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We theoretically analyze phase sensitivity using a parity-detection-based Mach-Zehnder interferometer (MZI)
with the input states generated by performing non-Gaussian operations, viz., photon subtraction, photon addition,
and photon catalysis, on a two-mode squeezed vacuum (TMSV) state. Since these non-Gaussian operations
are probabilistic, it is of utmost importance to take the success probability into account. To this end, we
consider a realistic model of photon subtraction, addition, and catalysis and derive a single expression of the
Wigner function for photon subtracted, added, and catalyzed TMSV states. The Wigner function is used to
evaluate the lower bound on the phase sensitivity via quantum Cramér-Rao bound and parity-detection-based
phase sensitivity in the MZI. We identify the ranges of squeezing and transmissivity parameters where the
non-Gaussian states provide better phase sensitivity than the TMSV state. Taking the success probability into
account, it turns out that the photon addition is the most advantageous among all three non-Gaussian operations.
We hope that the generalized Wigner function derived in this paper will be useful in various quantum information
protocols and state characterization.
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I. INTRODUCTION

Quantum metrology strives to enhance measurement sen-
sitivity by using quantum resources [1,2]. The canonical
example of quantum metrology aims at improving the sen-
sitivity of phase estimation by using a nonclassical field of
light as input to the Mach-Zehnder interferometer (MZI).
The phase sensitivity of the MZI can reach only up to the
shot-noise limit (SNL) with solely a classical field of light
[3]. On the other hand, with single-mode nonclassical states
[4] and entangled states [5,6] as input to the MZI, the phase
sensitivity can go beyond the SNL and reach the Heisenberg
limit (HL) [7]. The HL has been reached in photon number
parity measurement-based quantum interferometry [6,8–20],
for instance, using NOON states as input [1,5,21]. However,
the fragility of NOON states in the presence of photon loss
limits their utility [14]. Phase sensitivity using a two-mode
squeezed vacuum state (TMSV) can even exceed the HL [6].
However, the current experimental techniques pose a chal-
lenge to generate a strongly entangled TMSV state [22].

It has been shown that non-Gaussian operations such as
photon subtraction, addition, and catalysis on the TMSV
state can enhance the nonclassicality and entanglement con-
tent of the original state. These non-Gaussian states have
been used in various protocols such as quantum teleportation
[23–27], quantum key distribution [28–33], quantum illumi-
nation [34,35], and noiseless amplification [36] to enhance the
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performance. With a similar vision, non-Gaussian states have
also been considered as input to the MZI to further enhance
the phase sensitivity [37–41].

These non-Gaussian operations are probabilistic, and
therefore it is necessary to consider their success probabil-
ity. However, the probabilistic nature of these operations has
not been taken into account while studying the sensitivity
of phase estimation, which can have a significant impact
on resource utilization. This paper takes the success prob-
ability into account while analyzing the phase sensitivity
and identifying the advantageous squeezing parameter and
transmissivity region. To this end, we consider the prac-
tical model of photon subtraction, addition, and catalysis
[42] and derive the generalized Wigner function describing
the non-Gaussian two-mode squeezed vacuum (NGTMSV)
states. The NGTMSV states include photon subtracted TMSV
(PSTMSV), photon added TMSV (PATMSV), and photon
catalyzed TMSV (PCTMSV) states. Hereafter, we use the
term “non-Gaussian operations” (or “states”) to refer to these
three particular non-Gaussian operations (or states) until and
unless specified otherwise. We use the generalized Wigner
function of the NGTMSV state to calculate the quantum
Fisher information (QFI) and phase sensitivity of the parity-
detection-based MZI. We stress that, compared to Gaussian
states, the investigation of these non-Gaussian states involves
complicated calculations. Further, the realistic scheme adds an
extra complication of transmissivity parameters correspond-
ing to the beam splitters used in the implementation of these
non-Gaussian operations, which significantly enhances the
challenge for the theoretical analysis [42].

We analyze the theoretical lower bound on the phase sen-
sitivity for the input NGTMSV states using the quantum
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Cramér-Rao bound (QCRB). We then derive and study the
phase sensitivity behavior for these states for parity-detection-
based MZI. In order to compare the relative performance of
the NGTMSV states and the TMSV state, we introduce a
figure of merit defined as the difference between the phase
sensitivity of these states. This figure of merit enables us to
identify the advantageous squeezing and transmissivity pa-
rameter ranges. We also study the impact of the probabilistic
nature of the non-Gaussian state generation on the phase
sensitivity. Of the three non-Gaussian operations, the photon
addition operation maximizes the product of probability and
the difference between the phase sensitivity of the NGTMSV
states and the TMSV state.

The derived Wigner functions for NGTMSV states, includ-
ing PSTMSV, PATMSV, and PCTMSV states, will provide
an impetus for dealing with various non-Gaussian continuous
variable (CV) quantum information processing protocols that
generally involve very complex analysis. Such expressions do
not exist in the literature to the best of our knowledge. Our
paper also furnishes a single expression of parity-detection-
based phase sensitivity to cover all three non-Gaussian
operations, including symmetric and asymmetric operations.
States generated by ideal symmetric PS, ideal symmetric
PA, and asymmetric PC operations on TMSV states have
been considered as input to the parity-detection-based MZI
[38,40,41] and form a special case of our general analysis.
The figure of merit defined in this paper, along with the
considerations involving the probability of non-Gaussian state
generation, will allow experimentalists to choose suitable pa-
rameters to achieve higher phase sensitivity with resource
optimization.

The paper is structured as follows. In Sec. II, we briefly
describe the formalism of continuous variable systems. In
Sec. III, we derive a general expression of the Wigner function
of the NGTMSV state. Section IV contains the analysis of the
lower bound of the phase sensitivity using QCRB. We then
study the phase sensitivity using the parity-detection-based
MZI. Finally, in Sec. V, we summarize our main results and
discuss future prospects.

II. FORMALISM OF CV SYSTEMS

An n-mode quantum system is represented by n pairs of
Hermitian operators q̂i, p̂i (i = 1, . . . , n) known as quadrature
operators [43–47], which can be written in a column vector
form as

ξ̂ = (ξ̂i ) = (q̂1, p̂1 . . . , q̂n, p̂n)T , i = 1, 2, . . . , 2n. (1)

The canonical commutation relations can be compactly writ-
ten as (h̄ = 1)

[ξ̂i, ξ̂ j] = i�i j, (i, j = 1, 2, . . . , 2n), (2)

where � is the 2n × 2n matrix given by

� =
n⊕

k=1

ω =
⎛
⎝ω

.. .

ω

⎞
⎠, ω =

(
0 1

−1 0

)
. (3)

The quadrature operators are related to the annihilation and
creation operators via the relation

âi = 1√
2

(q̂i + i p̂i ), â†
i = 1√

2
(q̂i − i p̂i ). (4)

It is convenient to describe the CV system in phase-space
formalism. The Wigner distribution for a quantum system
with a density operator ρ̂ is defined as

W (ξ) =
∫

dnq′

(2π )n

〈
q − 1

2
q′
∣∣∣∣ρ̂
∣∣∣∣q + 1

2
q′
〉

exp(iq′T · p), (5)

where ξ = (q1, p1, . . . , qn, pn)T ∈ R2n, q′ ∈ Rn, q =
(q1, q2, . . . , qn)T , and p = (p1, p2, . . . , pn)T . The Wigner
function can also be expressed as the average of displaced
parity operator [48]:

W (ξ) = 1

πn
Tr[ρ̂ D(ξ)�̂D†(ξ)], (6)

where �̂ =∏n
i=0 exp(iπ â†

i âi ) is the parity operator and
D(ξ) = exp[iξ̂ � ξ] is the displacement operator. The first-
order moments for an n mode system are defined as

d = 〈ξ̂ 〉 = Tr[ρ̂ξ̂ ], (7)

and the second-order moments can be written in the form of a
real symmetric 2n × 2n covariance matrix defined as

V = (Vi j ) = 1
2 〈{�ξ̂i,�ξ̂ j}〉, (8)

where �ξ̂i = ξ̂i − 〈ξ̂i〉, and {, } denotes the anticommutator.
A state with a Gaussian Wigner distribution is called a

Gaussian state. For Gaussian states, the Wigner function (5)
can be simplified to [46]

W (ξ) = exp[−(1/2)(ξ − d )T V −1(ξ − d )]

(2π )n
√

detV
, (9)

where d is the displacement and V denotes the covariance
matrix of the Gaussian state.

Homogeneous symplectic transformations are linear trans-
formations that preserve the canonical commutation relation
(2). A phase change operation, single-mode squeezing op-
eration, two-mode beam splitter operation, and two-mode
squeezing operation are examples of symplectic transforma-
tions. For every homogeneous symplectic transformation S,
there exists a corresponding infinite-dimensional unitary rep-
resentation U (S) acting on the Hilbert space. Under such
transformations, the density operator transforms as ρ →
U (S)ρ U (S)†. The corresponding transformation of the dis-
placement vector d, covariance matrix V , and Wigner function
is given by [43]

d → Sd, V → SV ST , and W (ξ ) → W (S−1ξ ). (10)

In this paper, we will consider non-Gaussian operations
on TMSV states. A TMSV state is produced by the action
of a two-mode squeezing transformation on two uncorrelated
vacuum modes. It is a zero-centered state with the covariance
matrix given by

VA1A2 = SA1A2 (r)14SA1A2 (r)T , (11)

where 14 is the 4 × 4 identity matrix representing the co-
variance matrix of the two uncorrelated vacuum modes and

052437-2



REALISTIC NON-GAUSSIAN-OPERATION SCHEME IN … PHYSICAL REVIEW A 105, 052437 (2022)

FIG. 1. Preparation scheme of the non-Gaussian TMSV state.
The TMSV state is interfered with Fock states using beam split-
ters. Photon number resolving detectors given by the POVM
{|n1〉〈n1|,1 − |n1〉〈n1|} and {|n2〉〈n2|, 1 − |n2〉〈n2|} are applied to
modes F ′

1 and F ′
2 , respectively.

SA1A2 (r) is the two-mode squeezing transformation given by

SA1A2 (r) =
(

cosh r 12 sinh r Z
sinh r Z cosh r 12

)
, Z =

(
1 0
0 −1

)
,

(12)

where r is the squeezing parameter. The Wigner function for
the TMSV state can be readily computed using Eq. (9):

W (ξ ) = 1

π2
exp
[− (q2

1 + p2
1 + q2

2 + p2
2

)
cosh(2r)

+ 2(q1q2 − p1 p2) sinh(2r)
]
. (13)

We shall now consider different non-Gaussian operations,
viz., photon subtraction, addition, and catalysis, modeled via
beam splitters on the TMSV state.

III. WIGNER FUNCTION OF THE NON-GAUSSIAN
TWO-MODE SQUEEZED VACUUM STATE

The preparation scheme for the NGTMSV state is shown in
Fig. 1. We interfere modes A1 and A2 of the TMSV state with
ancillary modes F1 and F2, initiated to Fock states |m1〉 and
|m2〉, using beam splitters of transmissivity τ1 and τ2, respec-
tively. We represent the modes A1 and A2 by the quadrature
operators (q̂1, p̂1)T and (q̂2, p̂2)T and the auxiliary modes F1

and F2 by the quadrature operators (q̂3, p̂3)T and (q̂4, p̂4)T .
The Wigner function for the four-mode system prior to the
beam splitter transformations is given by

WF1A1A2F2 (ξ ) = WA1A2 (ξ1, ξ2)W|m1〉(ξ3)W|m2〉(ξ4), (14)

where ξi = (qi, pi )T (i = 1, 2, 3, 4). We can evaluate the
Wigner function of a Fock state |n〉 using Eq. (5) as

W|n〉(q, p) = (−1)n

π
exp(−q2 − p2) Ln[2(q2 + p2)]. (15)

The two beam splitters B(τ1, τ2) = BA1F1 (τ1) ⊕ BA2F2 (τ2) act
on the phase-space variables (ξ1, ξ3, ξ2, ξ4)T , where the beam
splitter operation BAkFk (τk ) acting on modes Ak and Fk is given
by

BAkFk (τk ) =
( √

τk 1
√

1 − τk 1
−√

1 − τk 1
√

τk 1

)
, (k = 1, 2).

(16)

The transformed Wigner function is given by

WF ′
1 A′

1A′
2F ′

2
(ξ ) = WF1A1A2F2 [B(τ1, τ2)−1ξ ]. (17)

The modes F ′
1 and F ′

2 are measured using photon number
resolving detectors, given by the positive operator-valued
measure (POVM) {�n1 = |n1〉〈n1|,1 − �n1} and {�n2 =
|n2〉〈n2|,1 − �n2}, respectively. The simultaneous click of
the POVM elements �n1 and �n2 heralds successful non-
Gaussian operations on both the modes. The corresponding
un-normalized Wigner function is given by

W̃ NG
A′

1A′
2
(ξ1, ξ2) = (2π )2

∫
d2ξ3d2ξ4 WF ′

1 A′
1A′

2F ′
2
(ξ1, ξ2, ξ3, ξ4)︸ ︷︷ ︸

Four-mode entangled state

× W|n1〉(ξ3)︸ ︷︷ ︸
Projection on |n1〉〈n1|

W|n2〉(ξ4)︸ ︷︷ ︸
Projection on |n2〉〈n2|

. (18)

By choosing suitable values of (mi, ni ), we can perform
three different non-Gaussian operations on mode Ai as fol-
lows: (i) photon subtraction for mi < ni, (ii) photon addition
for mi > ni, and (iii) photon catalysis for mi = ni.

The action of photon subtraction, photon addition, and
photon catalysis on TMSV states yields PSTMSV, PATMSV,
and PCTMSV states, respectively, which are non-Gaussian
states. However, zero-photon catalysis, corresponding to mi =
ni = 0 is a Gaussian operation, and therefore the resulting
state, the zero-photon catalyzed TMSV state, is a Gaussian
state.

In this paper, we consider both asymmetric and symmetric
non-Gaussian operations on the TMSV state, which can be
obtained by putting suitable conditions on parameters mi,
ni, and τi, as shown in Table I. It should be noted that the
asymmetric non-Gaussian operations are performed on mode
A2 of the TMSV state.

Equation (18) can be converted into a Gaussian integral
using the generating function for the Laguerre polynomial
appearing in the Wigner function of the Fock state (15):

Ln[2(q2 + p2)] = D̂ exp
[ st

2
+ s(q + ip) − t (q − ip)

]
, (19)

with

D̂ = 2n

n!

∂n

∂ sn

∂n

∂ t n
{•}s=t=0. (20)

Integration of Eq. (18) yields

W̃ NG
A′

1A′
2
= 1

a0π2
D̂1 exp(ξT M1ξ + uT M2ξ + uT M3u), (21)

where a0 = 1 + α2(1 − τ1τ2), column vectors ξ and u are
defined as

ξ = (q1, p1, q2, p2)T ,

u = (u1, v1, u2, v2, u′
1, v

′
1, u′

2, v
′
2)T ,

(22)

and differential operator D̂1 is defined as

D̂1 = (−2)m1+m2+n1+n2

m1!m2!n1!n2!

∂m1

∂ um1
1

∂m1

∂ v
m1
1

∂m2

∂ um2
2

∂m2

∂ v
m2
2

× ∂n1

∂ u′n1
1

∂n1

∂ v
′n1
1

∂n2

∂ u′n2
2

∂n2

∂ v
′n2
2

{•}u1=v1=u2=v2=0
u′

1=v′
1=u′

2=v′
2=0

. (23)
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TABLE I. Conditions on the number of input photons mi and detected photons ni and the transmissivity τi of the beam splitters for various
asymmetric and symmetric non-Gaussian operations on the TMSV state.

Operations Input Detected Transmissivity

m1 m2 n1 n2 τ1 τ2

Asym n-PS 0 0 0 n 1 τ

Asym n-PA 0 n 0 0
Asym n-PC 0 n 0 n
Sym n-PS 0 0 n n τ τ

Sym n-PA n n 0 0
Sym n-PC n n n n

Further, the explicit form of the matrices M1, M2, and M3 are
provided in Eqs. (A1), (A2), and (A3) of Appendix A. The
probability of n1 and n2 photon detection on mode F ′

1 and F ′
2 ,

respectively, can be evaluated as

PNG =
∫

d2ξ1d2ξ2W̃
NG

A′
1A′

2
(ξ1, ξ2)

= a−1
0 D̂1 exp(uT M4u), (24)

where the matrix M4 is given in Eq. (B1) of Appendix B.
Figure 2 shows the success probability of various non-
Gaussian operations, which is the same as the probability
of detecting n1 and n2 photons on modes A1 and A2, as a
function of the transmissivity τ and squeezing parameter λ =

tanh r. We notice a vertical band of high success probability
for asymmetric photon subtraction for intermediate squeezing
values and all transmissivity values. In contrast, for symmetric
photon subtraction, the region of high success probability
occurs only for low transmissivity and intermediate values of
squeezing. On the other hand, for photon addition, the success
probability is high for low transmissivity and small squeezing.
In contrast, we notice a horizontal band of high success prob-
ability for high transmissivity values and all squeezing values
for photon catalysis. Interestingly, in the limit τ → 1, the in-
coming photon is detected with unit probability, and therefore
the success probability for photon catalysis approaches unity.
However, the resulting state is the same as the input TMSV
state, and therefore no catalysis operation takes place.

FIG. 2. The probability PNG of detecting n1 and n2 photons on modes A1 and A2 as a function of the transmissivity τ and squeezing
parameter λ. For symmetric non-Gaussian operations, we have set τ1 = τ2 = τ . For asymmetric non-Gaussian operations, τ1 = 1 and τ2 = τ .
The value of (m1, n1)(m2, n2) for each panel is also shown. Both the vertical and horizontal axes are dimensionless.
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Of all the three non-Gaussian operations, photon subtrac-
tion occurs with relatively low probability compared to photon
addition and catalysis. We notice two general trends.

(i) Success probability of non-Gaussian operations on both
the modes is less as compared to non-Gaussian operations on
one of the modes.

(ii) Success probability decreases for higher photon num-
ber detection.

The normalized Wigner function W NG
A′

1A′
2

of the NGTMSV
state turns out to be

W NG
A′

1A′
2
(ξ1, ξ2) = (PNG)

−1
W̃ NG

A′
1A′

2
(ξ1, ξ2). (25)

We can easily obtain several special cases from the
above-derived Wigner function of the NGTMSV state. For
instance, the Wigner function of the ideal PSTMSV state
ân1

1 ân2
2 |TMSV〉 can be obtained by setting τ1 = τ2 = 1 in the

symmetric photon subtraction case. Similarly, the Wigner
function of the ideal PATMSV state â†

1
m1 â†

2
m2 |TMSV〉 can

be obtained by setting τ1 = τ2 = 1 in the symmetric photon
addition case.

We can calculate the average of Weyl (symmetri-
cally) ordered operators using the Wigner function as
follows:

〈:
:q̂1

a1 p̂1
b1 q̂2

a2 p̂2
b2 :

:〉 =
∫

d4ξ qa1
1 pb1

1 qa2
2 pb2

2 W NG
A′

1A′
2
(ξ ), (26)

where the symbol :
: • :

: represents Weyl ordering. This
quantity, akin to the moment generating function, can
be evaluated using parametric differentiation technique as
follows:

Ma2,b2
a1,b1

= D̂2

∫
d4ξ ex1q1+y1 p1+x2q2+y2 p2W NG

A′
1A′

2
(ξ ), (27)

with

D̂2 = ∂a1

∂ xa1
1

∂b1

∂ yb2
2

∂a2

∂ xa2
2

∂b2

∂ yb2
2

{•}x1=y1=x2=y2=0. (28)

On integrating Eq. (27), we obtain

Ma2,b2
a1,b1

= D̂2D̂1 exp (uT M4u + uT M5x + xT M6x)

D̂1 exp (uT M4u)
, (29)

where x = (x1, y1, x2, y2)T is a column vector, and the explicit
forms of matrices M5 and M6 are provided in Eqs. (C1) and
(C2) of Appendix C.

IV. PHASE ESTIMATION WITH THE
NGTMSV STATE VIA MZI

We consider a balanced MZI consisting of two 50 : 50
beam splitters and two phase shifters, as depicted in Fig. 3.
The two input modes are denoted by the annihilation opera-
tors â1 and â2. The input to the interferometer is NGTMSV
states, including PSTMSV, PATMSV, and PCTMSV states. It
should be noted that the cases corresponding to unsuccessful
non-Gaussian operations are discarded. Here we use the well-
known Schwinger representation of SU(2) algebra to describe
the transformation of a beam splitter [49]. The generators of
the SU(2) algebra can be described using the two sets of Bose

FIG. 3. Schematic of the Mach-Zehnder interferometer for the
phase-shift detection.

operators as

Ĵ1 = 1
2 (â†

1â2 + â1â†
2),

Ĵ2 = 1
2i (â

†
1â2 − â1â†

2),

Ĵ3 = 1
2 (â†

1â1 − â†
2â2),

(30)

which satisfy the commutation relations [Ji, Jj] = iεi jkJk .
While the actions of the first and the second balanced
beam splitters are given by e−i(π/2)J1 and ei(π/2)J1 , the
collective action of the two phase shifters is given by
eiφJ3 . Therefore, the infinite-dimensional unitary transfor-
mation corresponding to the balanced MZI can be written
as

U (SMZI) = e−i(π/2)J1 eiφJ3 ei(π/2)J1 = e−iφJ2 , (31)

where φ is the unknown phase to be estimated. The cor-
responding symplectic transformation SMZI acting on the
phase-space variables (ξ1, ξ2)T is given by

SMZI =
(

cos(φ/2) 1 − sin(φ/2) 1
sin(φ/2) 1 cos(φ/2) 1

)
. (32)

Therefore, the input Wigner function transforms as follows
under the action of SMZI:

Win(ξ ) → Win
(
S−1

MZIξ
) = Wout(ξ ). (33)

A. Quantum Fisher information

Although we will be using parity detection to estimate the
phase, QCRB provides a useful lower bound of the phase
sensitivity. This lower bound of phase sensitivity is given
by [50]

�φmin = 1√
FQ

, (34)

where FQ is QFI. It is independent of the type of measure-
ment performed and depends solely on the input state. The
phase shifts are defined with respect to an external reference
beam [51]. It can be calculated for a pure state as follows:

FQ = 4[〈ψ ′|ψ ′〉 − |〈ψ ′|ψ〉|2], (35)

where |ψ〉 = eiφJ3 eiπJ1/2|in〉 is the quantum state prior to the
second beam splitter and |ψ ′〉 = ∂|ψ〉/∂φ. The QFI can also
be written in terms of the input state as

FQ = 4
[〈in|Ĵ2

2 |in〉 − |〈in|Ĵ2|in〉|2]. (36)

To evaluate the QFI using the moment generating function
(29), we write Ĵ2 and Ĵ2

2 in terms of the quadrature operators
and symmetrize them. The operator

Ĵ2 = 1
2 (q̂1 p̂2 − p̂1q̂2) (37)
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is already symmetric in the quadrature operators. We note
that for the NGTMSV states, 〈in|Ĵ2|in〉 evaluates to zero. The
operator Ĵ2

2 can be written as

Ĵ2
2 = 1

4

(
q̂2

1 p̂2
2 + p̂2

1q̂2
2 − q̂1 p̂1 p̂2q̂2 − p̂1q̂1q̂2 p̂2

)
. (38)

On symmetrizing Ĵ2
2 , we get

Ĵ2
2 = 1

4

[
q̂2

1 p̂2
2 + p̂2

1q̂2
2

− (q̂1 p̂1 + p̂1q̂1 + i)

2

( p̂2q̂2 + q̂2 p̂2 − i)

2

− (q̂1 p̂1 + p̂1q̂1 − i)

2

( p̂2q̂2 + q̂2 p̂2 + i)

2

]
. (39)

Therefore, the QFI (36) can be written as

FQ = − 1
8 + 1

4

〈
q̂2

1 p̂2
2

〉+ 1

4

〈
p̂2

1q̂2
2

〉− 1
2 〈:

:q̂1 p̂1q̂2 p̂2
:
:〉. (40)

This can be easily evaluated using the moment generating
function (29) as

FQ = − 1
8 + 1

4M
0,2
2,0 + 1

4M
2,0
0,2 − 1

2M
1,1
1,1. (41)

We first analyze the effect of squeezing on �φmin, while the
transmissivity is kept fixed. We plot �φmin as a function of
squeezing in Fig. 4.

The results show that �φmin for NGTMSV states can
achieve a lower value as compared to the TMSV state.
Among all the three non-Gaussian operations, symmetric pho-
ton addition attains the minimum value of �φmin. Since the
expressions for �φmin corresponding to the Asym n-PSTMSV
and Asym n-PATMSV states are the same, they yield the same
results as can be seen in the plots. Within asymmetric opera-
tions, �φmin achieves a lower value for higher photon number
detection, and the same is true for symmetric non-Gaussian
operations. However, as noticed in the previous section, the
probability decreases for higher photon number detection.
We now analyze the effect of transmissivity on �φmin while
keeping the squeezing fixed. The result is shown in Fig. 5.
For photon subtraction and addition operations, �φmin is min-
imized in the limit τ → 1, while for photon catalysis, �φmin

is minimized in the limit τ → 0. However, the probability for
photon subtraction and addition approaches zero, in the limit
τ → 1, and the probability of photon catalysis is low in the
limit τ → 0. Again we observe that �φmin achieves a lower
value for higher photon number detection in the case of both
asymmetric and symmetric photon addition and subtraction.
However, this is only true in the low transmissivity regime for
photon catalysis.

B. Parity-detection-based phase sensitivity

In this paper, we measure the photon number parity op-
erator on the output mode â2 to estimate the phase. The
corresponding photon number parity operator is given by

�̂â2 = exp(iπ â†
2â2) = (−1)â†

2 â2 . (42)

This measurement differentiates between odd and even num-
bers of photons. The expectation value of the parity operator
can be written in terms of the Wigner function using Eq. (6)

FIG. 4. The minimum phase uncertainty �φmin obtained from
the quantum Cramér-Rao bound, for NGTMSV states, as a function
of the squeezing parameter λ. The value of transmissivity has been
taken as τ = 0.9 for panels (a) and (b) and τ = 0.2 for panel (c). The
vertical axis is in rad, while the horizontal axis is dimensionless.

as [52]

〈�̂â2〉 = f (φ) = π

∫
d2ξ1 Wout(ξ1, 0). (43)

Using the Wigner function of the input NGTMSV state (25),
the average of the parity operator evaluates to

f (φ) = a0 D̂1 exp (uT M7u)

b0 D̂1 exp (uT M4u)
, (44)

where b0 = (1 − λ2)−1
√

1 + λ2τ1τ2[λ2τ1τ2 + 2 cos(2φ)] and
the explicit form of matrix M7 is provided in Eq. (D1) of
Appendix D.
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FIG. 5. The minimum phase uncertainty �φmin obtained from
the quantum Cramér-Rao bound, for NGTMSV states, as a function
of transmissivity τ . The value of squeezing parameter has been set
as λ = 0.4. The vertical axis is in rad, while the horizontal axis is
dimensionless.

The phase uncertainty or sensitivity can be obtained using
the error propagation formula as

�φ =
√

1 − f (φ + π/2)2

|∂ f (φ + π/2)/∂φ| . (45)

We now numerically investigate the dependence of �φ on
squeezing, transmissivity, and phase magnitude. First, we plot
�φ as a function of squeezing while keeping the transmis-
sivity and phase constant. The result is shown in Fig. 6.
Symmetric photon subtraction and addition perform better
than the TMSV state for almost the whole range of squeezing,
but the relative performance compared to the TMSV state
becomes worse as λ approaches 1. Among asymmetric cases,
single-photon subtraction and addition yield better phase sen-

FIG. 6. Phase uncertainty �φ for NGTMSV states, as a function
of the squeezing parameter λ. The value of transmissivity has been
taken as τ = 0.9 for panels (a) and (b) and τ = 0.2 for panel (c),
while phase has been set as φ = 0.01 rad for all the cases. The
vertical axis is in rad, while the horizontal axis is dimensionless.

sitivity only up to a certain threshold squeezing above which
the TMSV state performs better. Similar behavior is also
observed for all symmetric and asymmetric photon catalysis
cases.

We also notice a few similarities between Figs. 4 and 6.
(i) The qualitative behaviors for different non-Gaussian

operations are identical except for asymmetric subtraction and
addition operations.

(ii) The performance of symmetric photon addition is the
best among all the non-Gaussian operations.

(iii) The relative performance of NGTMSV states as
compared to the TMSV state enhances for small values of
squeezing.
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FIG. 7. Phase uncertainty �φ for NGTMSV states, as a function
of the beam splitter transmissivity τ . The parameters have been set
as λ = 0.4 and φ = 0.01 rad for all the cases. The vertical axis is in
rad, while the horizontal axis is dimensionless.

(iv) Both �φmin and �φ achieve lower values for higher
photon number detection in the case of asymmetric and sym-
metric non-Gaussian operations except for asymmetric photon
subtraction and addition.

We note that Asym 2-PSTMSV and Asym 2-PATMSV
states never yield phase sensitivity better than the TMSV state.
We now plot �φ as a function of transmissivity for fixed
squeezing and phase in Fig. 7. As can be seen in Fig. 5,
�φ is minimized in the limit τ → 1 for photon subtraction
and addition operations, while for photon catalysis, �φ is
minimized in the limit τ → 0. The qualitative behavior for
different non-Gaussian operations is also similar to Fig. 5 ex-
cept for the cases of Asym 2-PSTMSV and Asym 2-PATMSV

FIG. 8. Phase uncertainty �φ for NGTMSV states, as a function
of the phase φ. The value of transmissivity has been taken as τ = 0.9
for panels (a) and (b) and τ = 0.2 for panel (c), while the squeezing
parameter has been set as λ = 0.4 for all the cases. Both the vertical
and horizontal axes are in rad.

states. These two states do not appear in the graph because
their phase sensitivities lie far above the plot range.

In Fig. 8, we show the plot of �φ as a function of phase for
fixed transmissivity and squeezing. We observe that photon
catalysis enhances the phase sensitivity even for larger φ.
Crossover between different PSTMSV and PATMSV states
happens for larger values of phase; for instance, the Sym 2-
PATMSV state crosses over the Sym 1-PATMSV state at φ ≈
0.4. Furthermore, Asym 2-PSTMSV and Asym 2-PATMSV
states perform better than TMSV for a brief interval of φ.
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FIG. 9. Plots of fixed DPS, the difference of �φ between TMSV
and PSTMSV states, as a function of the transmissivity τ and squeez-
ing parameter λ. The value of (m1, n1)(m2, n2) has been shown in the
bottom right. We have set the phase φ = 0.01 rad for all the cases.
The labels in panel (b) correspond to plotted values of DPS. Both the
vertical and horizontal axes are dimensionless.

C. Relative performance of NGTMSV states

We now proceed to study the relative performance of the
NGTMSV states compared to the TMSV state. To this end, we
define a figure of merit, DNG, as the difference of �φ between
TMSV and NGTMSV states:

DNG = �φTMSV − �φNGTMSV. (46)

This figure of merit enables us to identify the parameter region
of transmissivity and squeezing where the NGTMSV states
perform better than the TMSV state. This corresponds to the
region of a positive DNG.

We note that the success probability, which represents
the fraction of successful non-Gaussian operations per trial,
quantifies the resource utilization. We can encounter scenarios
where DNG is large; however, the success probability is low,
representing a poor resource utilization. Therefore, it is better
to maximize the product DNG × PNG rather than DNG. We
first qualitatively take the probabilistic nature into account and
then proceed to a quantitative analysis of the same.

We now plot DNG for various non-Gaussian states as a
function of the transmissivity τ and squeezing parameter λ.

Figure 9 shows the plot of various fixed values of DPS (=
0.0, 0.1, 0.5, 1, 2, 3) as a function of the transmissivity τ

and squeezing parameter λ. Regions of (τ, λ) with positive
values of DPS indicate that the PSTMSV states perform better
than the TMSV state. The locus of DPS = 0 progresses along
those values of (τ, λ), for which the phase sensitivity of the
PSTMSV state is equal to the TMSV state; however, at those
specific values of (τ, λ), the PSTMSV state is not the same

FIG. 10. Plots of fixed DPA, the difference of �φ between TMSV
and PATMSV states, as a function of the transmissivity τ and squeez-
ing parameter λ. The value of (m1, n1)(m2, n2) has been shown in the
bottom right. We have set the phase φ = 0.01 rad for all the cases.
Both the vertical and horizontal axes are dimensionless.

as the TMSV state. The positive region of DPS for the Asym
1-PSTMSV state occurs for squeezing below λ ≈ 0.4 for
all values of transmissivity. Decreasing the squeezing results
in the enhancement of DPS. However, as we can see from
Fig. 2(a), the region of large DPS corresponds to a low success
probability.

For the Sym 1-PSTMSV state, the region of positive DPS

lies in a pocket of high transmissivity and low squeezing. As
we subtract more photons, the size of the pocket increases.
Again, the success probability for the corresponding positive
DPS region is low.

We can correlate these results with Figs. 6 and 7. For in-
stance, at τ = 0.9, Asym 1-PSTMSV yields a positive DPS till
λ ≈ 0.6, which corroborates with Fig. 6(a), where the Asym
1-PSTMSV state crosses over the TMSV state at λ ≈ 0.6.

We now plot various fixed values of DPA as a func-
tion of the transmissivity τ and squeezing parameter λ in
Fig. 10. Since the expressions of �φ for Asym 1-PSTMSV
and Asym 1-PATMSV states are the same, the regions of
positive DPS and DPA for these two states coincide. For the
Sym 1-PATMSV state, we obtain the positive DPA region for
even higher values of λ as compared to the Asym 1-PATMSV
state. The region is further enlarged for a higher number of
symmetric photon subtraction. Furthermore, as we can see
from Figs. 2(e)–2(h), the positive DPA region overlaps with
a high success probability region.

Finally, we plot various fixed values of DPC as a func-
tion of the transmissivity τ and squeezing parameter λ in
Fig. 11. The results show that Asym n-PCTMSV and Sym
n-PCTMSV states yield regions with positive DPC for all
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FIG. 11. Plots of fixed DPC, the difference of �φ between TMSV
and PCTMSV states, as a function of the transmissivity τ and squeez-
ing parameter λ. The value of (m1, n1)(m2, n2) has been shown in the
top right. We have set the phase φ = 0.01 rad for all the cases. Both
the vertical and horizontal axes are dimensionless.

values of n. The region of positive DPC lies in a pocket of low
transmissivity and low squeezing for the Asym 1-PCTMSV
and Sym 1-PCTMSV states. As we catalyze more photons
asymmetrically and symmetrically, the size of the pocket
increases. Here we have also considered the additional case
of the Asym (1,2)-PCTMSV state, where the catalysis of one
and two photons is performed in modes A1 and A2, respec-
tively, which yields a positive result in the low transmissivity
and low squeezing regime. The positive DPC corresponds to
a region of low success probability, as can be seen from
Figs. 2(i)–2(l).

Next, we quantitatively take the success probability into
account, where we aim to maximize the product PNG × DNG.
More specifically, we intend to achieve an optimal tradeoff
between PNG and DNG by adjusting the transmissivity for a
given squeezing.

We compare the value of the product PNG × DNG for
six different non-Gaussian operations, namely, 1-Asym PS,

FIG. 12. Plot of PNG × DNG as a function of the transmissivity
τ for different squeezing parameters. We have set the phase φ =
0.01 rad for all the cases.

1-Asym PA, 1-Asym PC, 1-Sym PS, 1-Sym PA, and 1-Sym
PC. We plot PNG × DNG as a function of the transmissivity
for different squeezing parameters in Fig. 12. For panels (a)
and (b), we have shown only those two curves, which pro-
vide maximum advantages for some values of transmissivity,
whereas, for panel (c), the curves for the two best perform-
ing non-Gaussian operations have been shown. For small
squeezing λ = 0.1, the 1-Sym PA operation outperforms all
other operations in small transmissivity regions 0 < τ < 0.11,
whereas for all other values of transmissivity, the 1-Asym PA
operation maximizes the product. For intermediate squeezing
λ = 0.5, 1-Asym PA operation outperforms all other oper-
ations in high transmissivity regions 0.84 < τ < 1, whereas
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for all other values of transmissivity, the 1-Sym PA operation
maximizes the product. For high squeezing λ = 0.9, the 1-
Asym PA operation outperforms all other operations in high
transmissivity regions 0.84 < τ < 1, whereas for all other
values of transmissivity, PNG × DNG is negative for all non-
Gaussian operations, and hence the TMSV state is superior to
all other non-Gaussian states considered here.

To conclude this section, the phase sensitivity analysis,
along with the success probability consideration, reveals that
the photon addition operation is the most advantageous among
all the three non-Gaussian operations. Specifically, the 1-Sym
PA operation in the low transmissivity and squeezing regime
provides maximum advantage.

V. CONCLUSION

In this paper, we derived the generalized Wigner function
for non-Gaussian states, including PSTMSV, PATMSV, and
PCTMSV states. The free parameters in the Wigner function
include the squeezing parameter of the TMSV state and the
transmissivity of the beam splitters used to implement the
non-Gaussian operations. Further, one can choose the number
of photons subtracted, added, or catalyzed on each of the
modes of the TMSV state, as per requirement. We then use
this generalized Wigner function to calculate the lower bound
on the phase sensitivity via QCRB and parity-detection-based
phase sensitivity in the MZI.

We have considered a realistic photon subtraction and addi-
tion model, which yields the ideal case of photon subtraction
and addition in the unit transmissivity limit. Therefore, the
phase sensitivity results of ideal symmetric photon subtraction

and addition [38,40], as well as that of asymmetric catalysis
[41], on the TMSV state form a particular case of our paper.

We also define a figure of merit as the difference between
the phase sensitivity of the TMSV state and the NGTMSV
state, which enables us to identify the beneficial squeezing and
transmissivity parameter range. Taking the success probability
of non-Gaussian state generation into account, it turns out that
the photon addition is the most useful operation among all
three non-Gaussian operations.

The current paper clearly emphasizes the importance of
the probabilistic nature of non-Gaussian state production in
the phase sensitivity analysis. We discuss several avenues of
future investigations briefly. As we have shown that multipho-
ton asymmetric subtraction and addition do not provide any
advantage over the TMSV state in phase estimation, it would
be interesting to explore whether another measurement such
as intensity difference in the two output modes of the MZI
improves the phase sensitivity for such states. The probabilis-
tic nature of non-Gaussian operations should be considered
while studying the effects of different measurements on phase
sensitivity. We have considered the implementation of photon
addition using a beam splitter, which requires on-demand
single-photon sources. Experimentally, photon addition is im-
plemented using parametric down-conversion [53,54], and
therefore it is of immense importance to analyze the phase
sensitivity in the parametric down-conversion-based photon
addition model.
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APPENDIX A: EXPLICIT FORM OF THE MATRICES IN THE WIGNER FUNCTION OF THE NGTMSV STATE

Here we provide the explicit form of the matrices M1, M2, and M3 which appear in the Wigner function of the NGTMSV state
(21). The matrix M1 is given by

M1 = −1

a0

⎛
⎜⎜⎝

α2
(
t2
1 t2

2 + 1
)+ 1 0 −2αβt1t2 0

0 α2
(
t2
1 t2

2 + 1
)+ 1 0 2αβt1t2

−2αβt1t2 0 α2
(
t2
1 t2

2 + 1
)+ 1 0

0 2αβt1t2 0 α2
(
t2
1 t2

2 + 1
)+ 1

⎞
⎟⎟⎠, (A1)

where ti = √
τi and ri = √

1 − τi (i = 1, 2). Further, α = sinh r and β = cosh r. The matrix M2 is given by

M2 = −1

a0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β2r1 −iβ2r1 αβr1t1t2 −iαβr1t1t2
β2r1 −iβ2r1 −αβr1t1t2 −iαβr1t1t2

αβr2t1t2 −iαβr2t1t2 −β2r2 −iβ2r2

−αβr2t1t2 −iαβr2t1t2 β2r2 −iβ2r2

−α2r1t1t2
2 −iα2r1t1t2

2 αβr1t2 −iαβr1t2
α2r1t1t2

2 −iα2r1t1t2
2 −αβr1t2 −iαβr1t2

αβr2t1 −iαβr2t1 −α2r2t2
1 t2 −iα2r2t2

1 t2
−αβr2t1 −iαβr2t1 α2r2t2

1 t2 −iα2r2t2
1 t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)
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The matrix M3 is given by

M3 = −1

4a0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −β2r2
1 −αβr1r2t1t2 0 0 α2r2

2 t1 + t1 −αβr1r2t1 0
−β2r2

1 0 0 −αβr1r2t1t2 α2r2
2 t1 + t1 0 0 −αβr1r2t1

−αβr1r2t1t2 0 0 −β2r2
2 −αβr1r2t2 0 0 α2r2

1 t2 + t2
0 −αβr1r2t1t2 −β2r2

2 0 0 −αβr1r2t2 α2r2
1 t2 + t2 0

0 α2r2
2 t1 + t1 −αβr1r2t2 0 0 −α2r2

1 t2
2 −αβr1r2 0

α2r2
2 t1 + t1 0 0 −αβr1r2t2 −α2r2

1 t2
2 0 0 −αβr1r2

−αβr1r2t1 0 0 α2r2
1 t2 + t2 −αβr1r2 0 0 −α2r2

2 t2
1

0 −αβr1r2t1 α2r2
1 t2 + t2 0 0 −αβr1r2 −α2r2

2 t2
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A3)

APPENDIX B: EXPLICIT FORM OF THE MATRIX IN THE PROBABILITY EXPRESSION

The matrix M4 appearing in the success probability expression (24) is given by

M4 = −1

4a0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 β2r2
1 −αβr1r2t1t2 0 0 α2r2

2 t1 + t1 αβr1r2t1 0
β2r2

1 0 0 −αβr1r2t1t2 α2r2
2 t1 + t1 0 0 αβr1r2t1

−αβr1r2t1t2 0 0 β2r2
2 αβr1r2t2 0 0 α2r2

1 t2 + t2
0 −αβr1r2t1t2 β2r2

2 0 0 αβr1r2t2 α2r2
1 t2 + t2 0

0 α2r2
2 t1 + t1 αβr1r2t2 0 0 α2r2

1 t2
2 −αβr1r2 0

α2r2
2 t1 + t1 0 0 αβr1r2t2 α2r2

1 t2
2 0 0 −αβr1r2

αβr1r2t1 0 0 α2r2
1 t2 + t2 −αβr1r2 0 0 α2r2

2 t2
1

0 αβr1r2t1 α2r2
1 t2 + t2 0 0 −αβr1r2 α2r2

2 t2
1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B1)

APPENDIX C: EXPLICIT FORM OF THE MATRICES IN THE MOMENT GENERATING FUNCTION

The matrix M4 arising in the expression of the moment generating function (29) has already been given in Eq. (B1); we now
provide the matrices M5 and M6:

M5 = −1

2a0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β2r1 −iβ2r1 −αβr1t1t2 iαβr1t1t2
β2r1 −iβ2r1 αβr1t1t2 iαβr1t1t2

−αβr2t1t2 iαβr2t1t2 −β2r2 −iβ2r2

αβr2t1t2 iαβr2t1t2 β2r2 −iβ2r2

α2r1t1t2
2 iα2r1t1t2

2 αβr1t2 −iαβr1t2
−α2r1t1t2

2 iα2r1t1t2
2 −αβr1t2 −iαβr1t2

αβr2t1 −iαβr2t1 α2r2t2
1 t2 iα2r2t2

1 t2
−αβr2t1 −iαβr2t1 −α2r2t2

1 t2 iα2r2t2
1 t2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C1)

and

M6 = 1

4a0

⎛
⎜⎜⎝

α2
(
t2
1 t2

2 + 1
)+ 1 0 2αβt1t2 0

0 α2
(
t2
1 t2

2 + 1
)+ 1 0 −2αβt1t2

2αβt1t2 0 α2
(
t2
1 t2

2 + 1
)+ 1 0

0 −2αβt1t2 0 α2
(
t2
1 t2

2 + 1
)+ 1

⎞
⎟⎟⎠. (C2)

APPENDIX D: MATRIX IN THE EXPECTATION OF THE PARITY OPERATOR

The matrix M7 appearing in the average of the parity operator (44) is given by

M7 = −1

4w0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1 w2 w3 w4 w5 w6 w7 w8

w2 w1 w4 w3 w6 w5 w8 w7

w3 w4 w9 w10 w11 w12 w13 w14

w4 w3 w10 w9 w12 w11 w14 w13

w5 w6 w11 w12 w15 w16 w17 w18

w6 w5 w12 w11 w16 w15 w18 w17

w7 w8 w13 w14 w17 w18 w19 w20

w8 w7 w14 w13 w18 w17 w20 w19

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D1)
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where

w0 = 2c2λ
2t2

1 t2
2 + λ4t4

1 t4
2 + 1, w11 = −c1λr1r2t2

(
λ2t2

1 t2
2 + 1

)
,

w1 = λr2
1s2t1t2, w12 = −2c1λ

2r1r2s1t1t2
2 ,

w2 = c1r2
1

(
λ2t2

1 t2
2 + 1

)
, w13 = λr2

2s1t1
(
λ2t2

1 t2
2 − 1

)
,

w3 = λr1r2t1t2
(
c2 + λ2t2

1 t2
2

)
, w14 = λ2t2

1 t3
2

(
c2 + λ2t2

1

)+ c2λ
2t2

1 t2 + t2,
w4 = r1r2s1

(
λ2t2

1 t2
2 − 1

)
, w15 = −λ3r2

1s2t1t3
2 ,

w5 = λr2
1s1t2

(
λ2t2

1 t2
2 − 1

)
, w16 = −c1λ

2r2
1t2

2

(
λ2t2

1 t2
2 + 1

)
,

w6 = λ2t2
2 t3

1

(
c2 + λ2t2

2

)+ c2λ
2t2

2 t1 + t1, w17 = −λr1r2
(
c2λ

2t2
1 t2

2 + 1
)
,

w7 = c1λr1r2t1
(
λ2t2

1 t2
2 + 1

)
, w18 = λ2r1r2s1t1t2

(
λ2t2

1 t2
2 − 1

)
,

w8 = 2c1λ
2r1r2s1t2

1 t2, w19 = λ3r2
2s2t3

1 t2,
w9 = −2c1λr2

2s1t1t2, w20 = c1λ
2r2

2t2
1

(
λ2t2

1 t2
2 + 1

)
,

w10 = −c1r2
2

(
λ2t2

1 t2
2 + 1

)
,

(D2)

with c1 = cos φ, s1 = sin φ, c2 = cos(2φ), and s2 = sin(2φ).
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