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It is known that a party with access to a Deutschian closed timelike curve (DCTC) can perfectly distinguish
multiple nonorthogonal quantum states. In this paper we propose a practical method for discriminating multiple
nonorthogonal states, by using a previously known quantum circuit designed to simulate DCTCs. This method
relies on multiple copies of an input state, multiple iterations of the circuit, and a fixed set of unitary operations.
We first characterize the performance of this circuit and study its asymptotic behavior. We also show how it
can be equivalently recast as a local adaptive circuit that may be implemented simply in an experiment. Finally,
we prove that our state discrimination strategy achieves the multiple Chernoff bound when discriminating an
arbitrary set of pure qubit states.
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I. INTRODUCTION

Closed timelike curves (CTCs) arise as solutions to the
Einstein field equations in general relativity. While the exis-
tence of CTCs is unverified, they bring up the possibility of
time travel and the paradoxes associated with it [1]. To better
understand the properties of these objects, several quantum
information theoretic models of CTCs have been proposed
[2–5].

One such CTC model is that given by Deutsch [2], where
paradoxes associated with time travel using CTCs are resolved
by a self-consistency condition. This self-consistency condi-
tion introduces a nonlinearity in the evolution of a quantum
state through a Deutschian CTC (DCTC). Standard quantum
mechanics demands that the evolution of an arbitrary state is
linear, which places restrictions on physical evolutions, such
as the no-cloning theorem [6–8] and the Heisenberg uncer-
tainty principle.

Thus, in contrast to standard quantum mechanics, this
nonlinearity allows for many remarkable characteristics
associated with DCTCs beyond what is allowed by stan-
dard quantum mechanics. Deutschian CTCs may be uti-
lized to violate the no-cloning theorem [9], the Holevo
bound [10], and the second law of thermodynamics [11]
and enable quantum computers to solve problems in the
computational complexity class PSPACE [12]. (However,
note that these claims have been debated in the literature
[13,14].)

The aspect of DCTCs that we are most interested in here
is their use in perfectly distinguishing multiple nonorthogonal
quantum states, violating Heisenberg’s uncertainty principle
[10]. We use ideas contained in the DCTC-assisted state
discrimination method to create a practical iterative state dis-
crimination circuit that works by approximating the behavior
of a DCTC.

Even though DCTCs are inaccessible, we may simulate the
evolution of the state of a system traveling along a DCTC.
Such simulations are important to us not only because they
allow us to gain a better understanding of the properties of
DCTCs in an accessible setting, but also because they en-
able us to exploit their unique characteristics for applications.
Simulating a DCTC is directly related to computing the fixed
point of a quantum channel, which is a difficult task [12]. One
DCTC simulation method uses polarization-encoded photons
as qubits [15], which involves computing the self-consistent
solution for the state of a system traveling along a DCTC. This
computation is practical for simple quantum systems, but it
becomes prohibitively expensive for larger systems. Circum-
venting this issue, the authors of [16] proposed a method for
simulating CTCs that uses an iterative quantum circuit, with
the circuit approaching the behavior of a DCTC with an in-
creasing number of iterations. It is also “self-contained” in the
sense that it does not involve the discarding of experimental
data, unlike that in [15].

Strategies for discriminating nonorthogonal quantum states
have been analyzed in many different contexts. In this paper
we restrict our attention to the minimum-error discrimina-
tion of pure states. The case of discriminating two quantum
states has been well studied [17–20]. Optimal minimum-error
approaches for discriminating multiple quantum states have
been characterized in a variety of specific cases [21–26]. A
strategy using a theoretical apparatus for distinguishing multi-
ple arbitrary quantum states was proposed in [27]. Our method
is similar in that it applies to the general task of discriminating
multiple (and possibly nonorthogonal) quantum states.

The major contribution of our paper is a practical state
discrimination strategy for multiple nonorthogonal pure states
that combines the DCTC simulation circuit of [16] and the
CTC-assisted state discrimination strategy of [10]. We briefly
state our strategy here. Assume that the set of states to be
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discriminated is {|ψi〉}N−1
i=0 and that we are given n copies of an

unknown state randomly selected from this set. Assume that
measurements are made in the basis {|i〉}N−1

i=0 . Suppose that
we have access to a set of unitary operations {Ui}N−1

i=0 such
that Ui|ψi〉 = |i〉. Suppose that the n copies of the unknown
state are ordered. Perform a measurement on the first copy
of the unknown state. If outcome j is obtained, then apply
the unitary operation Uj to the second copy of the unknown
state and perform a measurement on the resulting state. If
outcome k is obtained, then apply the unitary operation Uk

to the third copy of the unknown state. Repeat this procedure
until a unitary operation has been applied to all n states. If
outcome l is obtained after measuring the nth state, then claim
that the unknown state is the state |ψl〉.

Our strategy proves advantageous because it relies only on
a fixed set of local operations and may be implemented by
performing measurements on each copy of a state, with each
successive measurement being determined by the outcome of
the previous one, i.e., a local adaptive strategy [18–20]. In
this way, our state discrimination strategy is amenable to a
practical experimental implementation. [See Fig. 3(c) for a
schematic of the method.]

Furthermore, we calculate the asymptotic rate of decay of
the average probability of error of our state discrimination
circuit, which we use to show that our state discrimination
scheme attains the fundamental limit, i.e., the multiple Cher-
noff bound [28,29], for the general task of discriminating an
arbitrary set of pure qubit states. This is another desirable
property that our state discrimination scheme possesses.

The rest of our paper is structured as follows. We provide
some preliminaries and set up notation in Sec. II. Then, in
Sec. III, we provide our state discrimination circuit and also
show how it can be implemented as a local adaptive circuit.
In Sec. IV we calculate its average probability of error in
distinguishing states. We show that this probability of error
converges to zero in the limit of infinitely many iterations of
the circuit. Finally, in Sec. V, we consider two examples and
show how our scheme achieves the multiple Chernoff bound
when discriminating an arbitrary set of pure qubit states.

II. PRELIMINARIES

A. State discrimination

We first describe the problem of state discrimination con-
sidered in this paper. The goal is to distinguish the states in
the set {ρi}N−1

i=0 , where the state ρi is chosen with probability
pi. The minimum error approach to state discrimination may
be pictured as the following game between Alice and Bob.
Alice and Bob agree on the set {ρi}N−1

i=0 of quantum states and
probability distribution {pi}i that they will use. Alice prepares
a state ρ j from that set with probability p j and sends it to Bob.
Bob then, in an attempt to identify Alice’s state, performs a
measurement described by the set {Mi}i of measurement oper-
ators. He guesses that the state Alice prepared is ρk if he mea-
sures outcome k. Bob’s goal is to find the measurement that
minimizes his average probability of error, defined as follows:

pe :=
N−1∑
k=0

pk

∑
j �=k

Tr{Mjρk} = 1 −
N−1∑
k=0

pk Tr{Mkρk}. (1)

In the case when N = 2, the Helstrom measurement is an
optimal measurement [17].

An alternative approach to the state discrimination problem
is to assume that Bob has n available copies of the state ρ j

that Alice selects. In this case, an optimal measurement is a
collective measurement on all n states ρ⊗n

j . In the limit of large

n, the optimal error probability popt
e decays exponentially as

popt
e ∼ e−nξ opt

, (2)

where the value ξ opt is known as the multiple Chernoff bound
[29] and is given by

ξ opt = − ln
[

max
i �= j

min
0�s�1

Tr
{
ρs

i ρ
1−s
j

}]
. (3)

The multiple Chernoff bound places a fundamental limit on
how fast the error probability decays for a multiple-copy state
discrimination scheme [29]. See [28] for the special case when
all of the states in the set {ρi}i are pure.

B. Deutschian closed timelike curves

Next we describe the model for CTCs that is applicable to
our work, namely, the Deutschian (DCTC) model [2]. We note
that there also exist other models for quantitatively describing
the behavior of CTCs, namely, postselected quantum telepor-
tation CTCs [4] and transition probability CTCs [5].

The DCTC model involves two subsystems: the
chronology-respecting (CR) system S, which does not travel
through the CTC, and the chronology-violating (CV) system
C, which does travel through the CTC. The different CTC
models differ in the manner in which they resolve or avoid
causality paradoxes. In the DCTC model, this is accomplished
by requiring the state of the chronology-violating system to be
a fixed point of the evolution that results from the interaction
between the CR and CV systems.

Let σC be the state of the CV system and let ρS be the state
of the CR system. In Deutsch’s model, systems S and C are
assumed to be in a tensor-product state ρS ⊗ σC before they
interact unitarily via the CTC. They then interact according
to an interaction unitary VSC before the CV system enters
the future mouth of its wormhole, so that the state of the
composite system after the evolution is VSC (ρS ⊗ σC )V †

SC . We
refer to states of the CR system as the CV system emerges
from the past mouth of its wormhole and as it enters the future
mouth of its wormhole as “initial” CR states and “final” CR
states, respectively. We define initial CV states and final CV
states similarly.

The evolution of the CV system is represented by the
quantum channel

NV,ρ : σC �→ TrS{VSC (ρS ⊗ σC )V †
SC}, (4)

which maps each possible initial CV state to its corresponding
final CV state when the initial CR state is ρS . Furthermore,
as stated earlier, the DCTC model enforces a self-consistency
condition so as to avoid “grandfatherlike” causality para-
doxes. This requires that an arbitrary state σC of the CV
system is a fixed point of the quantum channel NV,ρ , i.e.,

NV,ρ (σC ) = σC . (5)
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FIG. 1. The upper system is the CR system and the lower system
is the CV system. The past and future mouths of the wormhole are
represented by the double bars on the left and right. The CR and CV
systems interact according to the unitary VSC , defined in (7), before
the CV system enters the future mouth of the wormhole.

A solution σC to (5) always exists, although it is not
necessarily unique [2]. The evolution of the CR system is
represented by

MV : ρS �→ TrC{VSC (ρS ⊗ σC )V †
SC}, (6)

which maps every possible initial CR state to its correspond-
ing final CR state whenever the CV state is σC . Note that
MV (ρS ) depends not only on ρS , but also on σC , whose
dependence on ρS is given by (5). Therefore, MV is not
a linear map. The nonlinear nature of this evolution leads
to the host of interesting properties mentioned earlier in
Sec. I.

III. CTC-INSPIRED STATE DISCRIMINATION CIRCUIT

Before we provide our CTC-inspired state discrimination
circuit, we recall how to discriminate multiple nonorthogonal
pure states using a DCTC [10]. The set of states to be discrim-
inated is {|ψi〉〈ψi|}N−1

i=0 , and at the end of the DCTC-assisted
interaction, we may perform a measurement in the orthonor-
mal basis {|i〉}N−1

i=0 . To do so, we require a set of unitaries
{Ui}N−1

i=0 such that Ui|ψi〉 = |i〉 and 〈 j|Ui|ψ j〉 �= 0 for all 0 � i,
j � N − 1, and i �= j. Such a set of unitaries exists for every
set {|ψi〉〈ψi|}N−1

i=0 of states [10]. Let the interaction unitary VSC

of the DCTC be

VSC =
(

N−1∑
i=0

|i〉〈i|S ⊗ (Ui )C

)
◦ SWAP, (7)

where SWAP is the unitary operator that swaps systems S and
C. The circuit representation of this unitary is shown in Fig. 1.
The authors of [10] demonstrated that σC = |i〉〈i| is the unique
self-consistent solution to (5) whenever ρS = |ψi〉〈ψi|. That
is, the DCTC-assisted circuit can be used to map nonorthog-
onal states to distinct orthogonal basis states, and hence
one can perfectly discriminate the nonorthogonal states in
question.

To outline the functioning of the circuit, we briefly explain
why each σC = |i〉〈i|, for 0 � i � N − 1, is a fixed point of
NV,ρ , i.e., a solution to (5). Suppose that ρS = |ψi〉〈ψi| and
σC = |i〉〈i|. The SWAP gate acts first and transforms the CR
system to the state |i〉〈i|. Next the Ui unitary is triggered.
The unitary Ui acts on |ψi〉〈ψi|, which leads to the self-
consistency condition NV,ρ (σC ) = |i〉〈i|. Now if one performs

FIG. 2. This circuit simulates a DCTC with interaction unitary
VSC . This figure shows three rounds of interaction. As the number
of rounds n increases, the simulation approaches the behavior of a
DCTC.

a measurement in the basis {|i〉}i on the final CR state, one
may determine ρS with certainty. Measurement outcome j
corresponds to the initial state ρS = |ψ j〉〈ψ j |. Thus, using the
DCTC, in principle, we are able to discriminate perfectly the
possibly nonorthogonal states {|ψi〉〈ψi|}N−1

i=0 .
The construction outlined above works if we have access

to a DCTC. In its absence, we can only construct iterative
circuits that approximate its behavior. Our major contribu-
tion is one such circuit; i.e., we combine the CTC-assisted
state discrimination scheme described above with a version
of a quantum circuit given by [16] that simulates the be-
havior of a DCTC. The circuit consists of multiple copies
of three registers whose nth copies we label Gn, Sn, and
Cn (Fig. 2). We will initialize each of the Gn registers to
the state vector

√
γ |0〉 + √

1 − γ |1〉. We find, however, that
for our purposes, it suffices to set γ = 0. Each of the Sn

registers is initialized to the initial CR state ρS and the C0

register is initialized to a state ω. At every step of the cir-
cuit, the Gn, Sn, and Cn systems interact via the controlled
unitary

|0〉〈0|Gn ⊗ ISnCn + |1〉〈1|Gn ⊗ VSnCn , (8)

where VSnCn is the interaction unitary in (7) acting on the Sn

and Cn registers. In other words, the procedure is the follow-
ing.

(1) Apply the controlled unitary between the Gn, Sn, and
Cn registers.

(2) Discard the Sn and Gn registers.
(3) Load the resulting state of the Cn system into the Cn+1

register, increment n by one, and repeat.
By applying this procedure, for every ρS , the state of the

Cn register converges to the fixed point of NV,ρ as n → ∞
[16]. Note that the rate of convergence is dependent on VSC

and the state ω to which C0 is initialized. We will discuss
how to optimize the rate of convergence with respect to
them.

To use this circuit, which is also shown in Fig. 2, in order
to discriminate the set {|ψi〉〈ψi|}i of states, the interaction
unitary VSC is set to the one in (7) and the input state ρS

is restricted to belong to the set {|ψi〉〈ψi|}i. Since the state
of the Cn register converges to the fixed point of NV,ρ , the
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Cn register converges to the state | j〉〈 j| if ρS = |ψ j〉〈ψ j |
[10]. Therefore, by implementing a standard basis measure-
ment on the Cn register after a suitably chosen n, we have a
method for approximately discriminating the states in the set
{|ψi〉〈ψi|}i.

One of our major contributions is an equivalent recasting
of our state discrimination circuit as a local adaptive circuit.
The adaptive circuit, which we describe below, consists of
repeated iterations of a fixed two-register protocol and lends
itself directly to experimental implementation. Another bene-
fit of the adaptive circuit is that it is not necessary to update
a quantum memory throughout the length of the circuit. The
only information necessary to store in a quantum memory is
the n copies of the unknown state |ψi〉.

We now explain how the original circuit in Fig. 2 can be
recast in the simple adaptive form of Fig. 3(c). To perform the
state discrimination in an adaptive manner, we first assume
that we have n copies of the unknown state |ψi〉. By expanding
the VSC unitaries defined in (7) and by applying the fact that
the state |1〉 suffices for each of the Gn registers in Fig. 2, it
can be simplified to the circuit in Fig. 3(a). We then note that
since the various S registers are traced out at the end of the
circuit, the coherent controls in Fig. 3(a) can be equivalently
replaced with classical controls. That further means that the
classical control is effectively implemented by first perform-
ing a measurement and then choosing the corresponding Ui

gate using the measurement outcome. What we are applying
here is the well-known principle of deferred measurement
[30]. This enables a further simplification of the circuit to that
in Fig. 3(b).

Finally, we note that the circuit in Fig. 3(b) consists of
iterations of a single atomic unit, which we denote concisely
in Fig. 3(c). This depiction of our state discrimination scheme
is of particular import: To perform our state discrimination
circuit, one only needs two quantum registers, the ability to
perform a standard basis measurement, and classical control.
This makes it directly amenable to experimental implementa-
tion.

IV. ERROR ANALYSIS OF THE STATE
DISCRIMINATION CIRCUIT

Here we define the average probability of error in our state
discrimination scheme. Next we demonstrate how it decays
with n, the number of iterations of the state discrimination
circuit in Fig. 2. Finally, we show how the error probability
exponentially converges to zero in the asymptotic limit.

A. Calculating the error probability

As earlier, we assume that we are given a set {|ψi〉}N−1
i=0

of states, a set {|i〉}N−1
i=0 of basis states, and a set {Ui}N−1

i=0 of
unitaries such that Ui|ψi〉 = |i〉 for 0 � i � N − 1. We assume
that the states {|ψi〉}N−1

i=0 are to be discriminated using the
circuit shown in Fig. 2 with

VSC :=
(

N−1∑
i=0

|i〉〈i| ⊗ Ui

)
◦ SWAP. (9)

FIG. 3. Series of simplifications of the original state discrimi-
nation circuit in Fig. 2 that ultimately leads to the simple iterative
circuit in Fig. 3(c). First, we explicitly expand VSC and set the
state of the Gn registers to |1〉〈1|, as this is optimal for performing our
state discrimination scheme. This leads to the circuit in (a). We also
note that the controlled-Ui gate is short for the gate

∑
i |i〉〈i| ⊗ Ui.

Further, as the controlling registers are effectively classical, the cir-
cuit can be simplified to that in (b). Finally, the iterative circuit is
rewritten in the compact form of (c). The arrows do not depict a
time-travel loop, but instead depict that the output of the unitary Ui

at one time interval is fed as input to the C system at the next time
interval.

First, we provide an expression for the average probability of
incorrectly discriminating the set of states after n iterations of
the circuit.

Definition 1. For each 0 � k � N − 1, let σn,k be the state
of the Cn system when ρS = |ψk〉〈ψk|. (That is, σn,k is the state
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obtained after n rounds of executing the circuit in Fig. 2 with
ρS set equal to |ψk〉〈ψk|.) We define the average probability
of error p(n)

e and the average probability of success p(n)
s after n

iterations as follows:

p(n)
e :=

N−1∑
k=0

∑
j �=k

pk Tr{| j〉〈 j|σn,k}, (10)

p(n)
s :=

N−1∑
k=0

pk Tr{|k〉〈k|σn,k}. (11)

Our goal now is to quantitatively describe the behavior
of p(n)

e with the number n of iterations. We will find that
the functioning of our circuit, particularly the error and suc-
cess probabilities, possesses a Markov property. To obtain
this property, for each 0 � k � N − 1, we define the N×N
stochastic matrix Pk to be

Pk :=
⎛
⎝ |〈0|U0|ψk〉|2 · · · |〈0|UN−1|ψk〉|2

...
. . .

...

|〈N − 1|U0|ψk〉|2 · · · |〈N − 1|UN−1|ψk〉|2

⎞
⎠.

(12)
Also, we define, for 0 � k � N − 1, the N×1 column vec-

tor u(n)
k such that its ith element is

Tr{|i − 1〉〈i − 1|σn,k}. (13)

Define u(0) to be u(0)
k for any 0 � k � N − 1. The vector u(0)

is well defined since ρ0,k = ω for all 0 � k � N − 1, where
ω is defined just before (8).

Proposition 1. The average probability of error and success
after n iterations, denoted by p(n)

e and p(n)
s , are respectively

given by

p(n)
e =

N−1∑
k=0

N−1∑
j=0,
j �=k

pkeT
j+1Pn

k u(0), (14)

p(n)
s =

N−1∑
k=0

pkeT
k+1Pn

k u(0), (15)

where e j is the standard basis column vector with a one in the
jth row and all other elements set to zero.

Proof. The probability of measuring outcome j on the (n +
1)th iteration of the circuit, assuming the unitary VSC always
acts on the Sn and Cn registers, is

Tr{| j〉〈 j|NV,ρ (σn,k )}
= Tr {| j〉〈 j|[TrS{VSC (|ψk〉〈ψk| ⊗ σn,k )V †

SC}]}

= Tr

{
| j〉〈 j|

(
N−1∑
l=0

Tr{|l〉〈l|σn,k}Ul |ψk〉〈ψk|U †
l

)}

=
N−1∑
l=0

Tr{|l〉〈l|σn,k}|〈 j|Ul |ψk〉|2, (16)

where we used the definition of NV,ρ given in (4) in the first
equality and the definition of VSC given in (7) (including the
SWAP operation) in the second equality.

It follows from (16) that u(n+1)
k = Pku(n)

k . From this we
conclude that

u(n)
k = Pn

k u(0). (17)

Since Uk|ψk〉 = |k〉, the (k + 1)th column of Pk consists of
zeros except for a one in the (k + 1)th row.

Hence, we have

p(n)
e =

N−1∑
k=0

N−1∑
j=0: j �=k

pk Tr{| j〉〈 j|σn,k} (18)

=
N−1∑
k=0

N−1∑
j=0: j �=k

pkeT
j+1u(n)

k (19)

=
N−1∑
k=0

N−1∑
j=0: j �=k

pkeT
j+1Pn

k u(0). (20)

In the above, the first equality arises due to the definition of
p(n)

e . The second equality is due to the definition of u(n)
k and

the final equality is due to (17). We also have that

p(n)
s =

N−1∑
k=0

pk Tr{|k〉〈k|σn,k} (21)

=
N−1∑
k=0

pkeT
k+1u(n)

k (22)

=
N−1∑
k=0

pkeT
k+1Pn

k u(0). (23)

This concludes the proof. �
The functioning of our quantum circuit has a Markov prop-

erty, which we explain here. Recall from earlier that the state
discrimination circuit in Fig. 2 can be implemented as an
adaptive quantum state discrimination scheme (Fig. 3). The
adaptive scheme is as follows. One starts with n copies of ρS .
If one obtains outcome k after measuring the nth copy of ρS ,
then one applies the unitary Uk to the (n + 1)th copy of ρS and
repeats the procedure. Suppose that we have ρS = |ψk〉〈ψk|
and that we obtain outcome i after measuring the nth copy.
The probability of obtaining the outcome j after measuring
the (n + 1)th copy is |〈 j|Ui|ψk〉|2. That is, the probability of
obtaining each successive measurement outcome given the
previous measurement outcome depends only on the previous
measurement outcome. Thus, we may view each successive
measurement outcome as an element of a Markov chain with
transition matrix Pk as defined in (12).

We now state and prove a simple result that allows us to
maximize the probability of success after n iterations with
respect to ω, the initial state of the C0 register.

Proposition 2. For each 0 � i � N − 1, let p(n)
s,i be the

average probability of success after n iterations given that
ω = |i〉〈i|. Then the average probability of success (for arbi-
trary ω) is

p(n)
s =

N−1∑
i=0

Tr{|i〉〈i|ω}p(n)
s,i . (24)
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It follows from Proposition 1 that

p(n)
s =

N−1∑
k=0

pkeT
k+1Pn

k

(
N−1∑
i=0

Tr{|i〉〈i|ω}ei+1

)
(25)

=
N−1∑
i=0

Tr{|i〉〈i|ω}
(

N−1∑
k=0

pkeT
k+1Pn

k ei+1

)
(26)

=
N−1∑
i=0

Tr{|i〉〈i|ω}p(n)
s,i . (27)

The first equality arises due to Proposition 1 and the definition
of u(0). The second equality arises due to algebraic manip-
ulation and the final equality follows from identifying that
p(n)

s,i = ∑N−1
k=0 pkeT

k+1Pn
k ei+1. �

It follows from Proposition 2 that the success probability
after n iterations is maximized if ω is simply a basis state of
the form | j〉〈 j|. The particular optimal basis state is dependent
on the value of j that maximizes p(n)

s, j .

B. Asymptotic analysis of error probability

We now consider how the average probability of error de-
cays with n. First we recall that each Pk is the transition matrix
of the Markov chain of successive measurement outcomes.
We are interested in the equilibrium state, or steady state,
of this Markov chain. It is a standard fact in Markov chain
theory that the rate of convergence is determined by the sec-
ond largest eigenvalue of the transition matrix. To utilize this
fact, for 0 � k � N − 1, we construct the (N − 1)×(N − 1)
matrix Qk by deleting the (k + 1)th row and the (k + 1)th
column of Pk . We will also construct, for 0 � k � N − 1,
column vectors v

(n)
k by deleting the (k + 1)th entry in u(n)

k .
The vector v(0) is similarly constructed from u(0). This con-
struction enables us to write the expression for p(n)

e in a more
useful way.

Proposition 3. After n iterations of the state discrimination
circuit, the average probability of error is given by

p(n)
e =

N−1∑
k=0

N−1∑
j=1

pkeT
j Qn

kv
(0). (28)

Proof. We indicate here that this is a rewriting of Propo-
sition 1, in which we make use of the definitions introduced
directly above. For completeness, we provide details below.

First, we have as a direct consequence of (25) that

v
(n)
k = Qn

kv
(0). (29)

Hence we have

p(n)
e =

N−1∑
k=0

N−1∑
j=0
j �=k

pk Tr{| j〉〈 j|σn,k} (30)

=
N−1∑
k=0

N−1∑
j=1

pkeT
j v

(n)
k (31)

=
N−1∑
k=0

N−1∑
j=1

pkeT
j Qn

kv
(0). (32)

In the above, the first equality is due to the definition of p(n)
e .

The second equality is due to the definition of v
(n)
k . The final

equality is due to the fact that v
(n)
k = Qn

kv
(0), which is a direct

consequence of (17). �
Before we state our next result that quantifies the rate of

decay of p(n)
e , we establish some notation that we will use

to prove it. First, for each 0 � k � N − 1, let sk denote the
number of distinct eigenvalues of Qk and let λ1,k, . . . , λsk ,k

be the distinct eigenvalues of Qk . That is, each Qk has eigen-
values λ1,k, λ2,k, . . . , λsk ,k , and let mi,k denote the algebraic
multiplicity of eigenvalue λi,k . Also, let

τ := max
i,k

|λi,k|. (33)

That is, τ is the largest absolute value of the eigenvalues of all
the Qk matrices taken together for 0 � k � N − 1.

Proposition 4. The asymptotic error exponent of the state
discrimination scheme outlined above is not smaller than the
negative logarithm of τ , defined in (33). That is, the following
inequality holds:

ξ := lim
n→∞

− ln p(n)
e

n
� − ln τ. (34)

Proof. We begin by denoting the mi,k×mi,k Jordan
block of Qk with eigenvalue λi,k by Hm(λi,k ), for each
1 � i � sk . For each 0 � k � N − 1, define the (N −
1)×(N − 1) block-diagonal matrix

Jk =

⎛
⎜⎜⎝

Hm1,k (λ1,k ) 0 · · · 0
0 Hm2,k (λ2,k ) · · · 0
...

...
. . .

...

0 0 · · · Hmsk ,k (λsk ,k )

⎞
⎟⎟⎠ (35)

such that Qk = SkJkS−1
k , where Sk is an invertible (N −

1)×(N − 1) matrix. Such a matrix exists since Jk is the Jordan
form of Qk . Recall the expression for p(n)

e in (30). We are
interested in the matrix Qn

k . Using the fact that Qk = SkJkS−1
k ,

we have that Qn
k = SkJn

k S−1
k . We then write [31], for 0 � k �

N − 1 and 1 � i � sk ,

Hn
mi,k

(λi,k ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λn
i,k

(n
1

)
λn−1

i,k

(n
2

)
λn−2

i,k · · · ( n
mi,k−1

)
λ

n−mi,k+1
i,k

λn
i,k

(n
1

)
λn−1

i,k · · · ( n
mi,k−2

)
λ

n−mi,k+2
i,k

. . .
. . .

...

0 . . .
. . .

...

λn
i,k

(n
1

)
λn−1

i,k

λn
i,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (36)
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where we have used the fact that, for j > n,
(n

j

) = 0.
Since for each integer n we have

Jn
k =

⎛
⎜⎜⎜⎝

Hn
m1,k

(λ1,k ) 0 · · · 0
0 Hn

m2,k
(λ2,k ) · · · 0

...
...

. . .
...

0 0 · · · Hn
msk ,k

(λsk ,k )

⎞
⎟⎟⎟⎠, (37)

it follows from (14) and (36) that for sufficiently large n we
have

p(n)
e =

N−1∑
k=0

sk∑
i=1

λi,k �=1

mi,k−1∑
j=0

ai, j,k

(
n

j

)
λ

n− j
i,k (38)

for some set {ai, j,k}i, j,k of constants, where ai, j,k ∈ C for all
i, j, k. To understand the above, we recall that

p(n)
e =

N−1∑
k=0

N−1∑
j=1

pkeT
j Qn

kv
(0) (39)

=
N−1∑
k=0

N−1∑
j=1

pkeT
j SkJn

k S−1
k v(0). (40)

That is, p(n)
e is a linear combination of the elements of

the matrices Jn
k for 0 � k � N − 1 and hence also a linear

combination of powers of the eigenvalues λi,k . Further, by in-
specting the elements of (36), the linear combination takes the
form in (38).

We then have that

ξ := − lim
n→∞

ln p(n)
e

n
(41)

= − lim
n→∞

1

n
ln

⎧⎨
⎩τ n

⎡
⎣∑

i, j,k

ai, j,k

λ
j
i,k

(
n

j

)(
λi,k

τ

)n
⎤
⎦

⎫⎬
⎭ (42)

= − ln τ − lim
n→∞

1

n
ln

⎡
⎣∑

i, j,k

ai, j,k

λ
j
i,k

(
n

j

)(
λi,k

τ

)n
⎤
⎦ (43)

� − ln τ. (44)

In the above, the first equality is due to (38). The second
equality is due to algebraic manipulation. To establish the final
inequality, consider the following chain of reasoning:∑

i,k

∑
j

ai, j,k

λ
j
i,k

(
n

j

)(
λi,k

τ

)n

=
∣∣∣∣∣
∑
i,k

∑
j

ai, j,k

λ
j
i,k

(
n

j

)(
λi,k

τ

)n
∣∣∣∣∣ (45)

�
∑
i,k

∑
j

|ai, j,k|
|λi,k| j

(
n

j

)( |λi,k|
τ

)n

(46)

=
∑

(i,k)∈L

∑
j

|ai, j,k|
|λi,k| j

(
n

j

)( |λi,k|
τ

)n

+
∑

(i,k)/∈L

∑
j

|ai, j,k|
|λi,k| j

(
n

j

)( |λi,k|
τ

)n

(47)

=
∑

(i,k)∈L

∑
j

|ai, j,k|
|λi,k| j

(
n

j

)
+ e−
(n) (48)

= O(poly(n)) + e−
(n). (49)

Here L denotes the set of pairs (i, k) for which |λi,k| = τ

[thus, if (i, k) /∈ L, then |λi,k| < τ ]. In the above, we have
employed the triangle inequality and the fact that

(n
j

)
� n j

j! .
By applying the negative logarithm and using its antimono-
tonicity, normalizing, and taking the limit n → ∞, it follows
that

− lim
n→∞

1

n
ln

[∑
i,k

∑
j

ai, j,k

λ
j
i,k

(
n

j

)(
λi,k

τ

)n
]

� − lim
n→∞

1

n
ln[O(poly(n)) + e−
(n)]

= 0. (50)

This establishes the desired inequality

ξ � − ln τ (51)

and concludes the proof. �
In Appendix A we state and prove simple lower bounds on

ξ in terms of the unitaries {Ui}i and the states {|ψi〉}i.

V. EXAMPLES

We now discuss how to optimize the performance of our
state discrimination circuit in specific cases. To optimize the
performance of our state discrimination circuit, it is necessary
to find a set of unitaries that minimizes the probability of error.
We may find expressions for these unitaries in simple cases,
but this becomes difficult in the general case. An alternative

route is to maximize the error exponent ξ := − limn→∞
ln p(n)

e
n .

In the following, we discuss explicit state discrimination
schemes for sets of qubit states.

A. Two-qubit states

Our first example is the simplest possible, where we con-
sider that we are to discriminate between two pure qubit states
|ψ0〉 and |ψ1〉.

To perform the state discrimination, we require unitaries
U0 and U1 such that U0|ψ0〉 = |0〉 and U1|ψ1〉 = |1〉. We may
write the two unitaries U0 and U1 in the form

U0 = eiφ0 |0〉〈ψ0| + eiφ1 |1〉〈ψ⊥
0 |,

U1 = eiφ2 |1〉〈ψ1| + eiφ3 |0〉〈ψ⊥
1 |, (52)
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where |ψ⊥
0 〉 and |ψ⊥

1 〉 are pure states orthogonal to |ψ0〉 and
|ψ1〉, respectively. We then have

Q0 = |〈1|U1|ψ0〉|2 = |〈ψ0|ψ1〉|2,
Q1 = |〈0|U0|ψ1〉|2 = |〈ψ0|ψ1〉|2. (53)

From Proposition 4 and the Chernoff bound [28,29], we
have ξ = − ln |〈ψ0|ψ1〉|2. We see that the average error prob-
ability p(n)

e is independent of the choice of the unitaries, as
expected from Proposition 1. Further, the error probability p(n)

e
scales according to the Chernoff bound in (3).

B. Arbitrary set of qubit states

We now show how to construct a set of unitaries for dis-
criminating an arbitrary set of more than two pure qubit states,
and we find that our construction ensures that the probability
of error p(n)

e scales according to the multiple Chernoff bound,
generalizing what we showed above for two qubit states. This
means that the probability of error decays at the optimal rate,
so our state discrimination scheme will perform better than

or as well as any other scheme designed to discriminate qubit
states in the asymptotic case.

Let {|ψi〉}N−1
i=0 be a set of N > 2 qubit states, each of which

is in a two-dimensional Hilbert space H. Let {|i〉}N−1
i=0 be a

basis for an N-dimensional Hilbert space H′. We will use
the following isometries to perform our state discrimination
protocol:

Vi = |i〉〈ψi| + |i ⊕ 1〉〈ψ⊥
i |. (54)

Here |ψ⊥
i 〉 is a pure state orthogonal to |ψi〉. Note that each

Vi is an isometry mapping H to H′ and satisfies Vi|ψi〉 = |i〉.
Given each isometry Vi, let Ui be its unitary extension, satis-
fying

Vi |ψ〉 = Ui |ψ̃〉 (55)

for every |ψ〉 ∈ H and where |ψ̃〉 ∈ H′ denotes an embedding
of |ψ〉 in H′. Note that if N = 2� for some integer �, then we
can set |ψ̃〉 = |ψ〉 |0〉⊗(�−1).

We then get that for 0 � k � N − 1, the matrix Pk takes on
the form

Pk =

⎛
⎜⎜⎜⎜⎜⎝

|〈ψ0|ψk〉|2 0 · · · 1 − |〈ψN−1|ψk〉|2
1 − 〈ψ0|ψk〉|2 |〈ψ1|ψk〉|2 0

0 1 − |〈ψ1|ψk〉|2 . . .
...

...
...

. . . 0
0 0 · · · |〈ψN−1|ψk〉|2

⎞
⎟⎟⎟⎟⎟⎠. (56)

To construct each matrix Qk , we delete the (k + 1)th rows
and columns from Pk . Recall that the (k + 1)th column of
each Pk contains all zeros except for a one in the (k + 1)th
row. This means that Q0 and QN−1 will be lower-triangular
matrices. The other Qk matrices will consist of a diagonal, a
subdiagonal containing a zero element, and a non-necessarily-
zero element (Qk )1,(N−1), with all other elements set to zero.
For such matrices, the eigenvalues are given by their diagonal
entries. This can be seen by writing out the characteristic
polynomial of the matrix and taking care to expand the deter-
minant along the row or column containing the zero element
of the subdiagonal. Therefore, the largest eigenvalue of each
matrix Qk is equal to max(i, j) |〈ψi|ψ j〉|2. By Proposition 4
and the multiple Chernoff bound [28,29], it follows that
ξ = − ln maxi �= j{|〈ψi|ψ j〉|2}.

Therefore, by appending sufficiently many ancillary qubits,
our state discrimination circuit can be used to discriminate an
arbitrary set of qubit states with the optimal scaling of the
probability of error given by the multiple Chernoff bound in
(3). This result only concerns the scaling of the probability
of error in the asymptotic case. Investigating how close to
optimal the probability of error is when only a finite number
of copies of the input state are available may prove to be a
fruitful direction for future work.

Note that one may not extend in a straightforward way the
above procedure for constructing a set of unitaries {Ui} that
produce optimal scaling of the probability of error to states in
a Hilbert space of dimension greater than 2. Observe that the
above procedure hinges on the matrices Qk having eigenvalues

given by their diagonal. By the definition of the Qk matrix,
specifying a set of isometries in a way similar to that of
(54) for a higher-dimensional system would require that other
elements besides (Qk )1,N−1 and the elements on the diagonal
and subdiagonal of Qk be nonzero. Such matrices do not in
general have eigenvalues equal to their diagonal elements.

When simulating a DCTC with unitary interaction given by
VSC = (

∑N−1
k=0 |k〉〈k| ⊗ Uk ) ◦ SWAP, it follows from our choice

of the set {Uk}k that | j〉〈 j| is the unique solution for σC in (5)
whenever ρS = |ψ j〉〈ψ j |. In Appendix B we provide a proof
inspired by the argument given in [10] that this is indeed true
for the example considered above, consisting of discriminat-
ing an arbitrary set of qubit states.

C. BB84 states

Here we study how our state discrimination circuit can be
used to discriminate a specific set of nonorthogonal states, i.e.,
the BB84 states |0〉, |1〉, |+〉, and |−〉. In general, identifying
or performing the set of unitaries {Ui} described above may
be difficult. The authors of [10] identified a set of unitaries
that can discriminate the BB84 states, which we restate here.
Building off of these authors’ work, we show that the prob-
ability of error using this construction scales according to
the multiple Chernoff bound in (3). This is of significance
because these operators provide an example of unitaries that
both produce a probability of error that saturates the multiple
Chernoff bound and are constructed from well-studied stan-
dard quantum logic gates.
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As we described in the example earlier, we encode
these four states into a four-dimensional Hilbert space. Let
|ψ0〉 ≡ |00〉, |ψ1〉 ≡ |10〉, |ψ2〉 ≡ |+0〉, and |ψ3〉 ≡ |−0〉.
That is, we obtain the set of states {|ψi〉}3

i=0 by appending
an ancillary qubit in the |0〉 state. Let |0〉 ≡ |00〉, |1〉 ≡ |01〉,
|2〉 ≡ |10〉, and |3〉 ≡ |11〉. Now let

U0 = SWAP,

U1 = X ⊗ X,

U2 = (X ⊗ I ) ◦ (H ⊗ I ),

U3 = (X ⊗ H ) ◦ SWAP. (57)

Then Ui|ψi〉 = |i〉 for i ∈ {0, 1, 2, 3}. It may be seen
that the probability of error p(n)

e scales according to
the Chernoff bound by constructing the Qk matrices for
0 � k � 3 and checking that their largest eigenvalues are each
maxi �= j |〈ψi|ψ j〉|2 = 1

2 .
Since an arbitrary set of four geometrically uniform qubit

states is simply a rotation of the BB84 states on the Bloch
sphere, one may saturate the Chernoff bound when using
our state discrimination circuit to distinguish any set of four
geometrically uniform qubit states using only compositions of
the standard qubit gates X , H , SWAP, and rotations.

VI. CONCLUDING REMARKS

In this paper we have proposed a method for discriminating
multiple nonorthogonal states, which is inspired by a con-
struction considered in the context of closed timelike curves
[10]. Our state discrimination method can be equivalently
recast as a local iterative circuit whose simplicity lends itself
to experimental implementation. Furthermore, we studied the
average probability of error for our scheme and showed that
in the general case of discriminating an arbitrary set of pure
qubit states, it achieves the multiple Chernoff bound.

We would like to point out three aspects of our work that re-
quire further investigation. It has been shown that a two-state
local adaptive state discrimination scheme may be optimal
for any number of copies [18]. It remains open whether there
exists a way to configure some aspect of our circuit differently
so that it is possible for our scheme to be optimal for any
number of copies. Also, while sets of unitaries do exist that
optimize the performance of our circuit in the asymptotic limit
for an arbitrary set of qubit states, it is unknown whether
there exists a set of optimal unitaries for any set of qubit
states. Furthermore, it is worth investigating this aspect of our
work to see whether there exists a set of product unitaries
to optimize, or even make the performance of our circuit
suboptimally efficient, in the asymptotic limit. This would be
beneficial because product operators are more convenient to
implement experimentally.

Finally, any attempt at practical state discrimination will
be subject to noisy conditions. Noise may have the ability to
enhance or worsen the performance of a state discrimination
scheme. A recent result due to [20] has shown that the optimal
measurement in the discrimination of two pure qubit states is
no longer optimal when these qubit states are subject to per-
turbations. Studying the behavior of our state discrimination
circuit in the presence of noise remains a topic for future work.
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APPENDIX A: UPPER AND LOWER BOUNDS
ON THE MULTIPLE CHERNOFF EXPONENT ξ

We now state a result that allows us to bound the scaling
of the average probability of error in terms of the set {Ui}i of
unitaries and the set {|ψi〉}i of states.

Proposition 5. The inequalities

ξ � − ln
(

1 − min
j,k: j �=k

|〈k|Uj |ψk〉|2
)
, (A1)

ξ � − ln

(
max

j,k: j �=k

∑
i �=k

|〈 j|Ui|ψk〉|2
)

(A2)

hold, with ξ defined in (41).
Proof. Let 0 � k � N − 1. The maximum column sum of

Qk is

max
j �=k

∑
i �=k

|〈i|Uj |ψk〉|2 = 1 − min
j �=k

|〈k|Uj |ψk〉|2. (A3)

It follows from the Gershgorin circle theorem [32] that the
largest eigenvalue of Qk is bounded from above by the maxi-
mum column sum of Qk . We recall that τ := maxi,k |λi,k|, i.e.,
τ is the largest of the absolute values of the eigenvalues of all
of the Qk matrices. It follows that

τ � 1 − min
j,k: j �=k

|〈k|Uj |ψk〉|2. (A4)

Then using Proposition 4, we have

ξ � − ln τ � − ln
(

1 − max
j,k: j �=k

|〈k|Uj |ψk〉|2
)
. (A5)

It also follows from the Gershgorin circle theorem that for
0 � k � N − 1, the largest eigenvalue of Qk is bounded from
above by the maximum row sum of Qk . Hence, we have

τ � max
j,k

j �=k

∑
i �=k

|〈 j|Ui|ψk〉|2, (A6)

so that

ξ � − ln τ � − ln

(
max

j,k: j �=k

∑
i �=k

|〈 j|Ui|ψk〉|2
)

. (A7)

This concludes the proof. �

APPENDIX B: UNIQUENESS OF THE FIXED
POINT OF THE CHANNEL NV,ρ

Here we show the uniqueness of the fixed point of the
channel NV,ρ when discriminating an arbitrary set of qubit
states, which we studied in Sec. V B.
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Proposition 6. Let N � 3. For each 0 � i � N − 1, let
Ui be a unitary extension of the isometry Vi defined in
(54). Let VSC = (

∑
k |k〉〈k| ⊗ Uk ) ◦ SWAP. Then for 0 � a �

N − 1, |a〉〈a| is the unique solution for σC in (5) whenever
ρS = |ψa〉〈ψa|.

Proof. We argued that |a〉〈a| is a solution for σC whenever
ρS = |ψa〉〈ψa| in Sec. III. It remains to show uniqueness.
Suppose ρS = |ψa〉〈ψa| and σ is a solution for σC in (5). Then
we have

σ = TrS{VSC (|ψa〉〈ψa| ⊗ σ )V †
SC}

= TrS

{(∑
k

|k〉〈k| ⊗ Uk

)
(σ ⊗ |ψa〉〈ψa|)

×
(∑

l

|l〉〈l| ⊗ U †
l

)}

=
∑
k,l

TrS{|k〉〈k|σ |l〉〈l| ⊗ Uk|ψa〉〈ψa|U †
l }

=
∑

k

〈k|σ |k〉Uk|ψa〉〈ψa|U †
k . (B1)

In the above, the first line is due to the self-consistency
condition (5). The following equalities come from explicitly
writing out VSC and algebraic manipulation. Hence, the matrix
elements of σ are given by

〈m|σ |n〉 =
∑

k

〈k|σ |k〉〈m|Uk|ψa〉〈ψa|U †
k |n〉. (B2)

We now show that all diagonal elements of σ other
than 〈a|σ |a〉 are zero. We will proceed by induction to
show that 〈a � s|σ |a � s〉 = 0 for all 1 � s � N − 1. (Here
� denotes subtraction modulo N .) We first show that
〈a � 1|σ |a � 1〉 = 0. It follows from (B2) that

〈a|σ |a〉 = 〈a|σ |a〉 +
∑
k �=a

〈k|σ |k〉|〈a|Uk|ψa〉|2, (B3)

which implies that
∑

k �=a〈k|σ |k〉|〈a|Uk|ψa〉|2 = 0. It follows
that

〈a � 1|σ |a � 1〉(1 − |〈ψa�1|ψa〉|2)

= 〈a � 1|σ |a � 1〉|〈ψ⊥
a�1|ψa〉|2

= 〈a � 1|σ |a � 1〉|〈a|Ua�1|ψa〉|2

=
∑
k �=a

〈k|σ |k〉|〈a|Uk|ψa〉|2

= 0. (B4)

Since 1 − |〈ψa�1|ψa〉|2 �= 0, we then have that 〈a � 1|σ |a �
1〉 = 0. Now suppose 1 � s < N − 1 is such that 〈a �
s|σ |a � s〉 = 0. Using (B2) and the definition of the unitaries
{Ui}, we have

〈a � s|σ |a � s〉 =
∑

k

〈k|σ |k〉|〈a � s|Uk|ψa〉|2

= 〈a � s|σ |a � s〉|〈a � s|Ua�s|ψa〉|2
+ 〈a � (s + 1)|σ |a � (s + 1)〉
× |〈a � s|Ua�(s+1)|ψa〉|2. (B5)

Since 〈a � s|σ |a � s〉 = 0, it follows that

0 = 〈a � (s + 1)|σ |a � (s + 1)〉|〈a � s|Ua�(s+1)|ψa〉|2

= 〈a � (s + 1)|σ |a � (s + 1)〉|〈ψ⊥
a�(s+1)|ψa〉|2

= 〈a � (s + 1)|σ |a � (s + 1)〉(1 − |〈ψa�(s+1)|ψa〉|2).
(B6)

Since 1 � s < N − 1, we must have a � (s + 1) �= a, so
1 − |〈ψa�(s+1)|ψa〉|2 �= 0. It then follows from (B6) that
〈a � (s + 1)|σ |a � (s + 1)〉 = 0. By induction, we have
〈a � s|σ |a � s〉 = 0 for 1 � s � N − 1. Hence, all diagonal
elements of σ other than 〈a|σ |a〉 are zero.

Consequently, we must have 〈k|σ |k〉 = δka since
Tr[σ ] = 1. Any density operator of this form has off-diagonal
elements that are all zero. Therefore, we have σ = |a〉〈a|.
Hence, |a〉〈a| is the unique solution for σC in (5). �
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