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Robust population transfer of spin states by geometric formalism
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Accurate population transfer of uncoupled or weakly coupled spin states is crucial for many quantum-
information-processing tasks. In this paper, we propose a fast and robust scheme for population transfer which
combines invariant-based inverse engineering and geometric formalism for robust quantum control. Our scheme
is not constrained by the adiabatic condition and therefore can be implemented quickly. It can also effectively
suppress the dominant noise in spin systems, which together with the fast feature guarantees the accuracy of
the population transfer. Moreover, the control parameters of the driving Hamiltonian in our scheme are easy to
design because they correspond to the curvature and torsion of a three-dimensional visual space curve derived
by using geometric formalism for robust quantum control. We test the efficiency of our scheme by numerically
simulating the ground-state population transfer in >N nitrogen-vacancy centers and comparing our scheme with
stimulated Raman transition, stimulated Raman adiabatic passage, and conventional shortcuts to adiabaticity
based schemes, three types of schemes popularly used for population transfer. The numerical results clearly
show that our scheme is advantageous over these previous ones.
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I. INTRODUCTION

As a fundamental module of quantum coherent control,
accurate population transfer of spin states is the prerequisite
for many quantum-information-processing tasks. To imple-
ment population transfer, people may first think of using Rabi
oscillations. While Rabi oscillations are a convenient tool for
population transfer, they cannot handle the more challenging
situation in which population transfer needs to be imple-
mented between uncoupled or weakly coupled spin states. In
such a situation, direct population transfer is forbidden, and
therefore, Rabi oscillations are no longer used. To cope with
this more challenging situation, people resort to using an inter-
mediate state to connect the two uncoupled or weakly coupled
spin states, resulting in three-level-system-based population-
transfer schemes. Compared to the population transfer using
Rabi oscillations, three-level-system-based population trans-
fer is more difficult to keep accurate, and therefore, particular
methods need to be developed to make sure the quality of the
transfer is satisfactory.

Two well-known population-transfer schemes for uncou-
pled or weakly coupled states are stimulated Raman transition
(SRT) [1-3] and stimulated Raman adiabatic passage (STI-
RAP) [4-8]. While these two schemes have been proven to
be very efficient, there is still room left for improvement.
SRT is technically easy to realize and is not constrained by
the adiabatic condition. But it is sensitive to the frequency
errors resulting from the fluctuation of the magnetic field
[9] that is ubiquitous and dominant in spin systems such as
nitrogen-vacancy centers in diamond [9-13] and semicon-
ductor quantum dots [14-18]. On the other hand, STIRAP
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is insensitive to the frequency errors, which is an absolutely
attractive feature, but it requires the quantum system to evolve
adiabatically. It is known that adiabatic evolutions require
long run time [19-21], and this makes STIRAP vulnerable
to environment-induced decoherence [8]. Recently, shortcuts
to adiabaticity (STA) [22,23], which include transitionless
quantum driving, invariant-based inverse engineering, and
fast-forward approaches, have been used to speed up adiabatic
population transfers [24-43] and design stimulated Raman
exact passage [44—49]. However, when using such STA based
schemes in spin systems, the existence of the frequency errors
still influences the performance of these schemes.

In this paper, we propose a robust scheme for population
transfer between uncoupled or weakly coupled spin states.
Our scheme combines invariant-based inverse engineering of
STA and geometric formalism for robust quantum control. Ge-
ometric formalism for robust quantum control [50-56] is used
to suppress the frequency errors resulting from the fluctuation
of the magnetic field and for simplicity will sometimes be re-
ferred to as geometric formalism in the following. Our scheme
has two attractive features: fast implementation and robust-
ness against frequency errors. Because fast implementation
can reduce the influence of decoherence and the fluctuation
of the magnetic field is the dominant noise in spin systems,
our scheme has the potential to transfer the population of
uncoupled or weakly coupled spin states accurately. Besides
the above two features, our scheme is also user friendly in ex-
periment. The control parameters of our driving Hamiltonian
can be designed by analyzing the curvature and torsion of a
three-dimensional space curve that is derived using geometric
formalism. We demonstrate the specific realization procedure
of our scheme by numerically simulating the ground-state spin
transfer in the N nitrogen-vacancy center. We also compare
our scheme with SRT, STIRAP, and conventional STA-based
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FIG. 1. V-type and A-type three-level systems and the corre-
sponding driving fields applied to them. Q_(¢) and Q. (¢) are the
Rabi frequencies of the pump and Stokes fields, ¢_(¢) and ¢, (¢) are
their phases, and w_(¢) and w, () are their frequencies. A_(¢) and
AL (¢) are the detunings from the resonances.

schemes, and the results show that our scheme is advanta-
geous over these other ones.

II. THEORETICAL FRAMEWORK

We illustrate our theoretical framework in this section.
Consider a three-level spin system with states |—1), |[41), and
|0). While the transitions |0) <> |£1) are dipole coupled, the
transition |—1) < |41) is dipole forbidden. So the system we
consider can have either the V structure depicted by Fig. 1(a)
or the A structure depicted by Fig. 1(b). The population trans-
fer between spin states |—1) and |+1) must be implemented,
but since the transition |—1) < |41} is dipole forbidden, state
|0) is used as an intermediate state. Our theoretical framework
is suitable for both the V-type and A-type spin systems, and
without loss of generality, we use the V-type spin system for
our illustrations. Our aim is to realize accurate population
transfer from |—1) to |+1) in the presence of noise. To achieve
this aim, we consider the following form of the Hamiltonian:

A(t) \/%.Q(t)e‘id’(’) 0
H(t) = | 520 0 5200
0 \%Q(z‘)e“f’(’) —A®)
(1)

The Hamiltonian H (¢) is written in the basis {|—1), |0}, |+1)},
and it can be realized by applying the driving fields shown
in Fig. 1(a) to the system. In Fig. 1(a), Q_(¢) and Q4(¢)
are the Rabi frequencies of the pump and Stokes fields, re-
spectively, and we assume that they have the same envelope
Q()=2.0)= V28(1), where the constant /2 is just
for the convenience of subsequent calculations. ¢_(¢) and
¢ (¢) are the phases of these two driving fields, and they
have the same value all the time, that is, ¢_(¢) = —¢4(¢) =
¢(t). The detunings of these two driving fields are denoted
by A_(t) = (B — Eg) — w_(t) and A4 (1) = (E4) — Eo) —
w4 (1), respectively, and we also assume they have the same
value A_(#) = —A(t) = A(t), where w_(¢) and w,(¢) are
the corresponding frequencies of the pump and Stokes fields
and E_;, Ey, and E,; are the bare-basis state energies. It is
worth noting that our scheme also applies to effective three-
level systems such as two interacting spins [37,40].

Note that with Q(z), A(t), and ¢(¢) being different func-
tions with respect to time ¢, the Hamiltonian H(¢) in Eq. (1)
will be different. What we will do is give an approach to set the
functions Q(¢), A(t), and ¢(¢), making the population transfer
from |—1) to |[4+1) accurate even under the influence of noise.
The proposed approach combines invariant-based inverse
engineering and geometric formalism for robust quantum con-
trol. Specifically, the inverse engineering in our approach is
inspired by geometric formalism. The procedure of our ap-
proach is as follows. We first design the evolution operator
U(t,0) of the quantum system with the help of dynamical
invariants. Then we analyze the influence of noise on the
evolution operator U (¢, 0) using Dyson series. During this
process, geometric formalism is introduced, and it turns the
population-transfer problem into a space-curve design prob-
lem. The information about how to set the control parameters
Q(t), A(t), and ¢(¢) can be obtained from inversely calcu-
lating the curvature and torsion of the space curve. In the
following we illustrate our approach in detail.

As illustrated above, we first design the evolution op-
erator U(¢,0) induced by the Hamiltonian H(¢). Because
directly solving the time-dependent Schrodinger equa-
tion id|y(¢))/ot = H(t)|yr(¢)) is hard, we will use the
dynamical invariant /() related to H(¢) to parametrize the
evolution operator U (¢, 0), i.e., to express the evolution oper-
ator U (¢, 0) with some other parameters instead of Q(¢), A(¢),
and ¢(¢) in the Hamiltonian H(¢). Note that although we do
not give the expression of U (¢, 0) in terms of 2(¢), A(¢) and
¢(2), it is sufficient for our subsequent discussion.

To parametrize the evolution operator U (¢, 0), we rewrite
the Hamiltonian H(t) by expanding it with spin-1 angular
momentum operators,

H(t) = Q(t)cos (1)K, + Q) sinp(1)K, + AW)K;, (2)

where the three spin-1 angular momentum operators in the
basis {|—1), |0), |[+1)} read

L0 10 L{0 =i 0
Ke=—|1 0o 1], k=—|[i o =il
V2\o 1 o V2\o i o

1 0 0
k=[o o o] 3)
00 -1

One can verify that the operators K, K, and K; form a closed
algebra and this algebra is isomorphic to the Lie algebra of
SU(2); that is, their commutation relations satisfy

[K., Kv] = isz [I{yv Kz] = iK,, [Kz’ K] = lK) (4)

From the above, one can see that the Hamiltonian H(¢) in
Eq. (1) possesses SU(2) dynamical symmetry. Because of
this feature, the relevant dynamical invariant /(¢), such that
dI(t)/dt =0dI(t)/ot —i[l(t), H(t)] = 0, can be constructed
as [37,57]

I(t) = Qo[cos B(t) sin O(¢)K, + sin B(¢) sin 0(1)K,
+ cos O()K.], )

where €2 is an arbitrary constant with units of frequency,
guaranteeing /(¢) has the same energy dimension as H(¢),
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and B(¢) and 6(¢) are time-dependent parameters related to
Q(t), A(t), and ¢(z). By solving the equation I(¢)|p,(1)) =
Anl@n(t)), one can readily get the eigenvalues and eigenstates

of I(¢). The eigenvalues are 1| = ¢, A, = 0, and A3 = —,
and the corresponding eigenstates are
cos? @e”’ﬂ(’)
i) = | 75sin0()
sin? @eiﬂ(‘)
— 5 sinf(t)e PO
lp2(2)) = 1 cos 0(1) ,
Lo ip(t)
75 Sin 0(t)e
sin? &1 =iA®)
1 .
lps(1)) = | —558inb(@) |. (6)
os? %e"‘g(’)

According to Lewis-Riesenfeld theory, instead of
directly solving the time-dependent Schrodinger equa-
tion 9|y (¢t))/0t = H(t)|y(t)), which is hard, the solution
to it can be expanded by the orthonormal dynamical modes
@@, (1)) [57], that is,

(@) = Zc ¢, (1)). (7

In the above equation, C, are time-independent amplitudes,
|@,(t)) are the eigenstates of the invariant /(¢ ), and the phases

! ad
Otn(t)=/ (%(t/)liy—H(t’)lwn(t’))dt'. (®)
0 t

Moreover, by calculation one can find that a; (#) = 0 and v (¢)
is always equal to —a3(t), i.e., oj(t) = —a3(t) = «(t), with
a(t) being the common value. From Eq. (7), one can see
that the evolution driven by H(¢) can be divided into three
orthonormal dynamical modes e ®|¢,(t)), withn = 1, 2, 3.
Because analyzing one single dynamical mode is easier than
analyzing the interference of these modes and our aim is to
realize the population transfer from |—1) to |41), we here
set |¢1(0)) = (1,0,0)7, |2(0)) = (0, 1,0)7, and |g3(0)) =
(0,0, 1)” and plan to let the transition from |—1) to |+1)
evolve along the first dynamical mode. Note that 7~ above
means the transpose of the matrices and the states |¢,(0)) are
written in the basis {|—1), |0), |+1)}. With the calculated val-
ues of «,(¢) and the setting of |¢,(0)), the evolution operator
U(t, 0) can be written as

3
Ut,0)="2 & Vlg,(0)) (ga(0)]

n=1

cos? fe~i(F= —%2 sinfe~# sin® %e‘i(ﬁJ”‘)")

= \/Lj sin fe'® cos 6 _\/Li sinfe " |,
n? §elfte le sin Oe'f s? SeltPm)

)

where «, 8, and 6 have been used to represent «(¢), (), and
6(t) for conciseness.

Until now, we have parameterized the evolution operator
U (t, 0) by expressing it with «(¢), B(t), and 0 (¢). We next will
analyze the influence of noise on the population transfer with
the help of the Dyson series and, based on the analysis, give an
approach to realize accurate population transfer. Specifically,
we expand the practical final state to the second order with
the help of the Dyson series and U (¢, 0) in Eq. (9) and define
a space curve which can describe the evolution of the system.

For the three-level spin system, the dominant noise is the
fluctuation of the magnetic field, which results from the influ-
ence of the environments and the imperfection of magnetic
control. Generally, the fluctuation of the magnetic field is
much slower than the typical operating time, allowing one to
use the quasistatic noise model to describe it. Moreover, due
to the linear dependence of the energies |+1) on the magnetic
field, the influence of the fluctuation of the magnetic field can
be further seen as frequency errors. After taking the dominant
noise into account, which can be treated as frequency errors,
the Hamiltonian of the three-level spin system turns into

H'(t) = H(@t) + 8K, (10)

where § represents the strength of the frequency errors and it
is sufficiently small compared to those of the driving fields.
In this case, the term 6K, can be seen as a perturbation to the
Hamiltonian H (¢). By using the Dyson series, we expand the
practical final state |'(T)) to the second order,

T
[Y'(T)) = ¥(T)) —i3A dtU(T, K|y (1))

T t
—82/ dt/ dt'U(T, KU (t, 1)K |y ()
0 0

where | (¢)) is the unperturbed state and U(s,t) =
> 0 1Un(8)) (W (1) is the unperturbed evolution operator, with
|, (1)) = e ®|g,(t)) representing the orthonormal dynam-
ical modes. Recall that we plan to let the transition from
states |—1) to |+1) evolve along the first dynamical mode,
which means the unperturbed state |y (¢)) would be | (¢)).
With the unperturbed final state described by | (7)) and the
practical final state |'(T)) described by Eq. (11), the qual-
ity of the population transfer can be assessed by the fidelity
F = [(Y1(D)|¥/'(T))|?, and it reads

’\/1_522

n#l

2

/ dt (Y1 (O|K: (1)) (12)

where the second term is the noise term, reflecting the in-
fluence of the frequency errors on the population transfer.
From the above equation, one can see that if the noise

term Zn# |f0T dt(lm(t)|KZ|1pn(t))|2 can be suppressed, the
fidelity will approach 1, and accurate population transfer in
the presence of noise can be realized. For the convenience of
subsequent discussions, we define an operator m(t) as

t
m(t)=/ U'(t', 0)K.U(t', 0)dt'. (13)

0
One can verify that if m(T)=0, the noise term
St | fy At OIK I, @) will  be  suppressed,
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Substituting Egs. (3) and (9) into Eq. (13), one finds that
the operator m(t) can also be expanded with spin-1 angular
momentum operators, that is,

m(t) = x()K, + YK, +z()K, =r(t)- K. (14

In the above equation, x(t)= %Tr[me(t)], y() =
%Tr[Kym(t)], and z(t) = %Tr[sz(t)] are the expansion
coefficients; K, K, and K, are spin-1 angular momen-
tum operators described by Eq. (3). Correspondingly,
r(t) = (x(t), y(t),z(t)) is the coefficient vector, and
K = (K., K,, K;) is the vector composed of spin-1 angular
momentum operators. The above equation tells us that
the operator m(t) can be completely described by the
three-dimensional space curve defined by

r(1) = x(1)é; + y(1)é, + z(1)é; 15)

because K., K, and K are fixed matrices, where é,, é,, and
¢, are orthonormal vectors in the three-dimensional Euclidean
space.

The space curve r(¢) defined above induces geometric
formalism for robust population transfer, and by using ge-
ometric formalism, we obtain the main result of our paper.
To realize robust population transfer, one needs to satisfy two
conditions. (i) The noise term in Eq. (12) can be suppressed,
i.e., m(T) = 0. (ii) The desired population transfer is realized
in the ideal case; that is, the transfer from |—1) to |+1) can
be driven by the Hamiltonian H (¢). It turns out that both of
these conditions can turn into conditions on the space curve
r(¢). More importantly, by further calculating the curvature
and torsion of the space curve r(t), one can get Q(t), A(t),
and ¢ ().

We first show that condition (i) can turn into a condi-
tion on the space curve r(¢). Since m(0) =0, the space
curve starts at the origin r(0) = 0. According to Eq. (13),
the condition m(T) = 0 turns into r(7) = 0. This condition
tell us that if the space curve r(¢) is closed, the noise term
Zn# |f0T dl‘(lﬁl(l‘)|KZ|l//n(I))|2 can be suppressed. We next
discuss condition (ii). To this end, we apply the parameterized
evolution operator U (¢, 0) in Eq. (9) to the initial state |—1).
As desired, the system evolves along the first dynamical mode
[¥1(2)), that is,

cos? @e”’ﬁ(’)

Ssiné@®) |, (16)
sinz@eiﬁ(’)

Y (@©) = [y (0)) = &©

To fulfill the population transfer, the final state |y (7)) should
be |+1). This gives us the condition

00)=0, O6(T)=m. 17)

The above condition does not put special conditions on r(z),
but it constrains r(¢), the derivative of r(¢) with respect to time
t. To see this, one can use Eqs. (13)—(15) to calculate r(¢), and
the result reads

r(t)=—sinO(t)coso(t)é; — sin6(t) sin o (t)éy, + cos O(t)é;.
(18)

The length of r(¢) is unity, implying that r(¢) is the tangent
vector of the curve and r(¢) is the parametrization of the curve

by the arc length. Substituting Eq. (17) into Eq. (18), one can
see that the condition in Eq. (17) turns into

r(0)=(0,0,1), ©(T)=(0,0,-1), (19)

which means that the tangent vectors of the space curve r(t)
att =0andr =T are fixed.

In the previous paragraph, we showed conditions (i) and
(ii) can turn into conditions on the space curve r(z); that is, the
space curve r(z) must be closed, and the tangent vectors of the
space curver(t)att = 0 and ¢ = T should be r(0) = (0,0, 1)
and r(T) = (0, 0, —1). In the following, we will show that by
calculating the curvature and torsion of the space curve, one
can get Q(¢), A(t) and ¢(¢).

Because Eq. (13) contains the evolution operator U (z, 0),
m(t) contains all the information to describe the evolution.
This point makes it possible to obtain €2(¢), A(¢), and ¢(¢) by
calculating the curvature and torsion of the space curve r(z).
By calculation, the derivatives of m(t) are

m(t) =¥@)-K =U'(t, 0)K.U(t,0), (20)
m@t) =t@)-K =iU'(t,0)[H(), KUt 0), 21)

mt)=r@)-K=-U"(t,0)H®[H(), KUz, 0)
+iU™ (¢, 0)[H(), KU (t, 0)
+ U (¢, 0)[H (), K.JH (1)U (2, 0). (22)
Substituting Eq. (1) into Eq. (21), one can find that Q(z) is
equal to the curvature x(¢) = ||F(z)|| of the space curve r(z),
ie.,
Q@)= IlH@®), Kllr = [F@)Il- (23)
In the above equation, the scaled Frobenius norm of matrices

is defined as |m|fF = /Z:'_j |m;j|2/ﬁ, which is invariant

under unitary equivalence transformations of m. Next, using
the expressions of ri(t), fi(t), and m(t) in Egs. (20)—(22), one
can obtain

iTr{M(t)ﬁi(t)iﬁ(t)}
Im(t), m@O1Z

The above equation can be rewritten by using the identities of
spin-1 angular momentum operators:

. Tr{mmn(t )i )i ()}

PO = A0 =50, molE

3 Tr{l(), ()i}

B [[in(e), ()17

__aTrliEe) < E@1 - K)F @) - KD)

i) x ¥(6)] - K12

_ k@) x @) - F()

() x E(1)]|2

which is just the torsion 7(¢) of the space curve.

dt) — A(t) = — 24)

) (25)

III. DISCUSSION OF ROBUSTNESS

While the general idea of our paper is given in the previ-
ous section, we will give a concrete example to demonstrate
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FIG. 2. The energy diagram of the nitrogen-vacancy center. Our
aim is to drive the transition between states |m, = —1) < |m, =
+1), with |m; = 0) being an intermediate state. § describes the
frequency errors resulting from the fluctuation of the magnetic field.

the feasibility of the general idea in this section. Specifi-
cally, we will demonstrate the specific realization procedure
of our geometric-formalism-based robust population-transfer
scheme with the ground-state population transfer in the N
nitrogen-vacancy center. We also numerically simulate the
performance of our scheme in practical scenarios and compare
it with those of SRT, STIRAP, and conventional STA-based
schemes.

Consider a N nitrogen-vacancy center in a high-purity
type-Ila diamond whose host N nuclear spin is polarized
[58]. This system has a spin-triplet ground state |m; = 0)
and |m; = £1). The degeneracy between |m; = £1) can be
lifted by applying an external magnetic field B, along the
symmetry axis of the nitrogen-vacancy center, so the ground
state of the nitrogen-vacancy center can be described by a
V-type system, as shown in Fig. 2, where the transitions
|my = 0) < |my; = £1) are dipole coupled and the transition
|my = —1) <> |m; = +1) is dipole forbidden. Our aim is to
realize the population transfer from |m; = —1) to [m; = +1)
with the help of the state |m; = 0).

The fidelity of the population transfer in the nitrogen-
vacancy center is limited mainly by systematic magnetic
errors and dephasing. Systematic magnetic errors and dephas-
ing are the dominant noise for the nitrogen-vacancy center,
and they can be uniformly described by Eq. (10). System-
atic magnetic errors in the nitrogen-vacancy center result
from imperfect control of the magnetic field used to split
states |m; = £1). Dephasing in the nitrogen-vacancy center
is principally caused by the hyperfine interaction with the
surrounding BC nuclear spin bath [59-63], which can be
described by a random local magnetic field (Overhauser field).
Generally, the dynamical fluctuation of the local Overhauser
field driven by the pairwise nuclear-spin flip flop is much
slower than the typical operating time, making the intensity of
the local Overhauser field a random time-independent variable
[62—65]. Due to the linear dependence of states |m; = £1) on
the magnetic field, the resultant influence of the systematic
magnetic errors and dephasing on the nitrogen-vacancy center
can be seen as frequency errors and therefore can be described

by Eq. (10).
As illustrated in Sec. II, to realize the population trans-
fer from the initial state |i;) = |m; = —1) to the final

state |¢) = |mg = +1) while canceling out the frequency

0.8

0.6
7

0.4 A

0.2 A

0
0 ’w/oz

Y

FIG. 3. The curve r(d) in the three-dimensional Euclidean space.
The color changes from light to dark as the parameter increases.

errors to the second order, we need to find a closed space
curve whose tangent vectors at the starting and ending
points are along the positive z axis and negative z axis, re-
spectively. Here, we provide a space curve satisfying these
conditions, and it is constructed as r(d) = (1 — d)ri(d) +
dry(d), in which r1(d) = /2 sin(rd)(0, sin? (%), cos*(Z)),
r2(d) = «/2sin(rd)(cos? (%), 0, sin*(ZL)), and d € [0, 1].
The shape of the curve r(d) is shown in Fig. 3. It is worth
noting that r(d) is not parameterized by the arc length, and
therefore, when using it to calculate the control parameters,
one should first transform r(d) into the form parameterized by
the arc length, i.e., r(d) — r(¢). The control parameters 2(z),
A(t), and ¢(¢) can be obtained by calculating the curvature
and torsion of the space curve r(r). According to Eq. (23), one
can obtain the common Rabi frequency 2(¢) of the driving
fields, which is shown in Fig. 4(a). According to Egs. (24) and
(25), one can get information about A(¢) and ¢(¢). Specifi-
cally, if one changes only the detuning A(#) while keeping
the phase ¢(¢) constant during the evolution, the detuning
can be obtained from the torsion of the space curve, which
is shown in Fig. 4(b). On the other hand, if one changes only
the phase ¢ (¢) of the driving field while keeping the detuning
A(t) = 0 constant during the evolution, the derivative of the
phase ¢ () can be obtained from the torsion of the space curve,
and correspondingly, by integrating the torsion of the space
curve with respect to time ¢, one can obtain the phase ¢(¢) of
the driving fields, as shown in Fig. 4(c). So one can choose to
change the detuning or phase of the driving fields to realize the
population transfer, bringing convenience to the realization in
experiment. Without loss of generality, we consider the case of
changing the phase ¢(#) while setting the detuning A(r) = 0
all the time.

To show the efficiency of our scheme, we will numeri-
cally simulate the performance of our scheme and compare
it with those of SRT, STIRAP, and conventional STA-based
schemes. To make the simulation closer to reality, we con-
sider not only the dominant noise that comes from systematic
magnetic errors and dephasing and can be treated as fre-
quency errors but also the subordinate noise coming from
the longitudinal spin-relaxation process. To take both the
dominant and subordinate noise into account, we use the
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FIG. 4. The control parameters of the driving Hamiltonian in our scheme. (a) The Rabi frequencies of the pump and Stokes fields Q_(¢) =
Q)= V29(1). (b) The detunings of the pump and Stokes fields A_(z) = —A_,(#) = A(z). (c) The phases of the pump and Stokes fields
¢_(t) = —¢(t) = ¢(t). The unit time 7 is set as 2.116 us, corresponding to the arc length of the curve r(z).

following quantum master equation dp/dt = —i[H' (1), p] +
Z]kF]k(a Pk — 2{a,ka .« p}), where H'(t) is the to-
tal Hamlltoman 1nclud1ng the frequency errors and the
Lindblad operators aj, = |ms; = j){ms; = k| represent the
spin-relaxation process, with rate I'j; corresponding to the
longitudinal spin-relaxation time 7; of the nitrogen-vacancy-
center electron spin. Here, we adopt I'jo =T =T'_j9p =
['o—1 = I' = 2 kHz, which is proper for nitrogen-vacancy cen-
ters [606].

As mentioned before, SRT, STIRAP, and conventional
STA-based schemes can realize population transfer for uncou-
pled or weakly coupled spin states. SRT is usually realized
by applying two highly detuned driving fields with the
intermediate-level detuning A and Rabi frequency Qg =

Q.. In the limit of large detunings, Ay > Qqs, Qg the
intermediate level is scarcely populated, and therefore, the
system reduces to a two-level system consisting of levels
|my, = +1) and |m; = —1) with an effective Rabi frequency
Qsrt = Qe+ Q- /(2| Agre]). Then the population transfer be-
tween states |my = —1) < |my = +1) can be implemented
approximatively. STIRAP uses two partially overlapping res-
onant Raman control pulses with the Gaussian envelopes
Qs (1) = Qye~(7#+7/29" The pulse separation A = p_ —
1y, and pulse width o is set to satisfy the adiabatic con-
dition. The population transfer between states |m; = —1) <
|my = +1) can be realized along the adiabatic eigenstate. As
a typical example of conventional STA-based schemes, we set
the parameters in Eq. (9) as « =0, 8 =37/2,0(t) = nt/2.
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FIG. 5. The performance of the population transfers, where the populations of states |m, = —1) (dashed blue line), |m; = 0) (dotted black

line), and |mi

= +1) (solid red line) are presented. The top row shows the simulated results of the ideal case. The bottom row shows the

simulated results under the influence of the frequency errors and the longitudinal spin-relaxation process, with § = 0.5MHz and I" = 2kHz.
(a) and (e) The simulation results for SRT with Q. = Q. = 24/27 MHz and Ay = 87 MHz. (b) and (f) The simulation results for STIRAP
with Q¢ = 5MHz, A = u_ — u, = 3us, and o = 2 us. (¢) and (g) The simulation results for the conventional STA-based scheme with two
resonant drivings Qg = Qga. = V2r /2 MHz. (d) and (h) The simulation results for our scheme, with control parameters €2(¢) and ¢ () being
obtained from Figs. 4(a) and 4(c), respectively, and proper scaling being implemented to make the total evolution time equal to 2 us.
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FIG. 6. Comparison of the robustness of SRT (dashed blue
line), STIRAP (dash-dotted green line), the conventional STA-based
scheme (dotted purple line), and our scheme (solid red line) against
the frequency errors, with the population Py, of state |m, = +1)
at the final time 7 being the vertical axis and the strength of the
frequency errors being the horizontal axis.

Using the reverse calculation, we can obtain the Rabi frequen-
cies of the STA control pulses Qg+ = Q. = V2r /2 MHz.
With the increase of time, the parameter 6(¢) changes from
zero to . At the final time t = 2 us, the population transfer
is realized.

Our simulation results are shown in Figs. 5 and 6. Fig-
ure 5 shows the performance of the population transfers,
while Fig. 6 shows the robustness against the frequency
errors. From Figs. 5(a), 5(e), and 6, one can see that the
presence of the frequency errors can seriously affect the per-
formance of SRT. From Figs. 5(b), 5(f), and 6, one can see
that STIRAP is partially robust against the frequency errors;
the longitudinal spin-relaxation process during the longtime
adiabatic evolution reduces the fidelity of the population
transfer. From Figs. 5(c), 5(g), and 6, one can see that the
conventional STA-based scheme is sensitive to the frequency

errors. From Figs. 5(d), 5(h), and 6, one can see that our
scheme can achieve high-fidelity population transfer under
the influence of both the frequency errors and the longitu-
dinal spin-relaxation process. Moreover, Fig. 6 shows that
our scheme is more robust to the frequency errors than SRT,
STIRAP, and conventional STA-based schemes. So the simu-
lation results show the superiority of our scheme for realizing
population transfer under the influence of noise.

IV. CONCLUSION

In conclusion, we have shown how to realize accurate
population transfer between uncoupled or weakly coupled
spin states, even under the influence of noise. In our scheme,
the population transfer can be implemented quickly, and it is
robust against frequency errors, the dominant noise in spin
systems. Moreover, our scheme is simple to implement. In
our scheme, one needs to find only a closed space curve r(t)
starting and ending at the origin, with the initial and final
tangent vectors being r(0) = (0,0, 1) and r(T) = (0, 0, —1),
respectively. The above conditions are not strict, so that many
space curves will be found. One could choose a well-behaved
space curve as the candidate and calculate its curvature « (¢)
and torsion 7 (¢) to give the control parameters 2(¢), A(?), and
¢(t). Above, “well behaved” means the space curve can give
easily realized 2(¢), A(¢), and ¢(¢). To show the efficiency
of our scheme, we numerically simulated the ground-state
population transfer in the '>N nitrogen-vacancy center and
compared our scheme with SRT, STIRAP, and conventional
STA-based schemes. The results showed that our scheme can
still achieve high fidelity under the influence of noise. We
hope our scheme can shed light on the accurate population
transfer in spin systems.
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