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We investigate competing entanglement dynamics in an Ising spin chain coupled to an external central ancilla
qudit. In studying the real-time behavior following a quench from an unentangled spin-ancilla state, we find that
the ancilla entanglement entropy SvN ;A tracks the dynamical phase transition in the underlying spin system. In
this composite setting, purely spin-spin entanglement metrics such as mutual information and quantum Fisher
information (QFI) decay as the ancilla entanglement entropy grows. We define multipartite entanglement loss
(MEL) as the difference between collective magnetic fluctuations and QFI, which is zero in the pure spin chain
limit. MEL directly quantifies the ancilla’s effect on the development of spin-spin entanglement. One of our
central results is that we find Mel (t ) ∝ eSvN ;A (t ). Our results provide a platform for exploring composite system
entanglement dynamics and suggest that MEL serves as a quantitative estimate of information entropy shared
between collective spins and the ancilla qudit. Our results present a framework that connects physical spin
fluctuations, QFI, and bipartite entanglement entropy between collective quantum systems.
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I. INTRODUCTION

Entanglement is the most fascinating and perplexing
feature of composite, many-particle quantum systems. Un-
derstanding its origin in physical platforms, whether due
to particle statistics, correlations, and/or dynamical inter-
actions, lies at the heart of quantum matter, sensing, and
algorithm development [1–3]. This pursuit is being driven
by technological advances in cold-atomic condensates [4–8],
trapped-ion platforms [9–18], cavity QED [19–22], and su-
perconducting circuits [23,24], which have brought dynamical
quantum systems to the forefront of experimental and the-
oretical research. These experiments allow us to study how
entanglement develops from purely classical initial states in
the presence of quenched interactions, dissipation and driving,
and decoherence. Here, many fundamental questions regard-
ing entanglement remain unanswered such as determining its
relationship to physical properties as well as understanding
the connections among the various methods for measuring
entanglement.

To quantify entanglement, we work along two fronts: (i)
through a partitioning structure that measures entanglement
entropy, providing an information theoretic characterization
of the number of entangled degrees of freedom (DOF) shared
between subsystems, and (ii) through holistic multipartite
entanglement measures that capture collective quantum corre-
lations. Entanglement entropies have proven to be an essential
theoretical diagnostic for characterizing quantum phases
[25,26], detecting topological order [27,28], and understand-
ing nonequilibrium quantum dynamics and thermalization in
pure quantum systems [29–31]. From the experimental side,
entanglement entropy remains one of the most challenging
measures, as entropy does not remain an entanglement mono-
tone when subject to loss, dissipation, and interaction with
an environment. Few or multiparticle correlators accessible

to realistic experimental platforms can only be related to
entropy in fine-tuned integrable models [32–34]; otherwise
entropy calculations require full-state tomography, robust
multicorrelation measures that provide a lower bound esti-
mate [35,36], or many-body interference [37,38]. On the other
hand, multipartite entanglement measured through quantum
Fisher information (QFI) serves as an entanglement wit-
ness regardless of classical entropy contributions, and in
pure quantum systems it can be measured through collective
single-particle operators [6,39]. In thermal equilibrium, QFI
is directly related to the dynamical response function of few-
particle operators [40–42]. Though entropy and QFI provide
qualitatively different perspectives on entanglement, they are
essential parts of the same phenomenology: phase transitions,
quantum thermalization, and many-body localization.

QFI and entropy have been studied extensively with re-
gards to quantum information dynamics in nonequilibrium
and open environments. Each provides a unique perspective
regarding the transition from semiclassical to quantum be-
havior as well as establishing myriad thermalization physics
of quantum systems. Despite their popular theoretical inves-
tigations, few direct connections between the two have been
established.

Recent theoretical works have revealed qualitative re-
lations connecting correlations, entanglement entropy, and
QFI in a purely semiclassical perspective for collective spin
and light-matter systems [43]. In such systems, it is well
known that collective light-matter entanglement is neces-
sary for generating effective long-range spin Hamiltonians
and achieving highly squeezed, multipartite entangled spin
states [20,22,44–46]. Though we have this heuristic under-
standing, no numerical connection between QFI and entropy
has been interrogated. Theoretical studies examining the
fate of entanglement subject to classical entropy suggest
that strong connections between QFI and entropy exist and
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FIG. 1. Spin-ancilla schematic with B and A representing the 1D
spin chain and multilevel ancilla, respectively. Ising spin interactions
given by J , magnetic field h, and spin-ancilla coupling λ. (b) Cartoon
representation of the dynamical quench from an initially polarized
spin state. Entangled region across the center boundary (green) grows
in time as quasiparticles within a distance t/vB are transmitted be-
tween the two bipartite regions. (c) Schematic representation of our
key finding in the interacting spin-boson composite system; operator
fluctuations �ÔB(t ) and the corresponding quantum Fisher informa-
tion f (ρB(t ), ÔB ) within the spin subsystem begin to deviate in time
as external entropy SvN ;A grows (red). This discrepancy defined at
MEL (green) develops proportionally to the eSvN ;A (t ). The auxiliary
bosonic system entanglement oscillates like the characteristic level
spacing ωc..

their dynamics are intimately related [47–50]. Beyond these,
few works directly investigate the dynamical connection be-
tween entropy and multipartite entanglement precisely in fully
quantum systems away from integrability and semiclassi-
cal approximations. There are questions that remain to be
answered: How do composite systems share quantum infor-
mation, what are the implications for subsystem entanglement
content, and what are the roles of various quantum informa-
tion metrics?

In this paper, we provide general insights with regards to
these questions by studying local quantum systems beyond
integrability. We use numerically exact methods to study the
entanglement dynamics of a quenched Ising spin chain with
weak exchange with a multilevel ancilla qudit as depicted in
Figs. 1(a) and 1(b). The Ising model provides a highly studied,
integrable starting point for understanding nonequilibrium
entanglement dynamics, where entropy and QFI have been
thoroughly characterized in various limits. The ancilla then
provides an environment through which the spin ensemble
can undergo loss and decoherence while at the same time
allowing us to interrogate the ancilla DOF as it relates to the
reduced, spin subsystem. Interestingly, such a central mode re-

lates to cavity quantum electrodynamics (cQED) experiments
[51,52], central spin or dressed cavity in cold atoms [53–56]
or trapped ions [57], and nuclear magnetic resonance (NMR),
and is a common element of quantum computing codes em-
ploying an oracle vertex in a qubit network [57–59]. In what
follows, we briefly outline the key results of our numerical
investigation, review the entanglement metrics employed in
this paper, and finally discuss the microscopic Hamiltonian
and resulting dynamics.

II. SUMMARY

In this paper we analyze the subsystem entanglement
dynamics of a quenched Ising spin system with each site
uniformly coupled to a qudit ancilla. We specifically focus on
(i) the ancilla entanglement entropy, SvN ;A, (ii) the 1

2 -chain
mutual information, I = SvN ; L

2
− 1

2 SvN ;A, and (iii) the QFI

(F ) and spin fluctuations, F (ρ, Ŝμ) � �Ŝ2
μ. We work in the

large bosonic limit where results are converged with respect
to the bosonic dimension (q � L). Without any interaction
between spins and ancilla, we observe the dynamical quantum
phase transition (DQPT) [60] associated with the generalized
Gibbs ensemble (GGE) description of the Ising spins and the
transition from area- to volume-scaling 1/2-chain entangle-
ment entropy, SvN ∼ O(L), where L is the number of spins
in the one-dimensional (1D) chain [61–65]. We similarly find
that the long-time saturation values of the transverse and
longitudinal spin fluctuations agree with previous analytic
results.

We find surprising physics away from integrability in the
full spin-ancilla model, which admits simple intuitive ex-
tensions from the isolated Ising spin chain limit. For weak
coupling between spins and ancilla we observe the following:

(i) Ancilla entanglement entropy SvN ;A tracks the un-
derlying spin DQPT, which persists under nonlocal ancilla
coupling.

(ii) SvN ;A scales like ∝ log L.
(iii) MI and QFI within spins decrease monotonically with

coupling as expected between system and environment.
(iv) We define this discrepancy between the variance in

spin-spin correlations (fluctuations) and spin-spin multipartite
entanglement (QFI) as multipartite entanglement loss (MEL).

(v) Entanglement loss witnessed by MEL(t ) develops pro-
portionally to eSvN ;A(t ) (illustrated in Fig. 1(c)).

Our most significant finding is that the corresponding
growth and decay of entanglement within the ancilla and
spins, respectively, are intimately connected. We find that the
discrepancy between spin-spin fluctuations and QFI captures
the entanglement profile of the ancilla and provides a strong
estimation on information transfer. This formulation comes
from a complementary approach to previous results, where
we find an identical logarithmic relationship that connects
correlations and entanglement [43]. This relationship not only
provides a strong estimate in the long-time limit, but ac-
curately captures the magnitude of real-time dynamics. We
expect that this small, finite ancilla behavior captures essen-
tially semiclassical entanglement features of the collective
interacting spin system and provides an exciting frame to
understand thermalization of many-body systems with their
environment.
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III. ENTANGLEMENT METRICS

The key measures of entanglement in this work are en-
tanglement entropies (von Neumann and mutual information)
and multipartite entanglement (spin fluctuations and quantum
Fisher information). The former two rely on bipartitions of the
Hilbert space to calculate entropy, while the latter characterize
holistic entanglement content shared between eigenvalues of
collective few-body operators.

The von Neumann entanglement entropy taken between
two regions (A,B) is calculated as

SvN = −
∑

k

λk log(λk ), (1)

where λk are eigenvalues of the reduced density matrix
(RDM) obtained by integrating out either subsystem A or B.
Though insightful in theoretical investigations, SvN is not an
entanglement monotone for open quantum systems. In this
scenario where we employ a spin chain and an ancilla, the
ancilla serves as an environment when considering the en-
tropy in the spin chain. Therefore, we calculate the 1

2 -chain
MI. For a three-body example defined by total Hilbert space
H = Ha ⊗ Hb ⊗ Hc the mutual information between ab is

I (ab; c) = SvN (a|bc) + SvN (b|ac) − SvN (ab|c), (2)

where SvN (i| j) is the standard bipartite entanglement en-
tropy of reduced space i, explicitly tracing out j. Mutual
information in general characterizes quantum and classical
correlations that develop between regions a and b, and purely
quantum correlations in closed systems [66]. This suffices
in isolating two subregions in a multipartite design and pro-
vides a direct measure of the number of entangled degrees
of freedom shared between subregions [67]. MI has been
the focus of many dynamical studies analyzing the develop-
ment of short- to long-range correlations and the extent of
quantum scrambling following a quench in integrable, lo-
calized, and thermalizing quantum systems [67–71]. It has
similarly found use in studying simple, dissipative systems
where MI qualitatively shows a reduction in steady-state
quantum correlations and area-law scaling entanglement
that decreases with increasing system-bath coupling [49,50].
Though MI does not quantitatively capture purely quantum
correlations in the dissipative limit, here in our tripartite de-
sign we can isolate the correlation development within the
spin system in the presence of quantum and classical corre-
lations with the ancilla environment.

QFI, on the other hand, serves as an entanglement wit-
ness regardless of purity and environment [72–74]. In a pure
quantum state it is precisely equal to collective fluctuations
witnessed by operator Ô:

F (Ô, ρ) = 2
∑
α,β

vα − vβ

vα + vβ

|〈uα|Ô|uβ〉|2 � 4〈�Ô2〉, (3)

where uα and vα are the eigenvectors and eigenvalues of the
density matrix ρ, respectively. QFI originates from metro-
logical studies and refers to the precision of a measurement
conditioned on a global operator Ô and state ρ. Given a
unitary transformation of the form Û = eiÔθ and ρθ = UρU †,
the precision in estimating parameter θ is constrained by the

quantum Cramér-Rao bound �θ2 = 1
F (Ô,ρ)

. For pure states,
the uncertainty in θ is related to the uncertainty in its con-
jugate operator. For spin systems and an operator defined as
Ô = ∑

i �si · n̂i, QFI is identical to the spin fluctuations about
the vector �Sn on the Bloch sphere. For mixed states, F (Ô, ρ)
must be written in terms of an eigendecomposition of the
initial mixed density matrix. In general, different operators
will present different bounds on Eq. (3), and there has been
no analytic insight into determining how this bound can be
made tighter in arbitrary quantum systems away from purity.

Beyond metrological optimization, QFI witnesses multi-
particle entanglement within a state ρ and even more recently
in the detection of topological quantum phases [75,76]. The
Fisher information density f (Ô, ρ) ≡ F (Ô, ρ)/N given N
constituent particles and Ô being a sum over local site op-
erators provides that for f > k the system is at least (k +
1)-partite entangled. Determining the true multiparticle entan-
glement of a system requires optimization over the set of all
possible Ô.

Though QFI depends on the choice of collective operator
Ô, general relationships exist that connect the development
of multipartite and bipartite entanglement. Entropy provides
a logarithmic measure of how spread a quantum state is
throughout the full Hilbert space, while multipartite entangle-
ment examines the development of off-diagonal components
of the density matrix. For unentangled initial states, entan-
glement entropy generically grows proportionally to t unless
subjected to localization physics, integrability, or conserva-
tion laws, while QFI and spin fluctuations grow like eαt with
some phenomenological exponent α. In quadratic bosonic or
fermionic systems this heuristic relation is exactly propor-
tional; SvN (t ) ∝ logF (Ômax, ρ(t )), where Ômax is a generic
operator that witnesses the maximal fluctuations at each
instance in time. This definition relies on translational in-
variance and a homogeneous collective system [43,77,78].
Beyond such systems, for arbitrary Hermitian matrices, the
equality in Eq. (3) is believed to similarly develop like ∼eSvN ;B ,
but has only been characterized in random matrices with
Hilbert spaces O(2)-O(102) [79]. Beyond these conditions no
analyses have been performed to relate bipartite entropy and
QFI with regards to general composite quantum systems and
physical, well-characterized operator dynamics.

In this work we consider the simplest realization of an
interacting composite system. We study an interacting spin-
ancilla system to illuminate how observables and information
in interacting quantum spins behave under exchange with a
bosonic ancilla. To capture the difference between fluctuations
and true multiparticle entanglement defined in Eq. (3) over the
reduced spin density matrix, we define the MEL as

Mel (Ô, ρ) = 〈�Ô2〉 − 1
4F (Ô, ρB ). (4)

This counts the difference in fluctuating constituent particles
from the internal contribution to the multiparticle entangle-
ment, such that for a pure system it returns zero missing
entanglement. The operator Ô is specifically conditioned on
the total Hilbert subspace spanning the system and ancilla
Ô ∼ B̂ ⊗ Â, while in defining QFI, we trace over the ancilla
degrees of freedom in both Ô and ρ. We specifically focus
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on Ŝn ⊗ Î for collective spin magnetization in the system and
identity in the ancilla.

Provided we are working with an essentially free-fermion
model (Jordan-Wigner transformation of the 1D Ising model)
and a quadratic fermion-boson coupling, it would be interest-
ing to observe a similar relationship between fluctuations and
entanglement entropy as mentioned above.

Our focus in this paper is understanding how the inequality
in Eq. (3) (MEL) evolves in a specific model of an interacting
spin system coupled to an ancilla described below. We observe
for the first time a strong quantitative connection between
MEL and SvN :A:

Mel (ρ, Ŝmax) ∝ eSvN,A − 1. (5)

Ŝmax refers to the maximal MEL optimized over collective
spin observables. Here we cannot perform such an extensive
search over operators but find very strong agreement with
simple collective operators in a well-characterized model. In
the pure spin system limit, there is no discrepancy between the
spin fluctuations and the corresponding QFI measured over
the reduced density matrix of the spin sector. Here Mel = 0,
and the entanglement entropy with the system must similarly
be zero. In the opposing limit where spin fluctuations �S2

n ∝
L2 and F (Ŝn, ρB ) = 0, this restricts the ancilla entanglement
to be at most O(log L). We expect that Eq. (5) is only accurate
when the environment experiences an effective semiclassical
system or, in other words, is coupled to collective degrees of
freedom to the quantum system of interest. In a completely lo-
cally thermalizing regime, the entropy of the quantum system
should scale like O(L), so observing this semiclassical result
in a local quantum system is surprising.

IV. MODEL

The transverse-field Ising chain (TFIC) is a paradigmatic,
exactly solvable example of a 1D quantum phase transition
(QPT) [80] and has garnered significant recent interest in the
study of entanglement and scrambling dynamics [81], dynam-
ical phase transitions [82], and quantum thermalization [63].
This model has been experimentally realized using Rydberg
atoms when interactions beyond nearest neighbors can be ne-
glected on the relevant timescales [7,8,83]. The Hamiltonian
for the model is

HTFIC = −J
L∑

i=1

σ z
i σ z

i+1 + h
∑
i=1

σ x
i , (6)

where periodic boundary conditions have been employed such
that σ

μ
L+1 = σ

μ
1 . This model exhibits a ground-state phase

transition at g = h/J = 1 that is in the same universality class
as the classical two-dimensional (2D) Ising model. The crit-
ical point gc separates two distinct phases, where for g < gc

the spins exhibit Z2 symmetry-breaking order with nonzero
longitudinal magnetization 〈σ z〉. For h > hc the spins are in
a paramagnetic phase with preferential alignment along the
transverse field. The system also exhibits a DQPT when the
system is prepared in an initial product state | ↑↑↑ · · · 〉z and
quenched across the ground-state critical field [82].

In our work we employ an ancillary, central qudit to probe
the TFIC. Depending on the underlying phase and trans-

port characteristics, novel real-time dynamics and long-time
behavior arise in the auxiliary system. The form of the spin-
ancilla interaction is a paradigmatic Dicke-Ising construction
that combines an essential model for light-matter interactions
and magnetic quantum matter represented by the following:

Hint = ωca†a + λ√
L

L∑
i=1

(a† + a)σ x
i , (7)

where a (a†) is a bosonic annihilation (creation) operator for
a single mode uniformly coupled to each spin with strength
λ and normalized by

√
L such that the effective spin-spin

interaction induced by the bosonic ancilla remains intensive.
The second term in Eq. (7) represents the rotation of a single
spin in exchange for the particle number within the ancilla.
Though here we specifically consider bosonic fields with finite
dimension q > L, the problem is identical to a large spin of
size S = d/2 with Zeeman splitting ωc.

We first address the general behavior of spin-ancilla ob-
servables and how they deviate from both the pure Ising and
the Dicke models. The general relationship between observ-
ables is obtained from the exactly solvable ground state in the
(J = 0) limit where the bosonic occupation N̂ is

〈N̂〉 ∝
〈
Ŝ2

x

〉
λ2

ωc
, (8)

where Ŝx = ∑
i σ

x
i . This can be readily observed by perform-

ing a unitary transformation on the Hamiltonian by translating
the bosonic creation and annihilation operators as

b̂ = â + λ√
Lωc

Ŝx. (9)

The resulting Hamiltonian has no spin-boson coupling and
can be treated as a classical Ising chain:

Ĥ = ωcb̂†b̂ + λ2

Lωc
Ŝ2

x + hŜx. (10)

The relevant timescale translating the exchange of spin and
bosons is the ancilla splitting ωc, which for all results in this
work is set to 2πJ/ωc = 12.6tJ . The system conserves total
Sx so when prepared in an eigenstate of Sx: ψ = |m〉 ⊗ |0〉,
where |0〉 represents bosonic vacuum, the spin system will
not undergo dynamics following a quench, while the bosonic
ancilla will fluctuate between |0〉 and |αm〉 at the characteristic
level splitting frequency. |αm〉 is a coherent state centered at
m2 λ2

ωc
. Once Ising interactions (|J| > 0) are included along

with the nonlocal central ancilla coupling, the model is no
longer exactly solvable, but we anticipate in the low-energy
regime that same characteristic behavior captures the Ising-
boson ground state and low-energy quenches. The spin-ancilla
interaction will shift the underlying ground state and dy-
namical quantum phase according to the effective mean-field
magnetic interaction λ2

ωc
. Greater details on the physics of

the Ising-Dicke model and magnetic phase transition in the
absence of a transverse field can be found in a recent work by
Rohn et al. [84].
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FIG. 2. I (a), spin-ancilla von Neumann entanglement entropy SvN,A (b), spin fluctuations �s2
{x,z} (c), and fQ along S{x,z} (d) as a function of

transverse magnetic field h/J and λ following a quench from unentangled spin-boson product state. (a) I grows like the number of excitations
present in the initial quench and saturates at high field at a value that scales with the system size. Entanglement saturation value decreases
with increasing λ and profile shifts to lower field h as ancilla modifies DQPT. (b) Ancilla SvN,A exhibits dynamical phase transition with a
peak near the finite-size resolved critical point and a saturation entropy that grows proportionally to λ in the paramagnetic phase. (c) �s2

z

grows similar to I; initially zero in the product state and saturates to a constant density ∼ 3. �s2
x remains constant as a function of h and λ.

(d) Longitudinal and transverse fQ monotonically decreases as a function of λ. (e) Finite size scaling in the paramagnetic phase h = 2.0 of
SvN,A(q = 30, λ2/ωc = 2.0) and I in the zero-coupling and strong coupling regime λ2/ωc = 2.0. I exhibits volume-law entanglement scaling
even in the presence of the external environment, while SvN,A shows slower growth with system size. (f) Maximum ancilla entanglement
entropy plotted as a function of ancilla dimension d for systems sizes L ∈ [4...14] and large couplings λ2/ωc = [2.0, 8.0, 12.5]. For small
ancilla d = 2, the maximum entropy is set by ancilla Hilbert space log 2. With increasing d the entropy grows initially ∝ log d but then
reaches a saturation value ∼ log L. System size L = 12, 8 for (a-c, d), finite ancilla dimension d = 40, J = −1, ωc = 0.5, and tJ ∈ [0, 50].

V. ENTANGLEMENT DYNAMICS

A. Long-time average entanglement

The spin-ancilla coupling makes the Ising Hamiltonian
nonintegrable, and in studying its dynamics we employ ex-
act diagonalization (ED) and a real-time evaluation of the
Schrödinger ordinary differential equation. We study how a
fully polarized, nonequilibrium product state behaves when
quenched by Eqs. (6) and (7). This study sheds light on how
the spin-chain QPT evolves under a highly nonlocal coupling,
how quantum fluctuations in many-body systems lead to even-
tual equilibration, and how composite information dynamics
develop as a result of this two-body (chain-ancilla) construc-
tion. We study the real-time dynamics of the full spin-ancilla
density matrix and measure spin-ancilla entanglement, spin-
spin mutual information, and the QFI contained in the spin
reduced density matrix.

We initially prepare the Ising spin chain and the an-
cilla bosonic system in an unentangled product state
|ψ (t = 0)〉 = |ψs〉 ⊗ |0〉 with |0〉 representing bosonic vac-
uum and an unentangled polarized state |ψs〉 = | ↑↑↑ · · · 〉.
A quench is then performed at t = 0 from the initial
wavefunction to (J = −1, h/J, λ) where we then vary h
and λ.

In the nonequilibrium quench scenario first ignoring the
ancilla λ = 0, the half-chain MI transitions from zero at
h = 0 toward a volume-law entangled state across a critical

magnetic field [Fig. 2(a)]. Deep into the polarized phase,
the initial state’s energy begins to lie within the center of
the spectrum, essentially becoming a highly excited pure
state (GGE) with extensively scaling entropy. Excitations
encoded into the initial nonequilibrium state propagate and
distribute entanglement [85]. The saturation in entanglement
occurs concurrently with the saturation in excitations as
exhibited by the steady-state domain wall count [18]. The
entanglement saturation value is an interesting focus of
study, where the scaling is indicative of the integrable or
nonintegrable character of the model and additionally a
signature of many-body localized systems [86].

Spin fluctuations and QFI (identical in the λ = 0 limit)
seen in Figs. 2(b) and 2(d) depict the same entanglement
growth, both saturating for quenches across h/J > 1. Though
entropy and multipartite entanglement both depict extensive
scaling entanglement in the saturated regime, the entangle-
ment entropy has a smooth crossover, in agreement with
previous results for larger systems, while QFI depicts a
second-order transition and peak about the ground-state crit-
ical point h = J . The �ŝ2

z results in Fig. 2(b) agree with
previous theoretical results in the paramagnetic regime that
show �ŝ2

z (h/J > 1, t = ∞) = 3 [87]. Further discrepancies
arise due to the difference in polarized vs Schrödinger-cat-
like-state initial spin state.

When additionally quenching the system with nonzero λ,
identical entanglement behavior is imprinted on the ancilla
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FIG. 3. Real-time entanglement dynamics. Entanglement metrics following a quench from the polarized state: MI(L/2), �sz(t )2, fQ(Sz ),
and SvN ;A. In the three rows, (a), (b), (c) correspond to λ2/ωc = {0, 0.63, 1.13}). (a) For λ = 0, MI, spin fluctuations and QFI grow with
time t ∼ L/vmax = 2.5/J , after which both oscillate about an average value that grows with field and saturates above the DQPT critical
point. As λ increases, SvN ;A grows in magnitude and similarly oscillates like the characteristic period given by the bosonic level spacing
12.6tJ . The maximum ancilla entanglement similarly reaches a saturation threshold across the DQPT. Increasing λ increases the initial MI and
spin-fluctuation growth rate but decreases saturation value for quenches into the polarized phase. The oscillations across all spin density matrix
measures (most dramatic across the DQPT in red) are most rapid for times t ≈ τ = 12.6tJ , the ancilla period. The feature of greatest interest
is the growing difference between �sz(t )2 and fQ(Sz ). In (a) we see that, up to numerical noise in measuring the diagonal operator Sz over the
spin reduced density matrix, the profiles are identical as expected. Moving to (b) and (c) the difference grows with λ regardless of spin phase.
System size L = 10, d = 30 and h values (0, 0.75, 1.5, 2.25, 3).

entanglement entropy [Fig. 2(c)], where long-time entangle-
ment grows toward the critical field and saturates across the
DQPT. The ancilla shifts the critical field and at moderate
coupling λ2/ωc decreases the relative entanglement surround-
ing the critical point, observed in Fig. 2(a). MI increases
slightly in the ferromagnetic phase as the underlying ground
state shifts to lower magnetic fields. In the saturated phase
h/J > 1, MI and QFI [Figs. 2(a) and 2(d)] are exclusively
removed from the spin subsystem, which leads to a monotonic
decrease in the saturation value with coupling. The decrease
in spin-chain entanglement occurs concurrently with growing
SvN between spins and ancilla. The most interesting observa-
tion is that this loss is not observed in the spin fluctuations
[Fig. 2(c)], where the saturation value maintains a fixed value
∼3. It is intuitive to think that saturated entangled DOF in
the paramagnetic quench share increasing information with
the ancilla with growing λ, removing previously saturated
spin-spin entanglement and redistributing excitations between
spin and ancilla. This is the same behavior observed in
the spin fluctuations and domain-wall density profiles, which
give credence to a possible relationship between excita-
tions and environmental entanglement. The most interesting
discovery is that MI continues to scale with system size
while spin-ancilla entanglement grows at a much slower rate
∼ log(L) regardless of coupling [Fig. 2(e)].

This picture persists even when varying the qudit size
[Fig. 2(f)]. As we vary the size of the ancilla Hilbert space
from d ∈ [2, 150], we see that the maximum ancilla entan-
glement entropy max[SvN ;A(t )] scales proportionally to log d
up to d ∼ 10-20. For small systems (L < 10), entropy satu-
rates with decreasing 1/d and remains relatively unchanged
with increasing coupling λ. This saturation value similarly
increases with system size like log L. For larger systems
(L � 10), we see a dramatic shift from max[SvN ;A(t )] ∝
log d where the entropy begins to grow more slowly with
d . For larger ancilla Hilbert spaces (d > 20) the system
reaches a saturation value for λ2/ωc = 2.0 (blue, dashed),
while for larger λ, entropy grows slowly with 1/d . This
slow growth is not enhanced when significantly increas-
ing the ancilla coupling from λ2/ωc = 8.0 to 12.5 (red,
dashed to solid, points). We expect that the saturation limit
continues to behave as it does for smaller systems and
becomes independent of d as it has become independent
of λ. This surprising behavior provides evidence that the
spin system, though interacting locally and reaching a vol-
umetric entangled state, shares collective, semiclassical-like
information when uniformly coupled to a large ancillary
environment. On the other hand, the system behaves more
quantum mechanically when strongly coupled to small ancilla
and max[SvN ;A(t )] ∝ log d .

052431-6



ENTANGLEMENT DYNAMICS BETWEEN ISING SPINS AND … PHYSICAL REVIEW A 105, 052431 (2022)

As the Hilbert space d decreases, the maximum amount of
information entropy that can be stored between the spin and
ancilla decreases as log(d ), so it is expected that a smaller
ancilla will have a similarly decreasing impact on entan-
glement within the spin subsystem. This entanglement loss
picture raises important questions: How can we numerically
evaluate the spin-ancilla entanglement based off of collective
measurements on the spin system? How do different phases
limit or share stored information? How does this description
hold up in real time?

B. Real-time numerical results

In the nonequilibrium quench, the initial state has trivial
entanglement characteristics and reaches a maximum on the
order of the maximum quasiparticle velocity L/vmax where
L = 10 gives t = 2.5J/ min [1, h]. When λ = 0 [Fig. 3(a)] we
see initial growth followed by oscillations connected to the
integrability of the model and finite size effects. As λ increases
[Figs. 3(b) and 3(c)], oscillations in MI, spin fluctuations, and
QFI decrease on the order of the spin-ancilla entanglement
entropy profile. More interestingly, we observe a deviation in
the QFI profiles from the spin fluctuations, as compared to
the exaggerated behavior shown in Fig. 1(c). MI and QFI in
the paramagnetic quench decay from the λ = 0 results with
revivals on the order of the cavity frequency ωc. �sz(t )2,
on the other hand, maintains a strong average value for all
times, taking into account the shift in underlying critical field.
In contrast to the decaying QFI profile, ancilla entanglement
initially grows rapidly and subsequently decays, oscillating at
its characteristic timescale for quenches in the paramagnetic
regime.

Average spin fluctuations remain largely unchanged as a
function of λ in the real-time evolution as well as at long
times, while QFI shows a clear modification in the noninter-
acting to interacting ancilla limit. The developing discrepancy
between fluctuations and QFI in the presence of environmen-
tal entropy suggests a good reference point to understand how
information is distributed between spins and the ancilla and
how SvN ;A provides greater insight in the inequality in Eq. (3).

C. Quantifying entanglement loss

In the quench scenario, Ising spins entangle rapidly in
time as observed by the development of MI and QFI. As
coupling with the ancilla increases we see a deviation from
fluctuations and multipartite entanglement like the ancilla
entanglement entropy profile. Where fluctuations remain con-
sistent [Fig. 2(b)], spin-spin QFI and ancilla entanglement
undergo highly nontrivial behavior as a function of the
system-environment entropy [Fig. 2(d)]. We define multipar-
tite entanglement loss Mel (ρB, Ô) to capture the difference in
observable fluctuations from the true multiparticle spin entan-
glement in the reduced density matrix over the spin chain ρB.
Here we calculate MEL along the longitudinal and transverse
collective spin vector Sμ = ∑

i σ
μ
i ; μ ∈ [x, z]. These quanti-

ties were previously explored using exact solutions to the
Ising model and, though they may not represent Smax as we
have suggested in Eq. (5), they provide two QFI measures that
accurately capture the dynamical Ising phases [87].

FIG. 4. Real-time evolution of the transverse and longitudinal
(left, right) multipartite entanglement loss (MEL) (dotted) vs ancilla
SvN (solid), λ2/ωc = 0.28, 0.63, 1.13 (a,b,c) from polarized initial
state | ↑〉⊗N |0〉. Curves offset vertically for clarity (0−field see blue,
bottom curve; h = 3.0 see red, top curve). Fisher information is re-
duced compared to the upper bound set by the fluctuations along both
spin vectors, leading to the growth in Mel and ancilla entanglement
entropy. (a) Mel (Sx ) and Mel (Sz ) provide extremely accurate esti-
mates of the ancilla entanglement entropy for λ2/ωc � J regardless
of underlying phase. (b,c left) With increasing coupling, the amount
of information gained by the ancilla surpasses the multiparticle en-
tanglement as measured by fQ(Sx ), saturating Mel (Sx ). (b,c right)
As more entanglement is witnessed along Ŝz, Mel (Sz ) continues to
provide a strong estimate on the ancilla entanglement in the para-
magnetic, saturated phase h > J (c red, upper curves). System size
L = 10, d = 30.

For weak ancilla couplings [Fig. 4(a)] we see that both
Mel (Sx ) and Mel (Sz ) serve to capture the real-time behavior
of the ancilla entanglement as well as accurately capture the
amplitude of information gain. As coupling increases and
the ancilla begins to sink more entanglement from the Ising
spins, SvN ;A begins to saturate the entanglement loss observed
through Mel (Sx ) [Figs. 4(b) and 4(c), left]. Mel (Sx ) < eSvN ;A −
1 is most noticeable at half of the ancilla level splitting
π
ωc

= 6.28tJ . Though Mel (Sx ) serves as a poor estimate of
spin-ancilla entanglement at large couplings and for h > J ,
SvN ;A, Mel (Sz ) profiles remain in strong agreement especially
in the paramagnetic phase. The transition from Mel (Sx ) ∼
Mel (Sz ) ∼ eSvN ;A − 1 to Mel (Sx ) < Mel (Sz ) ∼ eSvN ;A − 1 can
be attributed to the larger spin fluctuations and greater multi-
partite entanglement witnessed along Sz. In the paramagnetic
phase �S2

z = 3L and �S2
x = L, so as ancilla entanglement

grows, the loss perceived by Mel (Sx ) is artificially low since
less entanglement is observed along this direction. As �S2

z is
the direction of maximal fluctuations or QFI, we anticipate
that Mel (Sz ) remains a strong ancilla entropy estimate. This
is indeed the case where in the right-hand side of Figs. 4(b)
and 4(c) entropy remarkably traces Mel (Sz ) even beyond
λ2/ωc > J .

In all of our results SvN ;A is never parametrically larger
than max[Mel (Sx, t ), Mel (Sz, t )] with the greatest discrepancy
developing about the critical point. Surrounding the critical
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point we expect the transverse and longitudinal QFI to present
an inaccurate characterization of information loss as maxi-
mal spin fluctuation generally lies in the x-z plane. On the
other hand, in the large-field limit, we expect this nonin-
tegrable system to reach a relatively stable steady state as
a function of field and ancilla coupling, so Mel (Sz ) should
continue to paint an accurate picture. Deep in the param-
agnetic regime, where the system reaches an approximate
infinite temperature state and approaches proximate Sx con-
servation (J < h < λ2/ωc), QFI along Sz will continue to
dominate.

VI. DISCUSSION

Here we have extended the scope of how information
sharing of entangled degrees of freedom leads to a nearly
direct connection between spin fluctuations, Fisher informa-
tion, and external entanglement entropy. Our characterization
of MEL and the numerically observed proportionality with
SvN ;A serves as an extension of the exact results observed
in quadratic bosonic and/or fermionic systems [77,78] and
behavior seen in semiclassical, infinite and/or long-range spin
systems [43]. These results also agree with numerical sam-
pling results over small Hermitian matrices [79] and here, due
to the collective spin-boson interaction, we connect this col-
lection of works by finding Mel ∝ SvN ;A ∝ log L. We find that
spin subsystem-fluctuation measurements provide a strong
estimate on establishing the number of entangled DOF even in
composite systems. In Fig. 4 we show that entanglement can
be stored directly in local spin fluctuations when Mel = 0 or it
can be stored in shared degrees with an environment Mel ∼
eSvN ;A − 1. This characterization not only presents a qual-
itative framework that captures the long-time equilibration
dynamics in our composite spin-ancilla system but correlates
directly with the real-time entropy fluctuations between spins
and ancilla. We observe that when the ancilla acts purely as
a bath and �S2

μ(t, λ) � �S2
μ(t, 0), MEL perfectly captures

entanglement physics between spins and ancilla. In the highly
energetic regime where the Ising chain is fully excited, the
ancilla can only serve as an effective bath, whereas in the low-
energy quenches for h � J , the system can be highly excited
by ancilla interaction. In the low-field quench, MEL tends to
be parametrically larger than entanglement which suggests a
possible upper bound in Eq. (5) may be more accurate.

Our results are in good agreement with recent works that
establish a similar picture of spin fluctuations and entan-
glement in semiclassical models. In the Dicke model and
its corresponding regular-to-ergodic phase transition it was
shown that spin-boson entanglement similarly is responsible
for the development of additional collective spin fluctuations,
and in the kicked Ising system collective squeezing occurs
in tandem with entanglement entropy between bipartitions
[43,45]. Though previous research presents an intuitive pic-
ture, there is no established or quantitative differentiation
between the internal multipartite spin entanglement and the
composite system-environment entanglement contribution in
the development of physical correlations. Our results provide
a deeper heuristic examination into how fluctuations and QFI
relate in a simple, composite model.

This characterization of entanglement physics in a com-
posite spin-boson model provides an intuitive description on
how DOF are shared with different subsystems in real time
and helps provide a generalized picture of the information. We
see that the proliferation of excitations that encode collective
fluctuation play a critical role in the strength of entanglement
entropy response when probed by an external, uniform ancilla
coupling. The collective interaction relays only semiclassical
information SvN ;A ∝ log L regarding the dynamics of the lo-
cal, interacting quantum spin system and presents a translation
of information. Though this purely numerical investigation
focuses on highly excited states of the Ising model and a
particular transverse coupling, this physics remains consistent
in low-energy quench scenarios about the Ising ground state
as a function of h/J (see Appendix C for greater detail).

VII. CONCLUSION

From our results, experimental work capable of measuring
global spin fluctuations and cavity-bosonic correlations can
develop a richer characterization of the full information
dynamics of multiparticle, composite systems. Where
determining QFI in an arbitrary, nonequilibrium, mixed
system requires full state tomography, our work shows
that MEL provides a simple extension for pure states by
considering external and internal subsystem entanglement
content. Using this method, we recreate effective estimates
for the amount of entangled information contained in any
subsystem of a pure quantum ensemble. We anticipate
our results to have an impact on experimental quantum
information studies in cavity-QED and nitrogen vacancy
(NV)-center platforms, where the range of interaction
consists of a macroscopic region of the system of interest.

This work focuses on adding an environment to the
well-understood Ising model, where quantum thermalization,
entanglement, and spin fluctuations have been thoroughly
characterized. It would be an interesting future pursuit to
explore less well understood models, or fully nonintegrable
models where the optimal QFI measure is not known, and
observing the entanglement consequences in a similar system-
environment construction. Exploring semiclassical models
where analytic forms of QFI, MEL, and SvN can be ex-
plored would provide a wealth of insight into the physics
observed in this local quantum system. It is also necessary
to investigate how this semiclassical transfer of information
breaks down with either inhomogeneous bath couplings or
a larger or more complex environment and leads to full
thermalization. With regards to thermalization, we have inter-
estingly seen that excitations and QFI are intimately related as
dynamical quasiparticles encode fluctuations, but at the same
time they seem to dictate the entanglement response to an
external environment. It would be interesting to develop a
more generalized fluctuation-dissipation relation regarding
entanglement susceptibility and excitation exchange and/or
production. As we have seen in our results, MI remains largely
preserved in the spin system and only decreases by ∼ log L
compared to the noninteracting case. A similar phenomenon
was observed in an open Ising chain where the system did
not completely thermalize: I (L/2, t → ∞) > 0 [50]. So how
does the form of the system-environment interaction preserve
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certain quasiparticles or operators propagation and encode
entanglement entropy within the system?

Our work additionally brings up interesting metrics for de-
termining how to engineer and transfer quantum information
between subsystems, where we initially store or grow multi-
particle entanglement from the ground state or nonequilibrium
quench and then transform it into external entanglement en-
tropy. Future work will explore the genuine multiparticle
entanglement mediated by an ancilla and how it is bounded by
the size of the ancilla Hilbert space. A parallel investigation
as to how information is scrambled with a weak nonlocal
central vertex shows promise in understanding fast scrambling
dynamics, where no work has been done on relating operator
growth rate and the size of the ancilla dimension [88]. In the
large-cavity limit, cavity interactions generate all-to-all spin
interactions and lead to tunable out-of-time-order correlator
(OTOC) and scrambling physics in the spin subsystem [89],
but no work has examined the possible fingerprint imprinted
on the central mode. This would provide fruitful scrambling
protocols and analyses amenable to cQED and NV-center ex-
periments. Finally it would be interesting to see if topological
signatures inherent in quantum fluctuations or full system
entanglement content leave unique signatures in the shared in-
formation with an external observer. Recent work has focused
on the entanglement contribution of quasiparticles above a
ground state [90,91] and our future work will explore the
connections between symmetry-preserving excitations, fluc-
tuations, and entanglement dynamics.
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APPENDIX A: TFIC EXACT SOLUTION

The TFIC is exactly solvable following a Jordan-Wigner
mapping to noninteracting spins and subsequent Fourier and
Bogoliubov transformation:

H = −J

(∑
〈i j〉

σ z
i σ z

j − h
∑

i

σ x
i

)
,

σ x
i = 1 − 2c†

i ci,

σ z
i = −

∏
j<i

σ x
j (c†

i + ci ),

H JW = J

( ∑
〈i j〉

c†
i c j + cic j + H.c. + h

∑
i

1 − 2c†
i ci

)
.

Then Fourier transforming the fermionic operators gives us

d†
k = 1√

L

L∑
j

ei(2π jk)/Lc†
j ,

dk = 1√
L

L∑
j

e−i(2π jk)/Lc j,

H JW = J
∑

k

([
h − cos

2πk

L

]
d†

k dk

− i

2
sin

2πk

L
[d−kdk + d†

−kd†
k ] − h/2

)
.

Bogoliubov–de-Gennes (BdG) transformation provides a di-
agonal form with paired momenta eigenstates:

uk = cos θk, vk = sin θk, tan θk = J sin k

B − J sin k
,

b†
k = ukd†

k + ivkd−k, bk = ukdk + ivkd†
−k,

HBdG =
∑

k

εkb†
kbk +

∑
k

εk.

This gives us the exact spectrum for the transverse field
Ising model with ground-state energy that can be character-
ized by integrating over the dispersion relation given as

εk = J
√

1 + h2 − h cos k. (A1)

The ground state of the model can be determined from
the empty fermionic vacuum state |0〉 ∼ | →→→→ · · · 〉 (in
terms of the spins) and eliminating all momenta from the
vacuum state: |�0〉 = �kbkb−k|0〉.

The initial state (t < 0) for a sudden quench experiment
will occupy excited modes of the Hamiltonian for t > 0. For
a sudden quench of the Hamiltonian we can consider that
|�0〉 is the ground state of H0. For systems with an extensive
number of conserved quantities, i.e., integrable systems, the
infinite-time steady state thermalizes according to a gener-
alized Gibbs ensemble [63]. This state can be decomposed
into the rapidities or conserved quantities (occupation of the
eigenmodes) of the time-evolution Hamiltonian, written as

|�0〉 =
∑

k

c(k)|nk〉,

c(k) = 〈�0|nk|�0〉,
|�(t )〉 = eiHt |�0〉,
|�(t )〉 =

∑
k

eiεkt c(k)|nk〉.

For all occupied excited modes nk we can think of an
excitation with energy εk being present within the spin chain.
With the excitation present at t = 0, this will propagate at
a finite velocity. The velocity of this excitation is given by
the dispersion relation taken from the spectrum v = dεk

dk . This
identically determines the velocity of entanglement growth in
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FIG. 5. Finite size scaling of MEL and entanglement proportion-
ality. We calculate the long-time average of MEL and SvN ;A and
determine the constant of proportionality between the two in regimes
where they qualitatively agree: Mel (Sx, λ � 1.0), Mel (Sz, h/J �
1.0).

the integrable Ising model [92,93]:

vmax = max

[
Jh sin k√

1 + h2 − 2h cos k

]
(A2)

= Jmin[1, h]. (A3)

In this limit, the entanglement growth rate is independent
of system size and grows linearly with transverse field until
reaching a maximum at the Ising critical point vmax ∼ J . For
quenches into the polarized phase, the velocity remains at the
maximum value regardless of magnetic field strength h.

APPENDIX B: MEL PROPORTIONALITY

The key result we present in the main text is the proportion-
ality between multipartite entanglement loss and entropy gain
by an external ancilla. In order to determine the proportional-
ity expressed in Eq. (5), we perform a simple fit between MEL
and eSvN,A − 1 in regimes where the behavior or the two are in
qualitative agreement (Fig. 5). The largest discrepancies be-

tween the two arise for quenches about the dynamical critical
point which goes like hc + λ2/ωc = J . Instead we evaluate the
proportionality between Mel (Sx ) and eSvN,A − 1 for λ/J � 1
where the behavior is almost perfectly proportional in time.
We also evaluate the proportionality for Mel (Sz ) and eSvN,A − 1
for λ/J ∼ 1 and h � 1. For these regimes we determine the
constants separately as αx and αz. Outside of these aforemen-
tioned parameter regimes, MEL measures along �z and �x do not
accurately capture the entanglement entropy profile.

For small systems, the proportionality α grows with system
size αx,z = 1

2 L until L = 8, where the system in the infinite
size limit is 4-partite entangled. αx and αz are in strong
qualitative agreement and provide nearly identical relations
to SvN ;A for all sizes. QFI in the λ = 0 limit also grows with
system size up to roughly L = 8–10, where the information
density saturates with respect to system size. The saturation
in information density and the saturation in entanglement
proportionality occur concurrently.

APPENDIX C: EXPANDED MEL DATA

In this section we provide Fig. 4 MEL data alongside the
transverse and longitudinal spin correlations and information.
The data provided here are the full spin-fluctuation, QFI,
and MEL data used to generate Figs. 4(a)–4(c) as Figs. 6–8,
respectively.

For weak system-ancilla coupling (Fig. 6), QFI along both
the transverse and longitudinal directions [Figs. 6(b) and 6(d)]
deviate from the respective spin fluctuations [Figs. 6(a) and
6(d)]. For h = 0, the system is in a product state and zero
entanglement develops within the spin system or between
spins and ancilla. As h increases, the discrepancy between
information and spin-spin correlations grows similarly. This
is most readily observed in fQ(ρ(t ), Sx ) as it decays from
its maximum value ∼1 on the characteristic ancilla timescale
1/ωc. MEL calculated along the transverse component al-
most suffices in capturing the magnitude of SvN ;A but fails

FIG. 6. MEL dynamics from nonequilibrium quench (λ2/ωc = 0.28). Real-time evolution of the transverse (top) and longitudinal (bottom)
(a), (d) spin fluctuations, (b), (e) fQ, and (c), (f) multipartite entanglement loss (MEL) (dotted) vs ancilla SvN (solid) for L = 10, q = 30 from
polarized initial state. Curves in (c) and (f) offset for clarity.
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FIG. 7. MEL dynamics from nonequilibrium quench (λ2/ωc = 0.63). Real-time evolution of the transverse (top) and longitudinal (bottom)
(a, d) spin fluctuations, (b, e) fQ, and (c, f) multipartite entanglement loss (MEL) (dotted) vs ancilla SvN (solid) for L = 10, q = 30 from
polarized initial state. Curves in (c) and (f) offset for clarity.

to capture the maximum entanglement at t = 2π/ωc. MEL
calculated along the longitudinal direction [Figs. 6(d) and
6(e)] is able to accurately capture the maximum ancilla
entanglement.

For ancilla coupling λ2/ωc = 0.63 (Fig. 7), Mel (ρB, Sx )
becomes nearly saturated. It serves to predict the early growth
of entanglement of the ancilla but completely fails to capture
the continued increase in entropy. Again, Mel (ρB, Sz ) serves
as a good estimate of the maximum entropy gained and
with the difference in Figs. 7(d) and 7(e) being increasingly
dramatic.

Finally, for large ancilla coupling λ2/ωc = 1.13 (Fig. 8),
spin correlations and information witnessed by Sx dra-

matically underestimate the entropy growth beyond early
times. Meanwhile, Mel (ρB, Sz ) overestimates the entangle-
ment gained by the ancilla as fluctuations within the
ferromagnetic quench h � J [blue, lower curve in Figs. 8(d)
and 8(e)] increase on a timescale π/ωc while information
does not grow significantly until 3π/ωc. It would be in-
teresting to understand the full picture and determine if an
optimal QFI witness serves to more accurately capture entan-
glement dynamics in the ferromagnetic phase. Quenches into
the polarized phase h > J [red curves fluctuating about ∼4
in Fig. 8(d) and ∼2 in Fig. 8(e)] remain proportional to the
entropy dynamics up to rapid fluctuations with timescale less
than 2π/ωc.

FIG. 8. MEL dynamics from nonequilibrium quench (λ2/ωc = 1.13). Real-time evolution of the transverse (top) and longitudinal (bottom)
(a), (d) spin fluctuations, (b), (e) fQ, and (c), (f) multipartite entanglement loss (MEL) (dotted) vs ancilla SvN (solid) for L = 10, q = 30 from
polarized initial state. Curves in (c) and (f) offset for clarity.
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FIG. 9. MEL dynamics from Ising ground state. Real-time evolution following a quench from the Ising ground state J = 1.0, h/J: (a), (d),
(g) transverse spin fluctuations �s2

x , (b), (e), (h) Fisher information fQ, (c), (f), (i) multipartite entanglement loss (MEL) (dotted) vs ancilla
SvN (solid) for L = 8, d = 40, λ2/ωc = 0.18, 0.5, 1.125 (top, middle, and bottom rows). Fluctuations are suppressed on the order of ancilla
entanglement profile, where Fisher information is reduced compared to the upper bound set by the fluctuations. (c), (f), (i) Taking the difference
between fluctuations and information provides MEL and accurately provides an estimate of the ancilla entanglement entropy. MEL and SvN

curves are offset vertically for clarity.

APPENDIX D: QUENCH FROM ISING GROUND STATE

As an extension of our MEL calculations in the main
text, we consider low-energy quench dynamics, where the
initial state |ψ0〉 is the Ising ground state at J = 1.0, h/J
and ancilla prepared in |0〉. We vary h/J as to tune between
the ferromagnetic and polarized ground state and observe the
same entanglement dynamics in the presence of nonzero λ.
The MEL results for the Ising ground-state quench are pro-
vided in Fig. 9 for three values of λ: λ2/ωc = 0.18, 0.5, 1.125
(top, middle, and bottom rows). For weak λ [Figs. 9(a)
and 9(b)], small fluctuations develop in the ferromagnetic
ground state h = 0 (blue, top curve), with the amplitude
and frequency of MEL being exactly proportional to the an-
cilla entanglement dynamics [Fig. 9(c)]. In the ferromagnetic
Schrödinger-cat-like state, �sx(t )2 = 1.0. For h > 0, both
�sx(t )2 and fQ(ρ(t ), Sx ) decay from their initial values and
oscillate at 2π/ωc = 12.6tJ . Into the paramagnetic phase,
spin-spin correlations decay to zero as the system trends to-
wards a full product state. As less multipartite entanglement
exists in the system, less entanglement develops with the
ancilla. Deep in the paramagnetic regime [Fig. 9(c), red, top
curve], no entanglement develops between spins and ancilla.

Meanwhile, the ancilla occupation number would oscillate
with amplitude like 〈N〉 = λ2/ωc〈Sx〉.

For λ2/ωc = 0.5, the magnitude of oscillations in �sx(t )2

and fQ(ρ(t ), Sx ) [Figs. 9(d) and 9(e)] grow in all parameter
regimes, and some nonclassicality is witnessed [�sx(t )2 > 1]
in states in the ferromagnetic regime h/J < 1. MEL contin-
ues to accurately capture the ancilla entanglement entropy
profile [Fig. 9(f)], but underestimates the maximum entropy
growth that occurs at (2n + 1)π/ωc (n ∈ [0, 1, 2, . . .]). For
λ � 1, the slow-change spin-spin correlations compared to
more rapid information loss leads to the growth of entropy
with the ancilla.

Finally, for λ2/ωc = 1.125, the ferromagnetic ground
state develops significant growth of spin-spin correlations
[Fig. 9(g), blue, top curve] in the x direction. The informa-
tion witnessed in this state, fQ((ρ(t ), Sx ) [Fig. 9(h)], remains
largely unchanged and leads to a strong MEL signal. This
overestimates the true entropy growth. In the polarized phase
where the system is weakly entangled and largely lies along
the x direction, the ancilla is incapable of generating much
entanglement with the spin chain as the state is nearly an
eigenstate of the spin-ancilla coupling.
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