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We present a second quantization description of frequency-based continuous variables quantum computation
in the subspace of single photons. For this, we define frequency and time operators using the free-field
Hamiltonian and its Fourier transform, and we show that these observables, when restricted to the one photon
per mode subspace, reproduce the canonical position-momentum commutation relations. As a consequence,
frequency and time operators can be used to define a universal set of gates in this particular subspace. We
discuss the physical implementation of these gates as well as their effect on single photon states, and show that
frequency and time variables can also be used to implement continuous variables quantum information protocols,
in the same way than polarization is currently used as a two-dimensional quantum variable.
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I. INTRODUCTION

Since its beginnings and more than ever nowadays, the
perspectives opened by using quantum mechanics in process-
ing information and securing communication have excited
the scientific community. The quantum computer—whatever
meaning one gives to it—that about 15 years ago appeared
as a distant mirage and an almost imaginary device, seems
closer and closer to reality, materializing and capitalizing in
all the senses of the word, in a scalable way, the superior
performance of some quantum algorithms. Apart from the
advertised scientific and nonscientific implications of quan-
tum information research, it seems reasonable to think that
information processing machines must make a different use
of quantum physics—and consequently, technologies—than
the old-fashioned computer we are using to type these words.
Also, in spite of the relevance, one thinks such technolog-
ical breakthroughs have to fundamental research, we can
safely state that quantum information changed the way one
approaches not only information theory but also quantum
physics in general and, in particular, quantum optics.

Quantum field statistics, the field intensity, or its modal
decomposition—in summary, all possible ways of measuring,
manipulating and extracting information from radiation—are
the basic tools of different quantum computation, and com-
munication architectures based in quantum optics. Starting
from a generic perspective, information can be extracted from,
carried or processed by quantum fields by describing them
essentially in two distinct ways: using observables with a con-
tinuous or with a discrete spectrum. Of course, both regimes
can also be combined into hybrid devices [1], which gather
the advantages and drawbacks of continuous and discrete
variables.

*nfabre@ucm.es

In quantum optics, the traditional examples of continuous
variables are the field’s quadratures—linear combinations of
the electric and magnetic field’s amplitudes—whose measure-
ment using, for instance, homodyne detection, can provide
complete information about the quantum state of radiation,
encoded in the field’s statistics. Alternatively, one can perform
measurements that count [2–4] and correlate photons. The
photon number is often associated to encoding information in
discrete variables, represented by the photon number itself or
the presence or absence of photons. It is also possible to use
single photons degrees of freedom—as the polarization or the
orbital angular momentum—as discrete variables, and this is
particularly useful in quantum communication and in testing
fundamental aspects of quantum mechanics [5–7].

Single photon’s continuous degrees of freedom, as their
longitudinal momentum or transverse position and momen-
tum can be associated to continuous variables, also leading
to an alternative implementation of quantum computation
[8], quantum communication [9], and fundamental tests of
quantum mechanics [10]. In Ref. [8], in particular, the iso-
morphism between the propagation equation of single photons
transverse variables and the Schrödinger equation of a mas-
sive particle was used to define continuous variables universal
logical gates manipulating the transverse momentum and
position of the photon’s wave function with simple linear
quantum optical devices or spatial light modulators (SLM).

In the present paper, we provide a comprehensive second
quantization-based description of frequency and time vari-
ables of single photons, showing how to manipulate and use
these degrees of freedom as quantum continuous variables.
For such, we introduce universal quantum operators acting on
a subspace consisting of single photons which occupy distinct
modes. These gates are perfectly analogous to the ones intro-
duced in Refs. [11,12] for generic position and momentumlike
variables. Frequency and time variables do not obey, in the
general case, the same commutation relation as position and
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momentum. Nevertheless, in the subspace where each mode is
at most occupied by one photon, such commutation relations
can be retrieved from the bosonic commutation relations and
provided that we consider frequency modes in experimentally
reasonable ranges, avoiding for instance the issue of negative
frequencies.

Once these commutation relations between operators asso-
ciated to time and frequency measurements of single photons
are obtained, they can be used to define a set of universal
gates in the same form as the ones manipulating momentum
and position variables or the field’s quadratures. This is the
main scope of the present paper. We will then introduce the
physical contexts where such a universal set can be imple-
mented, as well as its properties and ways to represent and
detect quantum information encoded in frequency and time.
In particular, we will see that even though highly nonlinear
frequency and time gates are required, it is possible to de-
fine a quantum information processing architecture both in a
measurement-based and in the circuit model with current tech-
nology. Finally, we will discuss the phase space representation
of frequency and time as quantum continuous variables, which
is a useful tool to provide intuition on some nonclassical
aspects of states. We will see, however, that the nonclassical
picture given by the constructed phase space is different from
the one of quadratures.

The paper is organized as follows. In Sec. II, we define
the spectral and temporal properties of single photons through
a Hilbert space description. We underline the possibility of
defining time and frequency operators and the importance of
being in the single-photon subspace. In Sec. III, the universal
set of gates for time and frequency continuous variables is
defined based on the mathematical analogy with quadrature
position-momentum variables. Experimental implementations
are also discussed. In Sec. IV, we recall the principles of the
chronocyclic phase space description of single photons and
consider in details the physical interpretation of such a phase
space.

II. STATES, OPERATORS, AND
COMMUTATION RELATIONS

A. Preliminary tools

A single photon pure state at mode i with frequency
ω is described by the application of the creation operator
to the vacuum state: â†

i (ω)|vac〉 = |ω〉i. The label i can be
polarization, a spatial mode—as the transverse propagation
direction—or any other combination of modes that plays
the role of an ancillary mode that creates distinguishabil-
ity between each photon. We can of course also define the
annihilation operator such that âi(ω)|ω′〉i = δ(ω − ω′)|vac〉.
In addition, the commutation relation between creation and
annihilation operator can be written as

[âα (ω), â†
β (ω′)] = δ(ω − ω′)δαβI, (1)

where α and β are auxiliary modes. We also have that
[âα (ω), âβ (ω′)] = 0 and [â†

α (ω), â†
β (ω′)] = 0.

If we consider to be in the narrow-band approximation
[13], so that the central frequency of the spectral distribution is
much larger than its spectral width, integrals can be extended
over the whole frequency spectrum, and the Fourier transform

of the annihilation operator is the annihilation operator at the
arrival time t :

â(t ) = 1√
2π

∫
R

dωâ(ω)e−iωt , (2)

the same being valid for the creation operation, of course. We
also have that

[âα (t ), â†
β (t ′)] = δ(t − t ′)δαβI, (3)

where α and β are auxiliary modes, and [âα (t ), âβ (t ′)] = 0
and [â†

α (t ), â†
β (t ′)] = 0.

We stress that in the present description time is seen not
as a parameter but as a degree of freedom associated to the
arrival time of photons in a detector.

B. States

A general single photon pure state can be decomposed in
the time basis or, equivalently, in the spectral basis as

|ψ〉 =
∫
R

dωS(ω)â†(ω)|vac〉. (4)

The spectrum S(ω) is the Fourier transform of the time of
arrival distribution and |S(ω)|2 = |〈ω|ψ〉|2 denotes the proba-
bility density of detecting a photon with frequency ω. We can,
of course, also construct from this principles general mixed
single photon states described by a density matrix.

The space of states we consider in the present contribution
consists of a collection of n single photon states in n different
ancillary modes. This space will be called from now on Sn,
where n is the number of distinguishable modes and also the
number of photons. It means that only cases where there is at
most one photon per mode are considered.

A general pure state in Sn can be written as

|ψ〉 =
∫

dω1...

∫
dωnF (ω1, ..., ωn)â†

1(ω1)...â†
n(ωn)|0〉,

(5)
where the spectral function F (ω1, ..., ωn) is normalized to
one :

∫
dω1...

∫
dωn|F (ω1, ..., ωn)|2 = 1. One of the goals of

defining a set of universal gates is to show that states as Eq. (5)
can be approached with arbitrary precision, from an arbitrary
initial state using a finite set of operations.

Of course, for n � 2, we will have to consider, in addition
to separable states, frequency, and time entangled states. To
introduce the basics of entanglement in Sn, let us discuss one
of the simplest and most currently processes used to produce
pairs of entangled states, which is spontaneous parametric
down conversion (SPDC). In this case, we have that the two-
photon output state can be written as

|ψ〉 =
∫∫

dωsdωiJSA(ωs, ωi )â
†
s (ωs)â†

i (ωi )|vac〉, (6)

where we considered that the creation operators of signal and
idler photons are distinguishable and associated to different
auxiliary modes labeled s and i. The JSA acronym denotes
“joint spectral amplitude.” One can also define its Fourier
transform, the joint temporal amplitude, or JTA. The JSA
contains all the information about the two photon frequency
state.
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Of particular interest for analyzing entanglement in state
Eq. (6) is its decomposition in a set of orthogonal functions,
as introduced in Refs. [14–16]. One can show that

|ψ〉 =
∞∑

n=1

�n| fn〉a ⊗ |gn〉b. (7)

An effective Schmidt rank KN can be defined as 1/KN =∑N
n=1 �2

n. If there is an N such that KN > 1, we can conclude
that the state |ψ〉 is entangled.

We can study in details the particular case of a Gaus-
sian shaped JSA, corresponding to the joint spectral intensity
(JSI) shown in Fig. 1. The JSI has no phase informa-
tion, but displays the essential information for analyzing
correlations—and entanglement, when provided with phase
information—between two photons. In the context of SPDC,
the JSI’s shape, and the existence of different degrees of fre-
quency correlation between signal and idler photons, depend
on the energy and momentum conservation of the nonlinear
interaction generating the photon pair, on the one hand, and
the pump laser spectral properties, on the other hand. More
specifically, the energy conservation condition is related to
the sum of frequencies of signal and idler photons while
the phase-matching condition is related to the difference of
frequencies [17].

Figure 1(a) displays a situation where the spectrum of
signal and idler photons are uncorrelated, so the Schmidt
decomposition has only one term, �1| f1〉a|g1〉b. It corresponds
to a separable state of two photons, and this can be seen
from the circular symmetry of the JSI, which means that it
can always be decomposed as a product of two functions
of any pair of variables related to ωs and ωi by an unitary
transformation: the circle has no privileged principal axis.

Notice that this situation is different from the one repre-
sented in Fig. 1(b), where the JSI displays anti-correlation
between variables ωs and ωi. As a matter of fact, the JSI
in Fig. 1(b), is an ellipsoid with principal axis ω± = (ωs ±
ωi )/

√
2, which means that the JSI can be written as product of

two independent functions of these two variables. By defining
δ± as the width of the distribution in the ω± = (ωs ± ωi )/

√
2

axis, we have that the ratio r = δ+/δ− < 1. It is a known result
that the degree of squeezing of the JSA, and consequently of
the JSI, is proportional to the degree of mode entanglement
for pure quantum states [16]: the Schmidt rank KN (or alterna-
tively, the degree of mode entanglement with the chosen mode
partition) increases with decreasing r.

From the discussion above, we see that the JSA associated
to the JSI in Fig. 1(b) cannot be separated in a product of
functions of variables ωs and ωi only, and these variables are
correlated. Nevertheless, a change of variables in the JSA to
ω± instead of ωs and ωi transforms it into a separable function.
If one could, in addition to that, associate signal and idler
photons as well to frequencies ω+ and ω− instead of ωs and
ωi, then the Schmidt decomposition would have a single term
and would correspond to a product state. This is an important
point for the proposed quantum computation setup that will
be discussed in details in Sec. III. Before this, we introduce
time and frequency operators which will be shown to be analo-
gous to the quadratures of the electromagnetic field, expressed
here in the simplified dimensionless form p̂ = i(â† − â)/2

and x̂ = (â† + â)/2. In this sense, frequency and time can
also be considered as continuous variables to encode quantum
information.

C. Time and frequency operators

The time and frequency operators are defined as

t̂a =
∫
R

t â†(t )â(t )dt, (8)

ω̂a =
∫
R

ωâ†(ω)â(ω)dω. (9)

When applied to single photons states, these operators fulfill
the eigenvalues equation: t̂a|t〉a = t |t〉a and ω̂a|ω〉a = ω|ω〉a.
The frequency operator is proportional to the free Hamil-
tonian Êa = h̄ω̂a. As previously, we considered the narrow
band approximation of a photon with central frequency far
from origin. Consequently, the integration over the frequency
can safely be considered as covering all R. As for the time
variable, it corresponds to the Fourier transform of frequency
for all practical purposes and is physically associated to the
time of detection conditioned to the fact that a detection has
indeed happened [18,19].

Using Eq. (1), we can see that time and frequency operators
do not commute in the single photon (single mode) regime
(see the Appendix):

[ω̂a, t̂a] = iI. (10)

They form, together with the identity operator I, a three-
dimensional Heisenberg algebra in perfect analogy with the
position and momentum operators. This fact, not true in gen-
eral for modes occupied by more than one photon (see the
Appendix), is essential for building a set of universal gates
which manipulate frequency and time as the universal gates
defined for position and momentum manipulate states defined
in these basis. The present manuscript is thus entirely based
on considering x̂ → ω̂ and p̂ → t̂ .

Also, from Eq. (10), we can use the Robertson’s inequality
to derive a time-energy Heisenberg inequality:

	Êa	t̂a � h̄/2. (11)

Rather than expressing a classical Fourier transform relation,
Eq. (11) provides an operator description of the time and the
frequency bandwidth at the single photon level as quantum
noise [20].

III. UNIVERSAL OPERATIONS

We have introduced in the previous section the basic tools
which will be useful for the definition of a universal set of
quantum operations using time and frequency as continuous
variables.

Before moving to its description, we recall the basics of
continuous variables universality, as introduced in Ref. [12].
The authors show that it is possible to define an universal set
of unitary operators using observables x̂ and p̂, and central to
their result is the fact that such observables obey the commu-
tation relation [x̂, p̂] = iI (where we have used dimensionless
operators for convenience). Such operators can be associated
either to the position and momentum variables of a particle or,
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in the context of quantum optics, to the electromagnetic field’s
quadrature.

A universal set of unitary operators is defined as a finite
set that, when combined, approaches with arbitrary precision
any unitary operation which is a polynomial in x̂ and p̂. There
are of course many possible sets, but we will focus on the
following one:

U = {eix̂s, ei π
4 (x̂2+p̂2 ), eix̂2s, eix̂i⊗x̂ j , eix̂3s}. (12)

We briefly explain the action and properties of each one of
the unitary operators in U : eix̂s is the displacement operator
that displaces momentum of an amount of s. ei π

4 (x̂2+p̂2 ) is
the Fourier transform, and eix̂2s is called a shear operation
(governed by the parameter s), that compresses one quadrature
while also implementing a quadrature rotation. As for eix̂i⊗x̂ j ,
it involves two distinct modes, i and j, and is an entangling
operation that generates displacements in one mode according
to the state of the system in the other mode. Finally, eix̂3s is a
non-Gaussian operation that is essential to generate polyno-
mials of order higher than 2 using the canonical commutation
relation.

A first comment is that the set U acts on what one calls
qumodes, which are, in the case of the field’s quadratures,
frequency, momentum or polarization distinct modes. Each
operation is thus defined independently for each mode, except
for eix̂i⊗x̂ j that couples two different modes.

As mentioned, universality of the set U is proven using the
fact that x̂ and p̂ obey the canonical commutation relation.
Any other pairs of observables obeying the same commutation
relation can be used to define a universal set of operations
in the same form as the ones in U . Consequently, using such
operators, it is possible to generate a complete computational
space, provided that one identifies a setup where such opera-
tors make a physical sense and can be implemented.

From these observations, we move to the time and fre-
quency variables restricted to the single photons subspace.
Using Eq. (10), we deduce that with the set:

W = {eiω̂s, ei π
4 (ω̂2+t̂2 ), eiω̂2s, eiω̂i⊗ω̂ j , eiω̂3s}, (13)

we are capable of approaching, with arbitrary precision, any
operation within the n single photons subspace Sn (in analogy
with the n qumodes one), i.e., we are capable of constructing
unitary operators which approach with arbitrary precision any
polynomial in ω̂ and t̂ in Sn.

The set W is then a universal one, in the sense of Ref. [12],
in Sn, for time and frequency operations.

A first comment is that all the operators in W are non-
linear in â(ω), â†(ω), the annihilation and creation operator
in a given mode ω. â†(ω)â(ω) is the field’s intensity in this
mode, which is itself a polynomial in x̂(ω) = â(ω)†+â(ω)√

2
and

p̂(ω) = i â(ω)†−â(ω)√
2

and, for this reason, can be built from U ,
as is the case for all operators in W .

With this in mind, that defines the computational space, we
now briefly discuss the operators in W , their physical meaning
and different ways to implement them.

A. The displacement operator and the Fourier transform

The operator eiω̂as is the generator of displacement in time
of a single photon in mode a, and it can be associated to the
free evolution. Restricted to the Sn subspace, the expansion of
the exponential leads to (see the Appendix and Ref. [21])

D̂ω̂a (s) = eiω̂as =
∫

â†(t + s)â(t )dt, (14)

which corresponds to the annihilation of one photon at a given
time and the creation of a photon at a displaced time, as
one would expect. Operator F̂ = ei π

4 (ω̂2
a+t̂2

a ) acts as a Fourier
transform so that

D̂t̂a (μ) = F̂D̂ω̂a (s)F̂ † =
∫

â†(ω + μ)â(ω)dω. (15)

Operators D̂t̂a (μ) and D̂ω̂a (s) verify the Weyl’s algebra,

D̂ω̂a (s)D̂t̂a (μ) = eisμ/2D̂t̂a (μ)D̂ω̂a (s), (16)

where we have again used the bosonic noncommutation rela-
tion Eq. (1) [22].

We now discuss the optical implementation of the intro-
duced operators. Time displacements in the single photon
regime can be realized using the free evolution operator. As a
matter of fact, since time is defined in practice by conditioning
it to detection [19], we are most of the time interested in
time differences, which are associated to optical path differ-
ences that reveal the photonic temporal profile, as for instance
in interferometers. As for frequency displacements, they re-
quire nonlinear optics, as in Ref. [23]. This is an important
difference from the implementation point of view with the
previously mentioned quadrature-based continuous variable
quantum computation scheme, where all displacement oper-
ators require using linear optics only.

The Fourier transform F̂ has a quadratic form in frequency
and time. Such an operator, in the quadrature or transverse
position/momentum-based encoding, is proportional to the
system’s free Hamiltonian: the electromagnetic field’s energy,
in the quadrature case, or the the free propagation in the
transverse position/momentum one. Thus, in this last setup,
the free propagation can be used to implement either the
fractional or the complete Fourier transform, according to
the propagation distance [24]. In the present frequency/time
encoding, as discussed, the free Hamiltonian creates time
displacements and is linear in ω̂. Nevertheless, propagation
inside a linear media leads to group velocity dispersion, which
is a currently used technique to implement the Fourier trans-
form from frequency to time variables and vice-versa. The
fractional Fourier transform can be implemented using the
same technique by controlling the propagation distance. Fi-
nally, another possible way to implement both fractional and
the full Fourier transform is using a 4 f -like configuration for
frequency and time, as detailed in Ref. [25], or by using an
optical quantum memory [26].

B. Squeezinglike and non-Gaussian operations

The remaining single photon operators in W consist of
frequency and time dependent quadratic and cubic phases
applied to the single photon states. They can be re-expressed
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as follows (see, for technical details, the Appendix):

eisω̂2
a =

∫
eisω2

â†(ω)â(ω)dω,

eiγ ω̂3
a =

∫
eiγω3

â†(ω)â(ω)dω. (17)

These transformations, either in the frequency or in the
time basis, can be realized using spatial light modulators
after mapping frequency to transverse position [27] or, in a
measurement-based model, by pump engineering [28]. As a
consequence, it is possible to implement them without using
nonlinearity at the single photon level. We will leave the dis-
cussion about the meaning of squeezing and non-Gaussianity
in the present encoding to Sec. IV.

C. Two-photon gate

We now move to operator eiω̂i⊗ω̂ j , which manipulates in a
conditional way the frequency of two photons in distinct aux-
iliary modes. To build a more intuitive picture, we will rather
discuss the Fourier transform in mode j of this operator, i.e.,
eiω̂i⊗t̂ j = F̂jeiω̂i⊗ω̂ j F̂ †

j . This operator acts in the state |ω,ω′〉i j

as

eiω̂i⊗t̂ j |ω,ω′〉i j = eiωt̂ j |ω,ω′〉i j = |ω,ω′ − ω〉i j . (18)

It is, indeed, a conditional operation that displaces the fre-
quency of one photon of an amount that depends on the
frequency of the other one, or a continuous variable version
of the discrete CNOT gate.

By combining this operator and other ones from the Gaus-
sian set in W—as, again, the Fourier transform and the
quadratic gate—one can build

ei π
4 (ω̂i⊗t̂ j−t̂i⊗ω̂ j )

=
∫∫

â†

(
ωi + ω j√

2

)
â†

(
ωi − ω j√

2

)
â(ωi )â(ω j )dωidω j .

(19)

The applications of this operator are numerous [21,29] and
present interesting analogies with the beam-splitter oper-
ator defined for continuous variables representation using
quadratures. In the quadrature case, a balanced beam-splitter
combines two modes of the electromagnetic field and per-
forms a conditional operation that produces as an output,
two modes which are the sum and the difference between
two input modes. Still in the quadrature case, if we consider
Gaussian states it is a known result that an optical circuit con-
sisting of beam-splitters and passive linear optical elements
manipulating modes [30] can be used to physically implement
the Bloch-Messiah decomposition [31] and transform mode
entangled squeezed states into separable ones in the minimal
mode representation of the considered state. In this scenario,
beam-splitters play a central role, since they are two-mode
operations that entangle and disentangle states by performing
mode basis change.

The transformation Eq. (19) implements the same type
of operation as beam-splitters perform to spatial modes and
to the field’s amplitude to the frequency degree of freedom.
The frequencies of two input photons are transformed in a
conditional way into the sum and difference of each photons’

frequencies. It is natural to ask wether Eq. (19) can play a
similar role. For this, we refer again to the case of photon pairs
generated by SPDC from a pump with a Gaussian spectrum,
as in Sec. II.

We have seen that in SPDC the frequency of the two gen-
erated photons can be correlated or anti-correlated according
to the energy and momentum conservation functions of the
pump [32] and that the degree of mode entanglement of the
photon pair depends on the parameter r. We will show now
that this spectral distribution is the perfect analog of a two-
mode squeezed state in the quadrature basis and that it can
be separated into a product state using a Bloch-Messiah like
decomposition.

This fact is not entirely obvious at first sight. It is true
that for many relevant experimental setups, the interaction
generating multi-mode entangled quadrature states in optical
parametric oscillators (OPO) is the same as the one that gen-
erates photon pairs from SPDC. The main difference between
these two physical situations is the intensity regime: while in
OPOs multi-mode squeezed states are generated, in SPDC the
interaction Hamiltonian is expanded until first order in the
creation and annihilation operator, and only the photon pair
generation process is considered. The produced state is then
post-selected by detection, which ensures its non-Gaussian
character and, with high probability, its single photon nature.
Nevertheless, such intensity considerations do not change the
properties of the JSA, and its expansion in a set of pairs of
modes, as was done Eq. (7) and Ref. [14], is exactly the same
in both intensity regimes. In the case of OPOs, it leads to the
mode decomposition that describes the state as a separable one
(Bloch-Messiah decomposition) while in the case of SPDC it
leads to the Schmidt decomposition. These two states, which
are the result of the same mathematical operation in two
different intensity regimes are, of course, essentially different.

Nevertheless, they have the same JSA and if we consider it
to be in the Gaussian form of Fig. 1(b), it is a particular case
of a function that can be expressed as a product of functions
of only two different variables, ω+ and ω−. This fact can be
expressed in the SPDC regime as∫∫

dωsdωiJSA(ωs, ωi )|ωs, ωi〉

=
∫∫

dω+dω− f (ω+)g(ω−)

×|(ω+ + ω−)/
√

2, (ω+ − ω−)/
√

2〉, (20)

which is an entangled state. Now, it is clear that by applying
Eqs. (19) and (20), we obtain

ei π
4 (ω̂i⊗t̂ j−t̂i⊗ω̂ j )

∫∫
dωsdωsJSA(ωs, ωi )|ωs, ωi〉

=
∫

dω+ f (ω+)|ω+〉
∫

dω−g(ω−)|ω−〉, (21)

which is a separable state.
So, we can conclude that in the single photon regime

considered in the present contribution, the Bloch-Messiah
decomposition also makes sense and transforms spectrally
entangled Gaussian states into separable ones instead of trans-
forming Gaussian entangled states (many-modes squeezed
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FIG. 1. Illustration of Bloch-Messiah decomposition for time-frequency (a) and quadrature (b) encoding. In the quadrature encoding, the
beam-splitter interaction between two one-mode squeezed state leads to a two-mode squeezed state. In the time-frequency encoding, the
analogous is the interaction of two single photons with a Gaussian spectrum through the beam-splitter-like operator Eq. (19). The frequency
unit have been rescaled with respect to a single photon state chosen as a reference. The ratio between the major and minor axis of the ellipse
in panels (b) and (e) is here 1/10.

states) into separable ones, as is the case in the quadrature
representation. Also, in the single photon regime considered
here, the physical and mathematical implementation of the
frequency beam-splitter like operator Eq. (19) involve using a
nonlinear photon-photon interaction.This may sound unprac-
tical, but this is not exactly the case: a particularly interesting
consequence of this fact is that one can thus reinterpret the
nonlinear interaction that generates the photon pair as the
application of gate Eq. (19) to an initially separable state in
variables ωs and ωi, suggesting that a measurement-based (or
hybrid) model of computation is probably the most suitable
for the proposed configuration. This can be schematized as
in the quantum circuit represented in Fig. 1(c), and which
is compared with the quadrature case Figs. 1(d), 1(e) and
1(f). We should finally mention that another possible way to
experimentally implement gate Eq. (19) gate is by using an
auxiliary optical active medium such as atomic system [33] or
by using split-ring resonators [34–37].

As a conclusion, the Gaussian-shaped JSA can be factor-
ized by the application of a beam-splitter like gate as Eq. (19),
in analogy to what happens in the Bloch-Messiah transfor-
mations for Gaussian states in quadratures. Of course, the
nonlinear operations we defined modify, as in the quadrature
case, the number of relevant modes used to express the state,
since an entangled state involving many terms of the Schmidt
decomposition is reduced to a single separable state. We recall
that the nature of the physical implementation in the discussed
example—a nonlinear two-photon interaction—and the type
of variables involved—the spectrum of single photons—are
completely different from the quadrature case.

The presented scenario consists of an original way to
analyze and interpret mode transformations that is not only
relevant from the quantum information perspective but can
also bring new applications of frequency-based quantum op-
tics in the regime of individual photons.

Finally, the case of a Gaussian-shaped function discussed
here is by no means the only example of a state that can be
separable in two variables, the presented techniques can be
used for different distributions.

D. Encoding a qubit with the continuous variables of
single photons

Universal quantum computing has to be supplemented
with error-correction codes to provide fault-tolerant quantum
computation. In the case of quadrature continuous variables
encoding, different types of qubits have been defined, and
as we see things today, the leading experimental and prac-
tical candidates are the so-called “cat-code” [38] and the
Gottesman-Kitaev-Preskill (GKP) code [39]. Each one of
these codes is built to be resilient against different types of
errors. Cat codes are robust against photon losses while GKP
codes resist to small position and momentum displacements.
A detailed study of performance for these two codes can be
found in Ref. [40].

In the time-frequency encoding of single photons, similar
codes can be defined. Time-frequency cat codes [41], defined
as the linear superposition of two frequencies, are then built
to be resilient against time displacement operations which is
a second-order dispersive effect. Time-frequency GKP codes
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[21] are protected against both small shifts in time and in fre-
quency, and error correction procedures can be implemented
using for instance the Steane protocol or teleportation-based
error correction (see Ref. [42] in the quadrature case, which
is the perfect analogous of the present one). Also, in certain
optical fibers, the frequency-polarization coupling [43–45]
can induce frequency broadening. It is important to notice that
the time-frequency encoding of single photons is conditioned
to photon detection, so that photon losses do not affect the
encoded information, but rather its existence contrary to the
quadrature case.

IV. THE CHRONOCYCLIC PHASE SPACE

To provide a full continuous variable description of fre-
quency and time degrees of freedom of single photons, it
is useful to introduce a phase space picture and interpret it.
To begin with, it is indeed possible to define the chrono-
cyclic phase space in the single photon subspace, as well
as the chronocyclic Wigner distribution [21,46]. As for the
quadrature-based phase space, this distribution has a one-to-
one correspondence with the spectral density matrix.

We consider continuous real variables, so the phase space
is rectangular and we can apply the construction procedure
relying on the Stratonovich-Weyl rules (see Ref. [47] for a
reminder of these rules). It starts from defining the parity
operator

�̂ =
∫

â†(ω)â(−ω)dω, (22)

with respect to the central frequency of a reference state that
here was set to zero. The displaced parity operator can also be
defined from Eq. (22) as

�̂(μ, τ ) = D̂(μ, τ )�̂D̂†(μ, τ ), (23)

where D̂(μ, τ ) = e−iμτ/2D̂t (μ)D̂ω(τ ) is a combined arbitrary
time/frequency displacement. The expectation value of the
displaced parity operator is the chronocyclic Wigner distribu-
tion:

Wρ̂ (μ, τ ) = 〈�̂(μ, τ )〉 =
∫

dωe2iωτ 〈μ − ω|ρ̂|μ + ω〉.
(24)

The chronocyclic Wigner function can be measured using a
modal decomposition [48] or a frequency beam-splitter oper-
ation [29], for instance. For a single photon pure state ρ̂ =
|ψ〉〈ψ | and |ψ〉 = ∫

S(ω)dω|ω〉, the chronocyclic Wigner
distribution can be written as

Wρ̂ (μ, τ ) =
∫

dωe2iωτ S(μ − ω)S∗(μ + ω), (25)

and this distribution can be negative. In particular, it is always
negative for pure non-Gaussian states. The marginals of the
chronocyclic Wigner distribution correspond to the spectral
and time-of arrival distributions, which can be measured di-
rectly experimentally:∫

dμWρ̂ (μ, τ ) = |S̃(τ )|2,
∫

dτWρ̂ (μ, τ ) = |S(μ)|2.

Considering displacements in the present case is essential,
since there is no natural absolute reference state as the physi-
cal vacuum (the absence of photons): using a “zero frequency”
state as a reference does not make real sense since it is phys-
ically out of reach and does not correspond to energy scales
that can be attained experimentally. We can thus re-scale the
space with respect to a given reference state, with a given
average energy and a finite Gaussian width in time and fre-
quency. The origin of the phase space and the reference state is
then related to the physical situation of interest. Consequently,
squeezing and relative displacements do not have a meaning
per se and are defined with respect to a reference state. Also,
symmetries will be relative to some chosen axis in phase
space, or equivalently, energy, that in all practical situations
will be far from the zero frequency state.

We can notice that the distribution Eq. (25) is quadratic in
the spectral function of interest and its description is identical
to the Wigner-Ville distribution for classical field [49]. Based
on these similarities, some may then conclude that the pre-
sented Wigner function does not display quantum properties
of the photon. Nevertheless, this naïve inductive conclusion
is wrong, and this can be shown using different types of
arguments. The first one is also inductive, and compares fre-
quency to polarization. Polarization is also a property that is
well defined for classical fields (or any field statistics). Nev-
ertheless, it is isomorphic to a two-dimensional Hilbert space
when associated to single photons, and this is a fundamental
ingredient to demonstrate fundamental aspects of quantum
mechanics using single photon polarization detection, as for
instance in nonlocality tests [5]. Frequency is the continu-
ous analogous of polarization, and even if well defined for
classical fields, it is a quantum (continuous) variable when
associated to single photons. In spite of that, in the literature,
frequency is usually discretized into modes or bins [50,51].

Given these facts, the difference between Gaussian and
non-Gaussian distributions deserves some attention. Non-
Gaussianity is known to be an essential property for contin-
uous variables quantum computation, since it is essential to
prove quantum advantage over classical protocols. Gaussian
only quantum protocols can be efficiently simulated using
classical resources. In the case of quadratures, it turns out that
implementing the non-Gaussian operation in U is challeng-
ing. For instance, the quadrature cubic phase gate requires
nonlinearity and the production of ancillary non-Gaussian
states which are hard to implement [52]. However, this is not
the case here: in the case of pure frequency-time states, the
non-Gaussianity of the time-frequency distributions is only
related to some particular mode engineering, which leads to
distributions with specific parity properties. For instance, all
pure non-Gaussian states have negativities, or equivalently,
their displaced parity is negative at some regions. This simply
means that the spectrum of single photons in non-Gaussian
states can be odd at some points, and such states are a
particular type of superposition states which are odd with
respect to some displaced parity. One example is the state
|ψ〉 = 1√

2
(|ω1〉 − |ω2〉), which is odd with respect to the axis

ω+ = (ω1 + ω2)/
√

2.
Of course, non-Gaussian states and operations in the

present context are, as well, essential for universality, and
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the non-Gaussian operator in W plays the same role as in U ,
which is transforming Gaussian operators into non-Gaussian
ones. We recall that this is also the case when one uses
polarization encoding, where non-Clifford gates can be im-
plemented using linear operations of the same nature of any
other local gate in the universal set. It is rather a particular-
ity of quadrature-based continuous variables systems to have
non-Gaussianity associated to a challenging experimental pro-
cess. Instead of coming from a particular hard to implement
physical operation, the fact that the present quantum comput-
ing architecture cannot be classically simulated comes from
two independent facts. From the physics side, we have that
we are dealing with single photons which obey to particu-
lar commutation relations. As a consequence, single photons
prepared in different modes inherit quantum properties from
these commutation relations, and this is the essential ingredi-
ent to manipulate, in a quantum way, every operator defined in
Sn. In particular, Gaussian and non-Gaussian operators. Thus,
using single photon measurements and manipulations, ensures
that we are dealing with a quantum system and that some of
the resulting operations cannot be efficiently simulated with
classical resources. Frequency, or polarization, or any other
degree of freedom associated to single photons are used as
ways to manipulate them, encoding and decoding quantum
information and exploiting their fundamental symmetries.

Before concluding, we will discuss the two-photon case
to provide more intuition about entanglement and the phase
space. The two-photon chronocyclic Wigner distribution can
also be defined for pairs of single photon (S2) and it provides
information on both the amplitude and phase of the photon
pair [46]:

Wρ̂ (ωs, ωi, ts, ti ) =
∫∫

e2iω′
sts e2iω′

iti dω′
sdω′

i

×〈ωs − ω′
s, ωi − ω′

i|ρ̂|ωs + ω′
s, ωi + ω′

i〉.
(26)

Their marginals correspond to the joint spectral intensity
(JSI), the joint temporal intensity (JTI), or cross-marginal
(JTSI): ∫∫

dωsdωiWρ̂ (ωs, ωi, ts, ti ) = JTI(ts, ti ),

∫∫
dtsdtiWρ̂ (ωs, ωi, ts, ti ) = JSI(ωs, ωi ),

∫∫
dωsdtiWρ̂ (ωs, ωi, ts, ti ) = JTSI(ts, ωi ),

∫∫
dωidtsWρ̂ (ωs, ωi, ts, ti ) = JTSI(ti, ωs).

These four marginals were measured in Ref. [53]. Also
in the two-photon case, the issue of Gaussian and non-
Gaussian states appear. It was shown in Ref. [54] that the
biphoton Wigner function associated to variable ω− can be
directly measured using the Hong-Ou-Mandel experiment,
and also that non-Gaussianity—or, equivalently, a coincidence
detection probability greater than 1/2—is an frequency entan-
glement witness [55].

A final issue to be discussed concerns the efficiency of
production and detection of single photons. We can men-

tion deterministic and bright single photon sources based on
quantum dots [56–58] that can be integrated on chip [59] or
probabilistic ones, as the one produced by SPDC [60,61] or by
four-wave mixing [62]. The state-of-the-art single photon de-
tectors in the 1550 nm range, for instance, can reach 90% for
superconducting nanowire single-photon detector (SNSPD)
composed of materials which can be integrated on chip [63].
While the SNSPD used for detecting 925 nm single photons
produced by micro-pillar sources [58] reach an efficiency
of 60–82% in the boson sampling experiment [64]. We in-
sist on the fact that photon losses does not lead to errors
in single-photons encoding but rather increase the necessary
acquisition-time to sample the measured degree of freedom
probability distribution of single photons.

Also, the CV measurement and manipulation process,
which is necessary, for instance, in teleportation or in the
measurement-based protocol, leads to deformation of the
spectral or temporal shape of the single photon. This can be
associated to encoding errors that reduce the fidelity of the CV
operations. Nevertheless, this is expected, and intrinsic to any
type of CV encoding [65].

V. DISCUSSION AND CONCLUSION

We have described in detail how to encode quantum in-
formation in time and frequency of single photons, formally
treated as quantum continuous variables. For this, we built
an analogy between these variables and the position and mo-
mentum of a particle or the field’s quadratures. This analogy
was possible because, in the single photon regime, time and
frequency operators obey the canonical commutation relations
of the Heisenberg algebra, and can be formally manipulated
as position and momentum are. As a consequence, one can
define a finite set of universal gates that when combined lead
to unitary operations that are arbitrary polynomials in time
and frequency variables.

The set of universal operations defined using time and
frequency consists of highly nonlinear transformations at the
single photon level. While the single photon operations in
the circuit model can be implemented with current tech-
nology, the two-photon interaction is, for the time being,
easier to implement using the natural energy and momen-
tum conservation relations observed in some currently used
sources of photon pairs. One can also benefit from a complete
measurement-based strategy for devices where pump engi-
neering is possible.

We also briefly discussed the equivalent to the dynamics of
the single photons evolving under the analogous of a Hamil-
tonian defined in frequency and time variables. It corresponds
to the propagation in a dispersive linear device. Finally, we
showed that it is possible to represent and interpret nonclas-
sical and symmetry aspects of quantum states using phase
space, even though some properties as non-Gaussianity play
a less distinctive role than in quadrature-based setups in what
concerns their physical implementation.

Our results are relevant from a fundamental point of view,
pointing out an original way to interpret, manipulate and use
frequency and time state of single photons. They may help
developing novel ways to encode quantum information and
implement quantum communication and quantum metrology
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protocols in practice. In particular, measurement-based quan-
tum computing using the time-frequency of single photons is
a relevant candidate for performing universal quantum com-
putation, and share mathematical analogies- and not physical
ones- with the quadrature position-momentum cluster states
[66–70].

APPENDIX

1. Canonical commutation relation

We now provide the technical details for the calculation
of the commutation relations between different unitary opera-
tors, polynomials in ω̂a or t̂a.

To begin with, we compute the commutation relation
[ω̂a, t̂a] using that

ω̂a =
∫

ωâ†(ω)â(ω)dω,

t̂a =
∫

t â†(t )â(t )dt, (A1)

with â(t ) = ∫
â(ω)e−iωt dω. For that, we will use the

fact that we are in the single photon regime, which
is an intrinsically single mode state. It can thus be
expressed in some mode b̂n = ∫

Un(ω)â(ω)dω, so that
b̂n = ∫∫

Un(ω)â(t )eiωt dωdt = ∫
Ũn(t )â(t )dt , where Ũn(t ) =∫

Un(ω)eiωt dω and Un(ω) is an isometric linear mode trans-
formation fulfilling:

∑
n U (ω)†Un(ω′) = δ(ω − ω′). We can

then rewrite Eq. (A1) in terms of these modes as

ω̂ =
∑
n,m

∫
ω

(
Un(ω)b̂†

n

)(
U ∗

m(ω)b̂m
)
dω,

t̂ =
∑
n,m

∫
t
(
Ũn(t )b̂†

n

)(
Ũ ∗

m(t )b̂m
)
dt,

so that

[ω̂, t̂] =
∑

n,m,n′,m′

∫∫
ωtUn(ω)U ∗

m(ω)Ũn′ (t )Ũ ∗
m′ (t )

× (b̂†
nb̂mb†

n′ b̂m′ − b†
n′ b̂m′ b̂†

nb̂m)dtdω. (A2)

We can change this sum into

[ω̂, t̂] =
∑

n,m,n′,m′

∫∫
ωt

[
Un(ω)U ∗

m(ω)Ũn′ (t )Ũ ∗
m′ (t )

−Un′ (ω)U ∗
m′ (ω)Ũn(t )Ũ ∗

m(t )
]
b̂†

nb̂mb†
n′ b̂m′dtdω. (A3)

Since b̂†
nb̂mb†

n′ b̂m′ = b̂†
nb̂m′δm,n′ + b̂†

nb†
n′ b̂mb̂m′ , Eq. (A3) be-

comes

[ω̂, t̂] =
∑

n,m,m′

∫∫
ωt[Un(ω)U ∗

m(ω)Ũm(t )Ũ ∗
m′ (t )

−Um(ω)U ∗
m′ (ω)Ũn(t )Ũ ∗

m(t )]b̂†
nb̂m′dtdω

+
∑

n,m,n′,m′

∫∫
ωt[Un(ω)U ∗

m(ω)Ũn′ (t )Ũ ∗
m′ (t )

−Un′ (ω)U ∗
m′ (ω)Ũn(t )Ũ ∗

m(t )]b̂†
nb†

n′ b̂mb̂m′dtdω. (A4)

In the single-mode situation, we have that n = m′ = m =
n′ = k, so it is clear that the second sum in Eq. (A4) is equal

to zero. We will then focus on the first one. After writing the
Ũm(t ) as a function of Um(ω′), the integral over ω′ in the first
term of the sum can be integrated by parts. In addition, we use
that

∫
te−i(ω′−ω′′ )t dt = i d

dω′ δ(ω′ − ω′′). It leads to

i
∑

n

∫∫
ωUk (ω)

[
d

dω′U
∗
k (ω′)

]
U ∗

n (ω)Un(ω′)dωdω′. (A5)

We now use the orthogonality condition:
∑

n U ∗
n (ω)Un(ω′) =

δ(ω − ω′), leading to

i
∫

ωUk (ω)

[
d

dω
U ∗

k (ω)

]
dω, (A6)

which can again be integrated by parts to obtain

i + i
∫

ωU ∗
k (ω)

[
d

dω
Uk (ω)

]
dω. (A7)

We now analyze the second part of the first term of Eq. (A4)
and proceed to an integration by parts as in Eq. (A5), which
leads to

i
∑

n

∫∫
ωU ∗

k (ω)

[
d

dω′ Uk (ω′)
]
Un(ω)U ∗

n (ω′)dωdω′. (A8)

We can again perform the sum in n to reach

i
∫

ωU ∗
k (ω)

[
d

dω
Uk (ω)

]
dω, (A9)

that will cancel the last term in Eq. (A7). We have then

[ω̂, t̂] = ib̂†
kb̂k = iI, (A10)

since b̂†
kb̂k is the photon number operator in the single photon

mode denoted here as k. This operator is equal to the identity
in the single photon subspace, since there is only one single
photon in each mode. Notice that no assumption on the state
was made. These are general properties of one photon per
mode states.

2. Unitary operators

A given unitary operator which is generated by a hermitian
operator which is a polynomial ω̂ (or, equivalently, t̂), can be
expressed in the single photon subspace S1 as eiω̂n

aα . Since

eiω̂n
aα =

∞∑
k

(iα)k

k!
ω̂nk, (A11)

we will focus on the term ω̂nk ≡ ω̂s. Since ω̂s = ω̂2ω̂(s−2), we
have that

ω̂2
a =

[∫
ωâ†(ω)â(ω)dω

]2

. (A12)

The right-hand side of Eq. (A12) can be easily computed,
leading to

∫∫
ωω′â†(ω)â(ω)â†(ω′)â(ω′)dωdω′. Using that

â(ω)â†(ω′) = â†(ω′)â(ω) + δ(ω − ω′), we obtain

ω̂2
a =

∫∫
ωω′â†(ω)â†(ω′)â(ω)â(ω′)dωdω′

+
∫

ω2â†(ω)â(ω)dω. (A13)
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However, the first term in the right-hand side of Eq. (A13) is
equal to zero in the single photon subspace. We have thus

ω̂2
a =

∫
ω2â†(ω)â(ω)dω. (A14)

It is thus clear that ω̂s
a = ∫

ωsâ†(ω)â(ω)dω and, conse-
quently,

eiω̂n
aα =

∫
eiωnα â†(ω)â(ω)dω. (A15)

Using Eq. (A15) and the commutation relation between
creation and annihilation operators, we can prove all the com-
mutation relations appearing in this manuscript. Of course,

the same reasoning is valid for unitary operators involving the
time operator.

The particular case of n = 1 is relevant for the definition of
the displacement operators. In this case, Eq. (A15) becomes

eiω̂aα =
∫

eiωα â†(ω)â(ω)dω

=
∫∫∫

eiωα â†(t )e−iωt â(t ′)eiωt ′
dωdtdt ′, (A16)

which, after integration in ω, leads to

eiω̂aα =
∫

â†(t + α)â(t )dt . (A17)
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