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Engineering a stationary entanglement between atoms or ions placed at small distances is a challenging
problem in quantum information science. In this paper, the stationary and dynamics of entanglement in a
system of dipole-coupled qubits interacting with a single-mode optical cavity in the strong coupling regime
are theoretically investigated. We find that the entanglement in the steady state can be induced and tuned in
nonresonance cases by considering the dipole-dipole interaction (DDI) between the qubits. We also point out that
the novel measure used in this study can quantify the net multiqubit entanglement in the system. By increasing the
DDI intensity, the behavior of the system depends on the number of qubits. Interestingly, with only two qubits,
the amounts of steady-state entanglement enhances as the DDI intensity increases. For a system with more than
two qubits, we find that DDI in the weak range of intensity plays a constructive role in the entanglement between
qubits. However, it could destroy the stationary entanglement as the interaction between qubits intensifies. The
entanglement of a system consisting of more than two qubits tends to disappear for an ensemble of qubits with
smaller interatomic distances that lead to stronger dipolar interaction between nonadjacent qubits. Finally, we
study the atomic population transfer as well as the transmitted spectrum.
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I. INTRODUCTION

Nowadays, it is well known that quantum entanglement
in multipartite systems is one of the crucial resources re-
quired for developing quantum technologies such as quantum
communication [1,2], quantum cryptography [3], quantum
computation [4], quantum metrology [5], quantum imaging
[6], etc. Entanglement and decoherence, due to the inevitable
coupling of a quantum system with the surrounding environ-
ment, are two closely connected phenomena. The creation
and manipulation of entangled states for quantum systems
exposed to the dissipative surrounding environment is a chal-
lenging necessity to be satisfied for most quantum operations.

It is worth noting that three different consequences for en-
tanglement evolution have been predicted [7]: first, a dynamic
generation of the entangled states that occur in multiphoton
resonances for timescales less than decoherence time; second,
entanglement destruction as a result of decoherence with the
environment that takes place for timescales between decoher-
ence time and the relaxation time; and third, the generation
of steady-state entanglement with the assistance of a driving
field in longer times for nonresonances. In recent years, sev-
eral proposals based on the generation of entangled steady
states have been proposed theoretically through engineered
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dissipative processes [8–11] and also validated in experiments
[12–18]. However, such an amount of stationary entanglement
is quite low especially when the number of qubits is more than
two [19]. Therefore, it is necessary to look for protocols to
control and enhance it [20–22]. In this regard, the system in
the study is driven by external fields and coupled to a reser-
voir, causing a nontrivial nonequilibrium dynamic that results
in a highly entangled steady state. Stabilization and quan-
tum control of entanglement can be achieved by engineering
the quantum reservoir, the system-reservoir couplings, or the
driving protocols [23]. Such realizations have been shown
experimentally in various quantum systems like trapped ions
[12–14], atomic ensembles [15], and superconducting qubits
[16–18].

On the other hand, entangled states of a system with two
qubits have been well characterized using a variety of ana-
lytical measures of entanglement. So, there has been much
interest in both theoretical and experimental studies of the en-
tanglement in bipartite qubit systems in recent years [24–27].
However, the study of the entanglement for multipartite sys-
tems with more than two qubits is very constrained by the lack
of calculable entanglement measures even for pure states. In
fact, introducing a general measure is one of the main tasks to
quantify and characterize the exact amount of entanglement
between the different constituent parts of a multipartite quan-
tum system. Nevertheless, many different approaches have
been defined to classify the multipartite entanglement based
on the sum of the bipartite entanglement measures over all the
possible bipartitions of the whole quantum system [28,29].
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For instance, it has been found that for multiqubit systems,
increasing the number of qubits of the system causes a change
in the degree of entanglement robustness [30]. Interestingly,
in a recent work [31], a measure of entanglement has been
proposed based on a distance deriving from an adapted appli-
cation of the Fubini-study metric, which can be computed for
either pure or mixed states of an M-qudit hybrid system. This
measure has already been utilized to investigate the dynamics
of entanglement between two qubits in a dissipative environ-
ment [32].

The opportunity of trapping chains of atoms [33–36] and
Wigner crystals [37] in an optical cavity opens a new chap-
ter in the field of quantum optics and quantum information
studies. The cavity affects the radiative properties of atoms
leading to the cavity-induced atom-atom interactions and col-
lective behaviors. In this regard, the atoms are confined in a
deep optical lattice potential that is created by the external
classical field, and consequently a chain of two-level qubits is
formed along the axis of the cavity [33,34]. The hopping and
tunneling of atoms between the different sites are neglected. It
is worth noticing that various protocols may be experimentally
employed to make a trap array in a cavity to hold the neutral
atoms at a constant interatomic distance. Applying an extra
cavity pump field resonant to the other cavity frequency is a
well-known method of atomic trap generation [33,34]. Alter-
natively, two laser beams crossing each other in the cavity can
make an optical lattice along the cavity.

In this paper, we investigate the steady-state multipartite
entanglement and population inversion as well as the transmit-
ted spectrum by considering an arbitrary number of two-level
qubits (here, up to five) interacting with a single-mode cavity
in the presence of dissipation sources. To be closer to the
real system, coupling between the qubits by dipole-dipole
interaction with a different coupling strength for each pair is
also taken into account. The influence of the detuning between
coherent laser field and the cavity and also intensity of dipole-
dipole interaction on the interest quantities are demonstrated.
First, we show that as the number of qubits increases both
the population inversion and entanglement are considerably
reduced in the presence of strong DDI. However, in the small
range of DDI intensities, where only the nearest qubits have
dipolar interaction, the steady states of qubits are highly en-
tangled. In the next step, a comparison in the steady-state
entanglement computing with the utilized measure and von
Neumann entropy is made that reveals the correspondence of
these two measures. Finally, the transmission spectrum of the
quantum system will be studied for an ensemble consisting
of different number of qubits. We demonstrate that the trans-
mitted spectrum is enhanced for any number of qubits by the
increase of DDI intensities.

The rest of the paper is organized as follow: In Sec. II,
we present the theoretical model under study. Section III is
devoted to the entanglement dynamics of the atomic system.
In Sec. IV, we study the atomic population transfer at the
stationary state. Section V describes the transmitted spectrum
in detail. Finally, we conclude the paper in Sec. VI.

II. THEORETICAL DESCRIPTION

The system under consideration consists of N two-level
atoms (qubits) that are placed at a small distance from each

FIG. 1. Schematic diagram of N qubits coupled to each other by
dipole-dipole interaction. The cavity is pumped by a coherent laser
field with strength η. The decay rates of atoms and cavity field are
γ and κ , respectively. The interatomic distance is d and ϕ denotes
the angle between the dipole moment (μ) and atomic position vector
(Ri). Each atom can be considered as a two-level system with the
ground (|g〉) and excited (|e〉) states.

other, leading to the presence of dipole-dipole interaction (see
Fig. 1). To model the system, we consider an alignment of N
identical dipole-coupled atoms interacting with a single-mode
high-finesse optical cavity. Then the system is pumped along
the cavity axis by a coherent laser field of frequency ωp and
an effective amplitude η. Each atom in the ensemble is consid-
ered as an effective two-level system (qubit) with the ground
state |g〉 and the excited state |e〉 with a transition frequency
ωa. The effective Hamiltonian describing the dipole-dipole
interaction between qubits can be written as [38]

HD = Jd3
∑
i �= j

1

|Ri − Rj |3 (σ−
i σ+

j + σ−
j σ+

i ), (1)

Here, σ+
k and σ−

k are the raising and lowering operators of the
kth qubit, and Ri and Rj are the position of the ith and jth
qubits with respect to the origin, respectively. The positions
Ri are assumed to be in a one-dimensional (1D) array with
N sites located at equal distances from each other, i.e., d ,
which is known as the lattice constant. Therefore, the distance
between a pair of qubits can be expressed in terms of the
lattice constant, i.e., Ri j = Ri − Rj = d (i − j). Furthermore,
J is given by

J = 3

4

(
�0c3

/
ω3

ad3
)
(1 − 3 cos2 ϕ), (2)

where c is the speed of light, �0 = k3
0μ3

2πε0 h̄ is the atomic spon-
taneous emission rate in free space, k0 denotes the transition
wave number, and μ is the dipole moment associated with the
transition between the two ground and excited levels. Finally,
ϕ shows the atomic dipole moments with respect to the inter-
atomic axis. Here, it is assumed that the dipole moments of
the qubits are parallel to each other and are polarized in the
direction perpendicular to the interatomic axis, which in turn
results in cos ϕ = 0. Therefore, the DDI intensity depends
only on the positions of the two atoms in the cavity.

The dipole-dipole interaction introduced in Eq. (1) reveals
the fact that the interaction coupling depends on the relative
distance via R−3

i j . This means beside the nearest neighbor in-
teraction, the interaction between other qubits have also been
taken into account. However, the coupling constant between
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farther neighbors falls down as the distance between qubits
increases. The Hamiltonian of the system in the rotating wave
and dipole approximations is given by (h̄ = 1)

H = − �ca†a −
N∑

k=1

�aσ
+
k σ−

k

+
N∑

k=1

g(a†σ−
k + aσ+

k ) + HD + η(a + a†), (3)

in which a and a† are the annihilation and creation opera-
tors of the cavity field, respectively. �a = ωp − ωa and �c =
ωp − ωc are the detuning of the transition frequency of the
atoms and the cavity field and the laser field frequencies,
respectively. The first term in the above Hamiltonian is the
free Hamiltonian of the cavity, while the second term repre-
sents the qubit-free Hamiltonian. The third term illustrates the
interaction between qubits and the cavity field with coupling
strength g. Finally, the last term is the pump field.

The unavoidable interaction between any real system with
its surrounding environment compels one to consider the
dissipative effects via the usual Lindblad form in the Born-
Markov approximation [39]. In this regard, the time evolution
of the density operator ρ, which describes the dynamics of the
system, can be written as (h̄ = 1)

ρ̇(t ) = −i[H, ρ] + κ (2aρa† − a†aρ − ρa†a)

+
N∑

i=1

γ (2σiρσ
†
i − σ

†
i σiρ − ρσ

†
i σi )

+
N∑

i �= j=1

γ ′(2σiρσ
†
j − σ

†
i σ jρ − ρσ

†
i σ j ). (4)

The first term on the left-hand side of the above equa-
tion denotes the coherent evolution of the whole system.
The second term describes the coupling of the cavity mode
with the environment with the decay rate κ . The third term
illustrates the dissipation of the qubits into the their local
environments with decay rate γ . Finally, the last term shows
the qubit-qubit cooperation induced by their coupling with a
common reservoir that is determined by γ ′ [38,40]. This part
is taken into account only when the atomic distances are small
compared to the radiation wavelength.

It should be noticed that throughout the whole paper, with-
out loss of generality, the value of γ ′ for the nearest neighbor
interactions is γ ′ = 0.05g and for nonadjacent neighbours,
this parameter falls down by an order of 1

|Ri−Rj |3 [41].
In order to simulate the dynamics of the system, we first

write the master equation (4) in the compact form

dρ(t )

dt
≡ Lρ(t ), (5)

where L is an linear map usually called Liouvillian superoper-
ator. The general solution of the presented master equation can
be written as [42]

ρ(t ) =
N2+1∑
k=1

ckeλkt Rk, (6)

where ck = Tr(ρ(0)Lk ). Here, λk are the eigenvalues of the
equation L(Rk ) = λkRk and L†(Lk ) = λkLk satisfying the or-
thonormality condition Tr(RkLk′ ) = δkk′ . In order to examine
the final state of the system, we solve the equation Lρ(t ) = 0
to find the steady-state density operator. It is worth noticing
that this general solution does not apply for time-dependent
master equations [43].

III. ENTANGLEMENT DYNAMICS

In order to quantify the degree of the multipartite entangle-
ment in the atomic system, we use the very recently defined
entanglement distance measure (EDM) [31]:

E (ρ(t )) :=
M−1∑
μ=0

⎡
⎣2(dμ − 1)

dμ

−
d2

μ−1∑
k=1

Tr
(
σ

μ

k ρ
)2

⎤
⎦, (7)

where M is the number of the subsystems and dμ is the
dimension of the Hilbert space of μth subsystem. Here, ρ(t )
is the time-dependent atomic reduced density operator, M =
N , and d0 = d1 = 2. Usually, it is convenient to normalize
this measure with respect to the number of subsystems, i.e.,
E (ρ(t ))/M. In this regard, the entanglement measure varies
between 0 (when the qubits are fully separable) and 1 (when
they are maximally entangled), i.e., 0 � E (ρ(t ))/M � 1. This
measure has been proposed based on a distance deriving from
an adapted application of the Fubini-study metric, which can
be computed for either pure or mixed states of an M-qudit
hybrid system.

A. Influence of the number of atoms and dipole-dipole
interaction on entanglement

Now, we are in a position to examine the effect of all of
the introduced parameters on the multipartite entanglement
generation. We are interested in the stationary entanglement.
This can be obtained by setting the left hand side of Eq. (4)
equal to zero. Figure 2 illustrates the stationary generated
entanglement as a function of the �c (i.e., the detuning be-
tween the cavity field and the laser field frequencies) and the
dipole-dipole interaction intensity J for (a) N = 2, (b) N = 3,
(c) N = 4, and (d) N = 5 and �a = 0, η = 0.12g, κ = 0.12g,
and γ = 0.076g.

It is seen that the entanglement in the steady state can be
induced and tuned in nonresonance cases. It is evident that the
stationary generated entanglement remarkably depends on the
dipole-dipole interaction intensity. First of all, for all values of
the number of the qubits in the cavity, for J = 0, one observes
two peaks of entanglement with equal amplitudes so that they
are distributed symmetrically around �c = 0. In Fig. 3, we
have plotted the distance between two peaks (in terms of g) in
the absence of the dipole-dipole interactions as a function of
g for several numbers of qubits in the system. First of all, for
a given number of qubits in the cavity, the distance between
the two peaks depends linearly on g. It also slightly depends
on the number of qubits.

On the other hand, in the presence of DDI, the symmetrical
behavior of stationary entanglement disappears. In the case of
N = 2, as the DDI increases, the left peak becomes higher
and approaches �c = 0, while the height of the right peak
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FIG. 2. The normalized stationary generated entanglement as a
function of J and �c for (a) N = 2, (b) N = 3, (c) N = 4, and
(d) N = 5. The other parameters are η = 0.12g, κ = 0.12g, and
γ = 0.076g.

is greatly reduced and it departs from �c = 0. This is in
agreement with previous studies [44]. Moreover, the distance
between the two peaks tends to increase.

For N > 2, a different behavior for stationary entangle-
ment is clearly seen. This is due to the fact that the dipolar
interaction between nonadjacent qubits contribute to the en-
tanglement in a nonuniform way. See Figs. 2(b)–2(d). Still,
for N > 2, the qubits decay to a relatively large stationary
entangled state in the presence of dipolar interaction at the
weak range (0 � J � 2g). For J > 2g, the stationary entangle-
ment becomes small. Overall, by comparing the information
supplied, one can conclude that the maximum amount of
stationary entanglement increases by increasing the number
of atoms in the cavity. For instance, for N = 5, this value is
obtained at J = 2g.
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FIG. 3. The distance between two peaks as a function of g for
several values of the number of the atoms in the cavity. Other param-
eters are the same as Fig. 2.

FIG. 4. Dynamics of entanglement as a function of the scaled
τ = gt . Top plots (bottom plots) correspond to initially entangled
(ground) state of the qubits. In these plots J = 0 (right plots) and
J = 2g (left plots). We have chosen the values of �c for which the
stationary state could have a peak. Other parameters are the same as
in Fig. 2.

Although the stationary entanglement is of great interest,
the dynamics of the entanglement could also be important.
In Fig. 4, we have illustrated the entanglement dynamics as
a function of the scaled time τ = gt for initially entangled
and separable states. We have chosen the values of �c for
which the stationary state could have a peak; see Fig. 2. We
consider an initially entangled state in which all of the qubits
are prepared in an equal superposition of their ground and
excited states as follows:

|ψ (t = 0)〉 = 1√
2

(|G〉 + |E〉), (8)

in which |G〉 (|E〉) means all of the qubits are in their ground
(excited) state. In the case of an initially separable state of the
system, we consider all of the qubits prepared in their ground
state, i.e., |ψ (t = 0)〉 = |G〉. Furthermore, we assume that the
cavity field is initially in the vacuum state.

First of all, it is clear that for an initially separable state,
the entanglement starts from zero and increases up to its
maximum values and then falls down into its stationary value.
This behavior is more or less the same for all of the parameters
involved. For small times, an oscillating behavior is clearly
seen. It is evident that as the number of the qubits, i.e., N
increases, a larger value for the stationary entanglement is
observed. This value depends on the DDI intensity, i.e., J:
the more values of J , the more stationary entanglement. The
interesting aspect here is that, for an initially separable state,
it is possible to reach to a nearly maximally entangled state
E (ρ(t ))/N ≈ 0.95 at short times.
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FIG. 5. Comparing the entanglement distance measure (dashed
red line) and the von Neumann entropy (solid line) in the stationary
state as functions of �c. The first, second, and third columns cor-
respond to J = 0, J = 2g, and J = 10g, respectively. Furthermore,
the first, second, and third rows correspond to N = 2, N = 3, and
N = 4, respectively. The other parameters are �a = 0, η = 0.12g,
κ = 0.12g, and γ = 0.076g.

However, for an initially entangled state, the entanglement
starts from its maximum value and decreases as times go on.
The oscillatory behavior at shorter times is clearly observed.
Again, the stationary entanglement depends on the number
of qubits. Also, the effect of the dipole-dipole intensity on
the stationary entanglement is quite positive. Furthermore,
by comparing these results, it is evident that the stationary
entanglement is independent of the initial state of the qubits.

The oscillating behavior of entanglement is due to the
non-Markovianity of the process. In this case, the reservoir
correlation time is greater than the relaxation time and non-
Markovian effects become dominant. In other words, the
reservoir feedbacks part of the information which it has cap-
tured from the qubit system during the interaction [45].

B. Similarity of the results obtained from the EDM
and von Neumann entropy

In Fig. 5, we have compared the stationary entanglement
based on entanglement distance (7) and von Neumann en-
tropy, which is computable using the eigendecomposition of
the reduced density matrix as follows [46]:

S(ρ) = −�iλi ln λi. (9)

We find that both the entanglement entropy (solid line) and
EDM (dashed line) behave similarly in the presence and
absence of DDI. This ensures the validity of using of the
entanglement distance measure.

FIG. 6. 〈Sz〉 at stationary state as a function of �c for several
values of J and for (a) N = 2, (b) N = 3, (c) N = 4, and (d) N = 5.
The other parameters are similar to those in Fig. 2.

IV. ATOMIC POPULATION TRANSFER

It is already known that when a two-level atom inter-
acts with a resonant external field, the atomic population
oscillates between the ground and excited states [47]. This
mechanism has been used in many applications such as coher-
ent population trapping [48,49], electromagnetically induced
transparency [50], chemical dynamics [51], etc.

In this section, we intend to investigate the effect of DDI on
the population evolution for several total number of two-level
atoms in the cavity. To this end, we calculate the expectation
value of the operator Sz = ∑N

i=1 σ i
z and depict it versus �c

for different values of DDI intensity in Fig. 6. Here we are
interested in the stationary state of the system. We notice that
the population inversion ranges between −N and N .

First of all, in the absence of dipole-dipole interaction,
two peaks with the same amplitude distributed symmetrically
around �c = 0 are clearly observed. However, as N increases,
the amplitude of these peaks also grows, as is expected. It
is very interesting to notice that the distance between these
two peaks is quite similar to the stationary entanglement (see
Fig. 2). Our further numerical calculations illustrate that be-
havior of the distance is quite similar to that in Fig. 3. This
behavior is more or less the same for all values of the number
of qubits in the system.

In the presence of dipole-dipole interaction, for N = 2, one
observes an increment for the left peak approaching �c = 0,
while the opposite behavior is seen for the right peak. How-
ever, for N > 2 again a different behavior for 〈Sz〉 is observed.
For 0 � J � 2g, one observes a relatively large value for 〈Sz〉,
while for J > 2g, this value becomes small. The surprising
aspect here is that for N = 5 and for J = 2g one observes
a significant value for the atomic population, i.e., 〈Sz〉 ∼= 5.
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This means that all of the qubits are nearly excited after the
evolution. Overall, there exists great agreement between the
population transfer of the qubits and the multipartite entan-
glement at the stationary state.

It should be noticed that the ability of a global environment
in creating stationary entanglement has already been proved
in many quantum systems. Here, the results suggest that the
global environment is also able to produce a stationary state
of simultaneously excited qubits using only one cavity field.
The simultaneous excitations of more than two qubits using
a single photon has already been predicted theoretically. For
instance, in Ref. [52], it has been proved that under specific
conditions, one photon can be jointly absorbed by two atoms
in their ground state. Moreover, in Ref. [53], it has been
predicted that when qubits are placed in different resonators
in an array of weakly coupled resonators, the single photon
can simultaneously excite more than two qubits. This can be
done by storing the initial excitation in a single resonator.
Then the excitation is continuously transferred between the
nearest-neighbor resonators. Our system can be considered as
a generalization of this model, in which, instead of an array
of resonators, we have an array of dipolar interacting qubits.
The dipolar-dipolar interaction among the qubit system plays
the role of the interacting resonator. Therefore, an initial ex-
citation is continuously transferred between the qubits. The
interesting aspect here is that the global environment is able to
produce not only stationary entanglement but also a stationary
state of simultaneously excited qubits.

V. TRANSMITTED SPECTRUM
OF ATOMS IN THE CAVITY

In this section, we investigate the transmitted spectrum of
the atomic system in detail. To study the spectrum of the
coupled atom-cavity system, we use the intracavity photon
number 〈a†a〉 [54]. Previous studies have shown that for a
system of two two-level atoms, the spectrum of the system
splits into two resonances which is called the normal-mode or
vacuum-Rabi splitting [44]. This is due to the strong coupling
regime of the cavity QED. Interestingly, the results reported in
this investigation are consistent with our numerical results for
N = 2. It is possible to illustrate that the effective role of DDI
is an atom-cavity detuning which is able to modify the posi-
tions and heights of the spectrum peaks [38]. For instance, for
N = 2, one can show that the effective Hamiltonian becomes
[44]

H = − �ca†a − (�a − J )σ+
1 σ−

1 +
√

2g(a†σ−
1 + aσ+

1 )

+ η(a + a†). (10)

It should be pointed out that for N > 2, deriving such an
effective Hamiltonian sounds challenging. It is worth noting
that in the new representation, the impact of the dipole-dipole
interaction is just renormalization of the atomic frequencies.
In such a transformed demonstration of Hamiltonian, two
fictitious atoms emerge so that only one of them is coupled
to the cavity field. In this case, energy exchange with the field
occurs through only one of the qubits. In this scenario, the
dressed states of the transformed system are similar to those

FIG. 7. The normal-mode spectrum for different numbers of
qubit (a) N = 2, (b) N = 3, (c) N = 4, and (d) N = 5. The other
parameters are the same as those in Fig. 2.

of the single-atom system [44],

|0〉 = |g〉|0〉,
|n−〉 = sin

θn

2
|e, n − 1〉 − cos

θn

2
|g, n〉,

|n+〉 = cos
θn

2
|e, n − 1〉 + sin

θn

2
|g, n〉, (11)

where θn = arctan 2
√

2g
√

n
(�+J ) and � = ωa − ωc. The corre-

sponding eigenenergies are

E0 = 0,

En± = ωc + � + J

2
± 1

2

√
(� + J )2 + 8g2n. (12)

The spectrum of the first doublet of these states in a degenerate
system (for ωa = ωc) splits into two new resonances and is
called the normal-mode or vacuum-Rabi splitting.

In Fig. 7, the normal-mode spectrum has been plotted at
the stationary state as a functions of �c for different numbers
of qubits and dipole-dipole interaction coupling. Similar to
the stationary multipartite entanglement, one observes that
when J = 0, there are two peaks with the same amplitude
for both resonances and they are symmetrically distributed
around �c = 0. It seems that the amplitude of these two peaks
is nearly independent of the number of qubits; however, the
distance between them increases as N grows. However, in the
presence of DDI, the peak appeared in the negative detunings
becomes higher and approaches the center by increasing the
interaction intensity, while the height of the peak in positive
detunings is greatly reduced and it departs from �c = 0. Ac-
cording to what was observed in the entanglement and the
population inversion behavior in the absence of DDI, we also
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see that the transmitted spectrum of the system is independent
of the number of qubits. In the weak DDI regime, more
precisely, exactly in the areas where there is an increase in
the entanglement and inversion of the population, an increase
in the transmitted spectrum also occurs. However, contrary
to the findings of the previous two quantities, the transmitted
spectrum is amplified by increasing the DDI intensities.

VI. CONCLUDING REMARKS

To sum up, we have studied a model in which an arbi-
trary number of two-level atoms are interacting with a cavity
quantized field in the presence of dissipation sources. We
also have considered a dipole-dipole interaction among the
two-level systems. Beside the nearest neighbor interactions,
the interaction between other qubits have also been taken into
account. This is a generalization of a previously studied model
in which an arbitrary number of qubits are dissipating into a
common environment [55].

In order to quantify the degree of multipartite entangle-
ment, we have used the very recently introduced measure,
namely the entanglement distance, which is a powerful tool
for quantifying the entanglement of an M-qudit hybrid system
[31]. We have studied the validity of the results by comparing
them with von Neumann entropy.

We have studied both the stationary and dynamics of mul-
tipartite entanglement as a function of �c in the absence
and presence of the dipole-dipole interaction. The stationary
entanglement is independent of the initial state of the atomic
system. In the absence of dipole-dipole interaction, there ex-
ist two peaks of entanglement with equal amplitudes which
are symmetrically distributed around �c = 0. The distance
between these two peaks grows by increasing the atom-field
coupling constant g and the number of atoms in the sys-
tem (see Fig. 3). The presence of dipole-dipole interaction
destroys the symmetrical distribution of the peaks of the en-
tanglement. In this scenario, it is found that the behavior of
the stationary entanglement differs for N = 2 and N > 2. For
the case N = 2, the stationary entanglement increases by in-
creasing the dipole-dipole interaction intensity. However, for
N > 2, there is an optimal value for J for which the stationary
entanglement is maximum. It is evident that this optimal value
is around J = 2g for all N > 2. For N = 5, a nearly maxi-
mally entangled state is observed at this value. Furthermore,
the dynamics of entanglement has interesting behavior. First
of all, from an initially separable state, the entanglement starts
from zero up to a maximum value which depends on the
number of atoms in the system. For instance, a nearly max-
imally entangled state, i.e., E (ρ(t ))/N ≈ 0.95 at short times

is observed. Then, we studied the atomic population transfer
of the atomic system by computing the expectation value of
Sz. It is interesting to point out that the population transfer has
a very similar behavior to that of the stationary entanglement.
Compare Figs. 2 and 6. It should be noticed that for N = 5
and J = 2g, a significant value for the atomic population, i.e.,
〈Sz〉 ∼= 5, is observed. This corresponds to the case in which
all of the qubits are excited at the stationary state.

The simultaneous excitation of more than two qubits with
a single photon is an interesting behavior in quantum systems.
Usually, this process is along with a joint sinusoidal absorp-
tion and emission of the single photons. In this paper, we
have illustrated numerically that under specific conditions the
environment is able to create a stationary state in which all of
the qubits are simultaneously excited. This phenomenon can
provide useful applications for novel quantum technologies.
Furthermore, these results suggest studying the impact of the
spatial separation of the qubits on the simultaneous absorption
of the single-photon by a collective of qubits. Finally, using
the introduced model and its results, one is able to study
the nonlinear effects in tight-bonding models in solid state
physics, where propagation effects are dominant.

Finally, we have illustrated that the behavior of the trans-
mitted spectrum is slightly different. Similar to what was
observed in the entanglement and the population inversion
behavior in the absence of DDI, the transmitted spectrum of
the system is independent of the number of qubits. In the weak
DDI regime, an enhancement of the transmitted spectrum also
occurs exactly where there is an increase in the entanglement
and inversion of the population. But, contrary to the findings
of the previous two quantities, the transmitted spectrum is
enhanced even for the strong DDI intensities.

Finally, we should point out that the obtained results are
useful in predicting the expected behaviors in actual physical
systems where miniaturization of such devices is necessary
[12]. Recent studies in practical quantum technologies usually
require an array of qubits where interatomic interactions are
necessary to be taken into account. Especially in real physical
devices, the dissipation is ever present. Therefore, we expect
that the presented results could be useful in generating and
maybe enhancing the multipartite entanglement.
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