)

where the coefficients cν,n(0) are determined by the initial dis-
tributions of the marginal average f (x) = ūν,n(x, 0), namely,

cν,n(0) =
∫

g̃n(x) f (x)dx. (13)
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Finally, 〈uν (t )〉 can be obtained as

〈uν (t )〉 =
∑

n

cν,n(0)ϕn(t ). (14)

In Eq. (14), we define the constituent elements ϕn(t ):

ϕn(t ) =
∫

eλnt gn(x)dx. (15)

Equation (14) presents that two essential parts could in-
fluence the dynamical behaviors of 〈uν (t )〉: the constituent
elements ϕn(t ) and their partitions cν,n(0), which are deter-
mined by the initial conditions. This provides us a potential
way to manipulate the nature of 〈uν (t )〉 by choosing the differ-
ent partitions cν,n(0) of the constituent elements ϕn(t ). Once
the partitions cν,n(0) are determined by choosing the initial
conditions, the constituent elements ϕn(t ) could indicate the
behaviors of 〈uν (t )〉.

B. Model

In the process of a quantum system evolving, the envi-
ronmental effects result in the decoherence of the quantum
system. The system we consider is described by the density
operator ρ̂(t ) with an energy gap


E = h̄ω(t ) = h̄ω0 + h̄ξ (t ), (16)

where ω0 = 〈ω(t )〉 is the average frequency, and ξ (t ) =
ω(t ) − ω0, the fluctuation of the difference frequency, is a
stochastic process with zero average. The evolution of the
coherence ρ21(t ) can be written as

ρ21(t ) =
〈
exp

(
i
∫ t

0
ξ (s)ds

)〉
eiω0tρ21(0)

≡ 〈F (t )〉eiω0tρ21(0), (17)

where F (t ) = exp(i
∫ t

0 ξ (s)ds) is the decoherence factor.
We notify that the decoherence factor F (t ) can, after taking

the differentiation of F (t ) with respect to time t , be written as
[56]

dF (t )

dt
= iξ (t )F (t ). (18)

Equation (18) is the Kubo-oscillator-type stochastic differen-
tial equation, which is first employed to study the line shape
by Kubo. It was also employed to investigate the line broad-
ening, paramagnetic resonance, rate processes with dynamical
disorder, etc. [30,31,54,55].

The Kubo-oscillator-type stochastic differential equa-
tion can be solved by employing the extension stochastic
Liouville approach presented Sec. II A. In this work, we sup-
pose that time-dependent stochastic variable ξ (t ) originates
from the random variable x, i.e., ξ (t ) ≡ ξ (x(t )). Learning
from Eq. (5), the marginal average of the decoherence factor
can be defined as

F̄ (x, t ) =
∫

F℘(F , x, t )dF , (19)

and the average of the decoherence factor can be obtained as

〈F (t )〉 =
∫

F̄ (x, t )dx. (20)

Also, the marginal average of the decoherence factor F̄ satis-
fies equations of the type of Eq. (6).

C. The analytical solutions for typical environments

In this section we consider the analytical solutions for the
Wiener environment and three typical colored environments:
the Ornstein-Uhlenbeck environment, a simple fluctuating
bottleneck environment, and the dichotomic (two-state) envi-
ronment.

1. The Wiener environment

We first consider the Wiener environment, namely, ξ (t ) =
x(t ) is a Wiener process. The Wiener environment is gen-
erally considered as Gaussian white noise with zero mean
stochastic process. Here, we consider the Wiener environment
as a special case to demonstrate the analytical solution of the
stochastic Liouville equation.

The transition probability satisfies the following equa-
tion [33]:

∂�(x, t )

∂t
= q

2

∂2�(x, t )

∂x2
, (21)

where q/2 is the correlation intensity of the noise, and the
corresponding operator W = q

2
∂2

∂x2 .
The marginal average equation reads

∂F̄
∂t

= HF̄ , (22)

where the marginal average operator H is

H = ix + q

2

∂2

∂x2
. (23)

The corresponding eigenvalue equation reads

Hψλ(x) = λψλ(x), (24)

where λ is the eigenvalue and ψλ(x) is the eigenfunction.
Considering the boundary condition, the eigenfunction can be
expressed by the first Airy function [62,63]:

ψλ(x) = NAi

[
3

√
2

q

(−xeiπ/6 − λe2iπ/3
)]

, (25)

where N is the normalization constant, and the eigenvalue λ

could be complex.
The initial distribution f (x) can be expanded in the corre-

sponding eigenfunctions [63]:

f (x) =
∫

c(λ)ψλ(x)dλ, (26)

with

c(λ) =
∫

ψλ(x) f (x)dx. (27)

Finally, one could obtain

F̄ (x, t ) =
∫

c(λ)ψλ(x)eλt dλ, (28)
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and the averaged decoherence factor

〈F (t )〉 =
∫

F̄ (x, t )dx

=
∫

c(λ)ϕ(λ, t )dλ, (29)

with the constituent elements

ϕ(λ, t ) = eλt
∫

ψλ(x)dx. (30)

2. The Ornstein-Uhlenbeck environment

In this subsection, we consider the Ornstein-Uhlenbeck
environment, namely, ξ (t ) = x(t ) is an Ornstein-Uhlenbeck
process. The transition probability �(x, t ) satisfies [34]

∂�(x, t )

∂t
= γ

∂

∂x
x�(x, t ) + q

2

∂2�(x, t )

∂x2
, (31)

where q is related to the spectral strength of the Ornstein-
Uhlenbeck process, and γ = 1/τc serves to vary the color of
the Ornstein-Uhlenbeck process, with τc being the correlation
time. The corresponding marginal average operator is

H = ix + γ
∂

∂x
x + q

2

∂2

∂x2
. (32)

To obtain the eigenvalues and eigenfunctions of the opera-
tor H, the following transformation is introduced [34]:

F̄ = e− γ x2

2q ψ, (33)

and then, the marginal average Eq. (6) can be rewritten as

∂ψ

∂t
= e

γ x2

2q He− γ x2

2q ψ

= H′ψ, (34)

where the modified marginal average operator H′ is

H′ = q

2

∂2

∂x2
− γ 2

2q

(
x − qi

γ 2

)2

+
(

γ

2
− q

2γ 2

)
, (35)

namely, this is the quantum harmonic oscillator to within a
sign change and an additive constant. From standard quantum
mechanics [32,34], the eigenvalues and eigenfunctions of the
operator H′ are well known:

λn = −nγ − q

2γ 2
,

(36)

ψn(x) =
(

γ

πq

)1/4 1√
2nn!

Hn(ζ )e−ζ 2/2,

where ζ =
√

γ

q (x − qi
γ 2 ), and Hn(ζ ) is the nth Hermite poly-

nomial of ζ .
Hence, the marginal average F̄ can be obtained as

F̄ (x, t ) =
∑

n

cneλntψn(x)e− γ x2

2q . (37)

The coefficient cn can be obtained once the initial condition of
F̄ (x, 0) = f (x) is specified:

cn =
(

γ

πq

)1/4 1√
2nn!

e
q

2γ 3

∫ +∞

−∞
Hn(ζ ∗)e− ix

γ f (x)dx. (38)

By using Eq. (20), the decoherence factor 〈F (t )〉 can be ob-
tained as

〈F (t )〉 =
∫

F̄ (x, t )dx

=
∑

n

cneλnt
∫

ψn(x)e− γ x2

2q dx. (39)

Considering the expression of ψn(x), we introduce

σn =
∫ +∞

−∞
Hn(ζ )e−ζ 2/2e− γ x2

2q dx

=
∫ +∞

−∞
e(− γ

q x2+ i
γ

x)Hn(ζ )dx. (40)

After some algebra, one could have

σn =
(

−i
√

q

γ 3

)n√
πq

γ
e
− q

4γ 3 . (41)

Finally, we have the analytical expression of the averaged
decoherence factor:

〈F (t )〉 =
(

γ

πq

)1/4 ∑
n

cn
σn√
2nn!

eλnt

≡
∑

n

cnϕn(t ), (42)

where the constituent elements

ϕn(t ) =
(

γ

πq

)1/4
σn√
2nn!

eλnt .

3. Simple fluctuating bottleneck environment

We now consider the case that the fluctuation of the dif-
ference frequency ξ (t ) is modeled as a simple fluctuating
bottleneck process; namely, we suppose

ξ (t ) = κx2(t ), (43)

where κ is a constant, x(t ) is the Ornstein-Uhlenbeck process,
and x � 0. The transition probability of the stochastic process
x(t ) is given by Eq. (31).

In this process, the equation of the marginal average,
Eq. (6), after considering the marginal transform of Eq. (33),
can be written as

∂ψ

∂t
= H′ψ, (44)

with the modified marginal average operator H′ being

H′ = q

2

∂2

∂x2
−

(
γ 2

2q
− iκ

)
x2 + γ

2
, (45)

where the parameters q and γ have meanings similar to
those in Eq. (31). Correspondingly, the eigenvalues and
eigenfunctions of the operator H′ are as follows:

λn = −
(

n + 1

2

)√
γ 2 − 2κqi + γ

2
, (46)

ψn(x) =
(

γ 2 − 2κqi

π2q2

)1/8 1√
2n−1n!

Hn(αx)e−α2x2/2,

where α = ( γ 2

q2 − 2κi
q )1/4.
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Again, the marginal average of the coherence factor can be
expressed as

F̄ (x, t ) =
∑

n

cneλntψn(x)e− γ x2

2q , (47)

where

cn =
(

γ 2 + 2κqi

π2q2

)1/8 1√
2n−1n!

×
∫ +∞

0
Hn(α∗x)e

1
2 ( γ

q −α∗2 )x2

f (x)dx, (48)

and f (x) is the initial condition of F̄ , i.e., F̄ (x, 0) = f (x).
The marginal average F̄ can be continuous analytically in

the whole space as an even function, namely,

F̄ (x) = F̄ (−x), for x < 0. (49)

Then, the decoherence factor can be expressed as

F̄ (x, t ) =
∑
even n

cneλntψn(x)e− γ x2

2q . (50)

Let

σn =
∫ +∞

0
p(x)Hn(αx)dx, n = 0, 2, 4, . . . , (51)

with p(x) = exp[− 1
2 (α2 + γ

q )x2].
One could have

σn+2 = 2(n + 1)
qα2 − γ

qα2 + γ
σn, n = 0, 2, 4, . . . , (52)

with the initial value

σ0 =
∫ +∞

0
p(x)dx = 1

2

√
2πq

qα2 + γ
. (53)

Then σn can be written as

σn = 2n−1�

(
n + 1

2

)(
qα2 − γ

qα2 + γ

)n/2
√

2q

qα2 + γ
, (54)

where �(n) is Euler’s Gamma function, and n’s are even
integers.

Finally, by using Eq. (20), the decoherence factor is

〈F (t )〉 =
(

γ 2 − 2κqi

π2q2

)1/8 ∑
even n

cn
σn√

2n−1n!
eλnt

=
∑
even n

cnϕn(t ), (55)

where the constituent elements

ϕn(t ) =
(

γ 2 − 2κqi

π2q2

)1/8
σn√

2n−1n!
eλnt .

4. The dichotomic environment

In this subsection, we consider the dichotomic environ-
ment, which can be modeled by the dichotomic process.
The dichotomic process is frequently exploited by the non-
Gaussian and nonequilibrium processes. It is a two-state noise

process: ξ (t ) = {−ω,+ω}, ω > 0. Namely, ξ (t ) jumps be-
tween −ω and +ω with the rate constants k±:

+ω
k+−−→

←−−k−
− ω. (56)

The transition probabilities satisfy the following equations:

∂�+(t )

∂t
= −k−�+ + k+�−,

∂�−(t )

∂t
= k−�+ − k+�−. (57)

The equation of the marginal average of the coherence factor
can be written as follows:

∂

∂t

(
F̄+
F̄−

)
= H

(
F̄+
F̄−

)
, (58)

with the marginal average operator H being

H = iω

(
1 0
0 −1

)
+

(−k− k+
k− −k+

)
. (59)

The solutions read(
F̄+
F̄−

)
= aη1eλ1t + bη2eλ2t , (60)

where a and b are the arbitrary constants, and λ1, λ2 and η1, η2
are eigenvalues and eigenvectors of H, respectively. They are
written as follows:

λ1,2 = −k ± (α + iβ ),

η1,2 = N1,2

( −k+
k + iω ∓ (α + iβ )

)
,

(61)

where k = (k+ + k−)/2, α, β � 0 are real numbers and
satisfy (α + iβ )2 = k2 − ω2 + iω(k+ − k−), and N1,2 are nor-
malization constants.

Finally, the averaged decoherence factor can be written as

〈F (t )〉 = a(iω + λ2)eλ1t + b(iω + λ1)eλ2t , (62)

with the initial condition 〈F (0)〉 = 1.
Now we discuss some interesting behaviors of the averaged

decoherence factor. First, when k+ = k− = k > ω, we know
that α = √

k2 − ω2 and β = 0. The averaged decoherence
factor of Eq. (62) can be expressed as

〈F (t )〉 = − e−kt [a(k + α)eαt + b(k − α)e−αt ]

+ iωe−kt [aeαt + be−αt ],

=[
a(k + α)e−(k−α)t + b(k − α)e−(k+α)t

]
+ iω

[
ae−(k−α)t + be−(k+α)t

]
. (63)

According to the definition of the parameter α = √
k2 − ω2,

one could obtain α � k for ω � 0. That is, the real and imagi-
nary parts of the averaged decoherence factor demonstrate two
exponential decay behaviors with the evolution time t .

Second, for k+ = k− = k < ω, we have α = 0 and β =√
ω2 − k2. In this case, the averaged decoherence factor can

be written as

〈F (t )〉 = e−kt [a(iω − iβ − k)eiβt

+ b(iω + iβ − k)e−iβt ]. (64)
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Hence, 〈F (t )〉 would rotate in the complex plane with a de-
creasing modulus.

Third, we notice that if k+ > k− and a < b, then 〈F (t )〉
would change its rotating direction, from clockwise to anti-
clockwise. According to the expression

〈F (t )〉 = e−kt [(iω − k)(aeαt eiβt + be−αt e−iβt )

+ (α + iβ )(−aeαt eiβt + be−αt e−iβt )], (65)

the orientation rotation behaviors are determined by the terms
±aeαt eiβt + be−αt e−iβt . At the beginning (t is small), we have
aeαt < be−αt because a < b. So the rotation is mainly driven
by e−iβt . However, for long enough time, we have aeαt >

be−αt . Then the term eiβt becomes the main driven part.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we present the numerical results for the de-
coherence factors discussed in the previous section. Although
the analytical expressions of the decoherence factors for the
four typical models are given, to clearly demonstrate the be-
haviors of the decoherence factors or the constituent elements
(since the factors consist of the constituent elements), we give
the numerical results according to the analytical expressions.

1. The Wiener environment

The Wiener process is generally employed to study the
Brownian motion and the diffusion processes. The diffusion
processes are widely found in physics, chemistry, biophysics,
and other natural science fields. The averaged decoherence
factor of Eq. (42) can be expressed as

〈F (t )〉 =
∫

c(λ)ϕ(λ, t )dλ. (66)

Equation (66) shows that the decoherence factor is influenced
by two parts: the constituent element ϕ(λ, t ) and its corre-
sponding partition c(λ). A typical case for this environment
is c(λ) = δ(λ − λ0), and the decoherence factor 〈F (t )〉 is
reduced to a typical constituent element ϕ(λ0, t ). To under-
stand the behavior of 〈F (t )〉, we demonstrate several typical
constituent elements ϕ(λ, t ) in Fig. 1. The absolute value, the
real part, and the imaginary part of the constituent elements
ϕ(λ, t ) are plotted. The yellow solid lines, the red dash-dotted
lines, and the blue dashed lines correspond to absolute, real,
and imaginary values of the constituent elements ϕ(λ, t );
Figs. 1(a)–1(c) correspond to the parameters λ = 1, λ = i, and
λ = 1 + i, respectively. The real part of ϕ(λ, t ) determines
the decay behavior, and the imaginary part determines the
oscillation behavior. Generally speaking, the greater the real
part is, the faster ϕ(λ, t ) decays, and the imaginary part of λ

is greater, the stronger the ϕ(λ, t ) oscillationis.
The decoherence factor 〈F (t )〉 could be composed of more

than one constituent element ϕ(λ, t ), with the eigenvalue λ

being a complex number. Here, we consider that 〈F (t )〉 is
composed of two constituent elements, ϕ(λ1, t ) and ϕ(λ2, t ),
and we suppose

ϕ(λ, t ) ∼ e−λt , (67)

FIG. 1. The constituent element ϕ(λ, t ) of the Wiener environ-
ment versus time t . Panels (a)–(c) correspond to λ = 1, λ = i, and
λ = 1 + i, respectively. The yellow solid lines, the red dash-dotted
lines, and the blue dashed lines represent the absolute values, the real
parts, and the imaginary parts, respectively.

all others are contributed to the proportional constant c(λ).
The eigenvalues λ1 and λ2 can be written as

λ1 = a + ib, λ2 = c + id, (68)

where a, b, c, and d are real numbers. If c(λ1) = c(λ2), one
could obtain

〈F (t )〉 ∼ e−(a+ib)t + e−(c+id )t (69)

and the corresponding absolute value

|〈F (t )〉|2 ∼ 2e−2(a+c)t {1 + cos[(b − d )t]}. (70)

Equation (70) demonstrates the decoherence factor is not
exponentially decaying with respect to the evolution time,
but rather is oscillating. This behavior is connected to the
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FIG. 2. The results of ϕn(t ) for the Ornstein-Uhlenbeck process.
Panels (a)–(c) correspond to q/γ 3 = 0.3, 1.0, and 5.0, respectively.
The red solid lines, the green dashed lines, the blue dotted lines,
and the yellow dash-dotted lines correspond to n = 0, 1, 3, and 4,
respectively.

non-Markovian behavior of the dynamical evolution of the
quantum system [37].

2. The Ornstein-Uhlenbeck environment

The Ornstein-Uhlenbeck process has been widely em-
ployed to investigate different physical problems [64–67]. We
here present the numerical results of the quantum decoherent
dynamics. In our numerical results, we use the scaled param-
eters, namely, t → γ t , and the constituent element ϕn(t ) →√

γ ϕn(t ), etc. Correspondingly, the averaged decoherence
factor of Eq. (42) can be expressed as

〈F (t )〉 =
∑

n

cnϕn(t ). (71)

FIG. 3. The result of ϕ0(t ) for the fluctuating bottleneck. Panels
(a)–(c) correspond to κ/γ = 0.3, 1.0, and 8.0, respectively. The blue
dash-dotted lines represent the real part, the red dashed lines repre-
sent the imaginary part, and the yellow solid lines are the modulus of
the decoherence factor. The parameter q/γ = 1.

In Fig. 2, we present the results of the first four constituent
elements ϕn(t ) (n = 0, 1, 2, and 3) for q/γ = 0.3, 1.0, and
5.0 in panels (a)–(c), respectively. Figure 2 shows that the
constituent elements ϕn(t ) have a long coherence time for
small q. From Eqs. (36) and (42), we know the dynamical
decay of ϕn(t ) is proportional to eλnt . This demonstrates that
the “low constituent element” (namely, the small n) has a
long coherence time as shown in Fig. 2. Conversely, the “high
constituent element” has a short coherence time; i.e., the “high
constituent elements” dynamical decay fast.

Expression (36) shows the eigenvalues of the marginal
average operator H in the Ornstein-Uhlenbeck environment
are real. The single constituent element ϕn(t ) shows exponen-
tial decay behavior, and the absolute value of the averaged
decoherence factor |〈F (t )〉|, which is composed of several
constituent elements ϕn(t ), could show the multi-exponential-
decay behavior.

3. Simple fluctuating bottleneck environment

We now give the numerical results of the dynamical de-
coherence for the quantum system under the environment
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FIG. 4. The decoherence factor as a function of time. The results of panels (a)–(c) correspond to the parameters (k+/ω, k−/ω) = (3.0, 1.0),
(0.4, 0.2), and (0.2, 0.1), respectively. The blue dash-dotted lines represent the real part, the red dashed lines represent the imaginary part,
and the yellow solid lines are the modulus of decoherence factor. Panels (A)–(C) are the trajectories of the decoherence factor in space of
Re〈F〉 ∼ Im〈F〉, which correspond to panels (a)–(c), respectively.

of the fluctuating bottleneck process. The process has been
employed to investigate some interesting physical processes,
such as multi-time-correlation functions, single molecule ki-
netics, etc. [64–68]. Also, in this model, we use the scaled
parameter t → γ t . In this case, the decoherence factor can be
written in a form similar to that of the case of the Ornstein-
Uhlenbeck process of Eq. (71). However, the coefficients in
Eq. (55) are complex, and the real and imaginary parts of the
constituent elements have rich behaviors.

In Fig. 3, we present the results of the constituent element
ϕ0(t ) for the cases of κ = 0.3, 1.0, and 8.0 in panels (a)–(c),
respectively. As shown in the figure, the oscillations of the real
and imaginary parts of ϕ0(t ) fade as the parameter κ increases.
At the same time, their coherence time is becoming short.
Physically, the quantum system under the strong effects of
the environment decays fast, or the strong stochastic environ-
ment makes the quantum system obviously decoherent. This
is clearly shown in Fig. 3.

4. The dichotomic environment

To present the numerical results, we also use the scaled
parameters in the dichotomic process: t → ωt and k± →
k±/ω. The initial condition is taken as the stationary distri-
butions. Considering the constituent elements ϕn, behaviors
are demonstrated in Sec. II C 4. In this subsection, we give
the behaviors of the decoherence factor obviously. In Fig. 4,
we present the numerical results of the decoherence factor and
the real and imaginary parts of the decoherence factor versus
the evolution time. The trajectories of the decoherence factor
in space of Re〈F〉 ∼ Im〈F〉 are also shown.

As shown in the figure, the oscillations appear for the
decoherence factor in the process of dynamical decaying as

the time goes on. These oscillations of the decoherence factor
indicate the non-Markovian behaviors induced by the colored
dichotomic environment. Our results show that the slower the
jump between the two states of the environment the more
obvious the induced non-Markovian behaviors are. Physically,
if the environment jumps fast [as shown in Fig. 4(a)], the phys-
ical specifics would be wiped out by its fast-jumping process.
Therefore, the decoherence factor decays monotonically. But,
the system could “keep” some details of the behaviors of the
environment if the environment jumps slowly. Namely, this
can induce the non-Markovian nature of the quantum system
as shown in Fig. 4(c).

In the space of Re〈F〉 ∼ Im〈F〉, |〈F (t )〉| is the “dis-
tance” from the space point (Re〈F〉, Im〈F〉) to the ending
point, and the changing rate of the distance is related to the
non-Markovian behavior in the dynamical evolution of the
quantum system [37].

IV. CONCLUSIONS

We investigated the dynamical decoherence of a two-
level quantum system in the Wiener environment and three
typical colored environments: the Ornstein-Uhlenbeck envi-
ronment, a simple fluctuating bottleneck environment, and the
dichotomic environment, respectively. We have derived the
analytical expressions of the averaged decoherence factor for
the these typical stochastic environments.

We introduce the operator of the marginal average H, and
correspondingly, the product of the eigenfunctions gn(y) of
H and the exponential function of the eigenvalues eλnt are
defined as the constituent elements of the decoherence factor.
We have shown that the decoherence behavior of a two-
level quantum system can be controlled by manipulating the
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constituent elements of the decoherence factor. The partitions
of the constituent elements of the decoherence factor can be
determined via the initial distributions of the environments.

The eigenvalues of the marginal average operator H are
generally complex, which results in the absolute value of
the decoherence factor |〈F (t )〉| oscillating and decaying with
respect to the evolution time. The oscillating and decay-
ing behaviors of the decoherence factor |〈F (t )〉| reflect the
dynamical evolution of the quantum system connected to
non-Markovian behaviors. The strength of the “exchanging
information” of the different constituent elements ϕn(t ) and
ϕm(t ) is determined by the partitions

√
cncm, which provides

a way to control the non-Markovian behaviors.
The possible role played by the colored environ-

ment in some dynamical evolution could be investi-
gated, such as quantum dynamical speedup induced by a

colored/nonequilibrium environment, the nature of quantum
speed limits and the geometric phase of a quantum system
under a colored environment, etc. In addition, by introducing
the frequency shift and the decoherence rate, the dynamical
evolution of the reduced density matrix of a quantum system
can be described by a time-local master equation. Hence,
some quantum effects induced by the colored environment can
be discussed.
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