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It is well known that the topological entanglement entropy (Stopo) of a topologically ordered ground state
in two spatial dimensions can be captured efficiently by measuring the tripartite quantum information (I3) of
a specific annular arrangement of three subsystems. However, the nature of the general N-partite information
(IN ) and correlation of a topologically ordered ground state remains unknown. In this work, we study such IN

measure and its nontrivial dependence on the arrangement of N subsystems. For the collection of subsystems
(CSS) forming a closed annular structure, the IN measure (N � 3) is a topological invariant equal to the product
of Stopo and the Euler characteristic of the CSS embedded on a planar manifold, |IN | = χStopo. Importantly,
we establish that IN is robust against several deformations of the annular CSS, such as the addition of holes
within individual subsystems and handles between nearest-neighbor subsystems. While the addition of a handle
between further neighbor subsystems causes IN to vanish, the multipartite information measures of the two
smaller annular CSS emergent from this deformation again yield the same topological invariant. For a general
CSS with multiple holes (nh > 1), we find that the sum of the distinct, multipartite information measured on
the annular CSS around those holes is given by the product of Stopo, χ and nh,

∑nh
μi=1 |INμi

μi | = nhχStopo. This
constrains the concomitant measurement of several multipartite information on any complicated CSS. The N th
order irreducible correlations for an annular CSS of N subsystems is also found to be bounded from above by
|IN |, which shows the presence of correlations among subsystems arranged in the form of closed loops of all
sizes. Thus, our results offer important insight into the nature of the many-particle entanglement and correlations
within a topologically ordered state of matter.

DOI: 10.1103/PhysRevA.105.052428

I. INTRODUCTION

Topologically ordered [1] phases are characterized by non-
local ordering of matter, and cannot be described by the
Ginzburg-Landau-Wilson paradigm of symmetry broken or-
ders [2]. These phases show exotic phenomena such as a
nontrivial ground-state degeneracy observed on a multiply
connected spatial manifold [3–9] and fractional statistics of
excitations [10–15]. Due to their added topological protection,
understanding these phases can lead to novel applications
including fault-tolerant quantum computing [16,17]. The
ground states of several topologically ordered phases have
been shown to possess signatures of string-net condensation
with long-range entanglement [18–23]. This refers to the fact
that the application of any finite number of local unitary
operations on such ground states cannot convert them into
direct product form [24–26]. Several investigations on the
nature of quantum entanglement of various topological phases
have been conducted [15,27–31]. Specifically, the study of the
von Neumann entanglement entropy of a singly connected
subregion partitioned from a topologically ordered ground
state reveals the existence of a geometry-independent term
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that depends on the degeneracy of the ground-state manifold.
This term is universal in the sense that it is a topological
invariant, and is referred to as the topological entanglement
entropy (TEE) [32–36]. Analysis of the entanglement spec-
trum of these states has revealed nontrivial degeneracy, a gap
that vanishes at topological phase transitions and the existence
of gapless edge states [37–46].

We now discuss the TEE in further detail. It was shown
in Refs. [32–34] that the entanglement entropy (SA) for a
subsystem A obtained from a real-space bipartitioning of a
state with nontrivial topological order in two spatial dimen-
sions follows the area law [47] with a correction term (γA),
SA = αLA − γA + · · · . The terms represented by the ellipsis
vanish for large subsystem size. Further, it is known that the
term γA is universal: in the simplest setting, it depends on
a topological quantum number of the ground-state manifold
called the quantum dimension (D), and the topology of the
subsystem (i.e., the number of disjoint boundary components
of the subsystem A). The quantum dimension governs the rate
of growth of the topologically protected ground-state Hilbert
space on manifolds with a nontrivial genus. As an example,
for the case of the topologically ordered Abelian fractional
quantum Hall fluids, the quantum dimension D = √|detK|,
where K is the K matrix describing the topological Chern-
Simons quantum field theory for these phases. The quantity
|detK| is a count of the number of degenerate ground states
on a torus.
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In general, the von Neumann entanglement measure cap-
tures both local as well as nonlocal correlations. Thus, it
was shown in Refs. [33,34] that in order to find a purely
topological piece of the entanglement entropy, one has to
properly choose an arrangement of the subsystems under
consideration as well as the corresponding entanglement
measure. Specifically, Refs. [33,34] showed that the tripar-
tite information, I3(A, B,C) = SA + SB + SC − (SAB + SBC +
SCA) + SABC is proportional to the TEE (Stopo ≡ log2 D) for a
very specific annular arrangement of three subsystems A, B,
and C: I3(A, B,C) = −2Stopo. Importantly, the I3(A, B,C) for
this particular collection of subsystems (CSS) is defined such
that all geometry- (or boundary length-)dependent terms ex-
actly cancel one another. It has also been shown in Ref. [32]
that the entanglement entropy of a singly connected subsys-
tem A is given by S(A) = (nA − CA) log2 D, where nA and CA

are the number of links on the perimeter and the number of
disjoint boundary components, respectively, of subsystem A.
Recent investigations [48–50] also conclude that the tripar-
tite information measure employed in Refs. [33,34] provide
evidence for the presence of nonlocal correlations in topolog-
ically ordered ground states in the form of an entanglement
Hamiltonian that has tripartite irreducible correlations.

However, certain key questions remain unanswered. First,
what is the precise dependence of the tripartite informa-
tion measurement protocol proposed in Refs. [33,34] on the
topology of the collection of subsystems (CSS)? How ro-
bust are such measurements against deformations of the CSS
topology? Further, given that a topologically ordered system
possesses truly long-ranged entanglement [24–26], can the
multipartite quantum information be generalized beyond the
choice of three subsystems so as to capture unambiguously
the TEE? If this can be achieved, what insight does it offer
on the nature of multipartite correlations encoded within a
topologically ordered state? Answering these questions is the
main goal of our work. We summarize our main results below,
as well as present a plan of the work.

A. Summary of main results

In Sec. II, we define a multipartite information mea-
sure (IN

{AN }) for a CSS defined by {AN } (with N number of
subsystems in it). IN

{AN } is a generalization of the tripartite
information used to compute the TEE in Refs. [33,34], and
we show that IN

{AN } is independent of CSS geometry. We then
show in Sec. III that IN

{AN } is a topological invariant, depending
only on the ground-state quantum dimension and the Euler
characteristic (χ ) of the CSS embedded on the underlying
planar spatial manifold. Note that χ is also the classical Euler
characteristic of the underlying compactified planar manifold
R2. Specifically, in Sec. III A, we show that for an annular
arrangement of N � 3 subsystems, |IN | = χStopo [Eq. (8)]. In
the remainder of Sec. III, we test the robustness of this result
against various kinds of deformations of the annular CSS.
For instance, in Sec. III C, we show that neither the addition
of self-loops and holes within subsystems, nor the addi-
tion of handles between neighboring subsystems (Sec. III D),
changes the result |IN | = χStopo. Further, in Sec. III E, we
show that while adding handles between subsystems that
are not neighbors causes IN to vanish, the multipartite in-

formation of several smaller annular CSS becomes nonzero.
These results are summarized pictorially in Fig. 3. Thus, these
results establish that the nontrivial topology of an annular
CSS is essential for a multipartite information to capture the
TEE. Further, it appears very generally possible to identify
an annular CSS configuration that is appropriate for such a
measurement.

In Sec. IV, we demonstrate the constraint that governs
various multipartite information measurements that can be
made in a CSS with nh number of holes (and where a given
multipartite information is computed around one of the holes).
For instance, we find that the sum of the two multipartite
information of a CSS with nh = 2, where each is computed
individually around one the two holes, adds up to a constant,
which depends on the product of Stopo, nh and χ (the Euler
characteristic of the CSS embedded on the underlying planar
manifold). We have generalized the constraint to the case of a
CSS with nh ∈ Z number of holes [Eq. (25)]. Unlike the study
of Ref. [35], the holes of the CSS in our case are contractible,
i.e., they do not, for instance, wrap around the neck of a torus.

Finally, in Section V, we study the irreducible correlation
content [51–54] encoded within the multipartite information
measure of an annular CSS of N subsystems. For a N-partite
state, the k-party irreducible correlation measures that part
of the total not arising from any order of correlations less
than k. We obtain a generalization of the three-subsystem
strong subadditivity relation to the case of N subsystems of
a topologically ordered state within an annular configuration
[Eq. (34)]. Using this inequality, we show that the N-party
irreducible correlation is bounded from above by Stopo for an
annular CSS of N subsystems [Eq. (36)]. This generalizes
the previous result for the three-party irreducible correlation
[48,49]. These results demonstrate the presence of N-party
correlations among the subsystems of an annular CSS, and
confirms the existence of closed annular structures of all sizes
within a topologically ordered ground state. We conclude with
a discussion of our results in Sec. VI. Detailed derivations of
several key results are presented in the Appendixes.

II. MULTIPARTITE INFORMATION: DEFINITION

Topologically ordered systems contain nonlocal entangle-
ment and correlations. Thus, identifying nonlocal operators
and measures of entanglement is important in their classifi-
cation. Importantly, in the case of zero correlation length, the
entanglement entropy (SR) of a region R of a topologically
ordered ground state depends on the number of disconnected
components ( j) of the boundaries [32] (∂R) of R and the
quantum dimension (D) of the Hilbert space [33]

SR = − j log2 D − n
N∑

k=0

d2
k

D log2

(
d2

k

D

)
, (1)

and where n is the number of states lying on ∂R, and dk is the
quantum dimension of a particle with charge k [33,34]. The
quantum dimension D is a property of the complete system,
and does not depend on the choice of the subsystems. This
formula is valid for the cases where the hole of the subsystem
R is contractible, i.e., it does not, for instance, wrap around
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FIG. 1. (a) CSS with N members placed in an annular struc-
ture ({A(a)

N } ≡ {A1, . . . , AN }), and where each individual subsystem
is simply connected. (b) An open CSS ({A(1b)}) formed out of N
number of simply connected subsystems, such that their union does
not form a closed annular structure. (c) CSS ({A(1c)}) composed of
N subsystems, where N − 1 form a closed CSS ({A(a)

N−1}) and the
last is an isolated island AN . (d) CSS ({A(1d )}) formed from N + 1
subsystems created by joining the (appendage) subsystem AN−1 with
the closed annular CSS {A(a)

N−1}.

the neck of a torus. We will discuss the importance of a
vanishing correlation length shortly.

Further, Refs. [33,34] showed that a purely topological
part of entanglement entropy [dubbed as topological entan-
glement entropy (TEE)] can be detected by measuring the
tripartite information I3 for a particular annular arrangement
of three subsystems: I3(A, B,C) = SA + SB + SC − (SAB +
SBC + SCA) + SABC = −2Stopo, where Stopo = log2 D. Using
the above formula Eq. (1), one can easily verify an essential
feature of I3: it is defined so as to be independent of the
geometry of the arrangement of subsystems; instead, it de-
pends only on the quantum dimension (D) of the topologically
ordered system. We will now extend this result to show that an
appropriately defined N-partite information measure can cap-
ture the same topological entanglement entropy (TEE) by a
careful arrangement of N subsystems. Further, we confine our
interest to the case of two-spatial dimensional topologically
ordered systems in this work.

We first clarify some important mathematical notations
and conventions. Our goal is to define the N-partite infor-
mation IN

{AN } for a collection of subsystems (CSS, with N
subsystems) with a unique arrangement specified by {AN } ≡
{A1, A2, . . . , AN }. Some examples of CSS considered by us
are given in Fig. 1, with individual subsystems labeled by
A1, A2, . . . , AN . If there is no overlap between two subsystems
Ai and Aj , then their intersection vanishes: Ai ∩ Aj = ∅. We
define the power set of the CSS {AN } as P ({AN }), and the
collection of all subsets of P ({AN }) with m subsystems in it
as Bm({AN }) ≡ {Q | Q ⊂ P ({AN }), |Q| = m}. We also define
the union and intersection of all the subsystems present in Q as
V∪(Q) ≡ ⋃

A∈Q A and V∩(Q) ≡ ⋂
A∈Q A, respectively. Finally,

the von Neumann entanglement entropy of the subsystem A
(with length LA) for a topologically ordered ground state is
given by SA = αLA − γA, and γA represents the topological
terms in SA.

Then, the N-partite information is defined as

IN
{AN } =

[
N∑

m=1

(−1)m−1
∑

Q∈Bm ({A})

SV∪(Q)

]
− SV∩(AN ). (2)

In this work, we will focus on the cases where there
are no overlaps among the N subsystems within the CSS,
V∩({AN }) = ∅. In this way, we exclude any nontrivial con-

tributions to the TEE arising from such an overlap in all CSS
that we study: γV∩(AN ) = 0. Further, we also assume that there
is no overlap among m number of subsystems in the CSS for
N � m > 2. Thus, for an example of m = 3, Ai ∩ Aj ∩ Ak =
∅, ∀i 
= j 
= k. One can easily check that for N = 3, Eq. (2)
then becomes the tripartite information I3 given above for an
annular structure of a CSS of three subsystems (i.e., with a
hole in the center) [33,34].

We will now demonstrate that the multipartite information
measure IN

{AN } is chosen such that all geometric content within
it vanish identically. For this, we first define the geometric area
of a subsystem A as R(A). Then, the geometry dependence
(R{AN }) of IN

{AN } is computed as follows:

R{AN } =
N∑

m=1

(−1)m−1
∑

Q∈Bm ({A})

R[V∪(Q)],

=
N∑

m=1

N∑
i=1

(−1)m−1

(
N − 1

m − 1

)
× R(Ai )

=
[

N∑
i=1

R(Ai )

]
×
[

N∑
m=1

(−1)m−1

(
N − 1

m − 1

)]
= 0. (3)

Thus, we find that IN
{AN } is indeed independent of the ge-

ometry of its constituents, i.e., the last term in Eq. (1) (related
to the number of the states n in the subsystem perimeter)
cancel one other within the measure IN [Eq. (2)]. Thus, for
topologically ordered systems, the multipartite information
measure IN will depend only on log2 D, and with a prefactor
that depends on the choice of subsystems

IN
{AN } = −CN

{AN } log2 D, (4)

CN
{AN } =

N∑
m=1

(−1)m−1
∑

Q∈Bm ({A})

JV∪(Q), (5)

where JB is the number of disconnected/disjoint boundaries
of the subsystem B or the number of disconnected compo-
nents of ∂B (the boundary of B). In showing the geometry
independence of the multipartite information measure, we
have assumed that the subsystem size is bigger than the
correlation length. In this limit, all local (length-dependent)
contributions in the N-partite information measure cancel out
such that only a purely topological piece remains. This is oth-
erwise not the case. The extreme case is the zero correlation
length limit, where a subsystem is connected to its nearest
neighbors through common boundaries.

Indeed, we will see in the following section that the quan-
tity CN

{AN } quantifies the nontrivial topology of the CSS. We
demonstrate both trivial as well as nontrivial choices for the
topology of a CSS, and describe the transformations that leave
IN
AN

invariant. This will generalize the results of Refs. [33,34]
on how to detect the TEE of a CSS of N subsystems via
a N-partite information measure, and offer insights into the
nature of the many-particle entanglement encoded in such
systems.
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III. MULTIPARTITE INFORMATION: COMPUTATION

We confine ourselves to the study of CSS {AN } that are
placed on a two-dimensional (2D) planar manifold. Thus,
the individual subsystems are two dimensional, and their
boundaries are one-dimensional curves. As mentioned earlier,
we also assume that there exist no overlaps among different
subsystems other than nearest neighbors. Starting with the
simplest case of an annulus, we now compute the IN for sev-
eral different arrangements of the CSS in order to understand
the role played by subsystem topology.

A. Simple annular closed and open structures

We first study the simplest CSS shown in the Fig. 1(a),
where the subsystems {A(a)

N } = {A1, A2, . . . , AN } are arranged
in an annulus. Each subsystem Ai ∈ {A(a)

N } has a single dis-
connected boundary, JAi = 1. One can also easily see that for
such a CSS, V∩({A(a)

N }) = ∅. Then, the quantity

CN
{A(a)

N } =
N∑

m=1

(−1)m−1 �N
m ,

�N
m =

∑
Q∈Bm ({AN })

JV∪(Q), (6)

where �N
m represents the total number of disconnected

boundaries coming from all possible choices of m sub-
systems (out of a total N subsystems). One of our main
results involves computing the count �N

m . As shown in Ap-
pendix A, for an annular arrangement of subsystems {A(a)

N },
[
∑N−1

m=1(−1)m−1 ∑
Q∈Bm ({A(a)

N }) JV∪(Q)] = 0. Thus, we obtain

CN
{A(a)

N } = (−1)N−1�N
N = (−1)N−1J∪iAi = 2 × (−1)N−1, (7)

as the number of disconnected boundaries of the entire CSS
as a whole (i.e.,

⋃
i Ai in the CSS {A(a)

N }) is given by �N
N =

J∪iAi = 2 [see Fig. 1(a)]. We have also shown in Appendix B
that the prefactor 2 corresponds to the Euler characteristics
χ of the CSS embedded on the underlying planar manifold.
Thus, the N-partite information simplifies to

IN
{A(a)

N } = −CN
{A(a)

N } log2 D = (−1)N 2 log2 D,

= (−1)NχStopo, (8)

Thus, we see that for a simple annular arrangement of subsys-
tems, the amplitude of the N-partite information has the same
value |IN

{A(a)
N }| = 2 log2 D for all N . For the case of N = 3, this

reduces to the well-known result for the tripartite information
[33,34]. Our generalization highlights a property likely special
to a topologically ordered system: any N-partite information
(N � 3) is able to capture the TEE of Stopo.

On the other hand, if the structure of the CSS is open [see
Fig. 1(b)], the N-partite entanglement measure will vanish
even for a topologically ordered ground state: IN

{A(1b)
N } = 0. This

is shown in Appendix A 1. Again, this shows the crucial role
of the subsystem topology of the CSS in capturing Stopo.

B. Isolated subsystems and appendages

We now turn our attention to the case of a CSS comprised
of a disjoint union of an annular arrangement of N − 1 sub-
systems and an isolated subsystem labeled by N as shown
in the Fig. 1(c). We use Eq. (5) to calculate CN

{A(1b)
N }, where

JV∩({A(1b)
N }) = 0. Recall that

CN
{A(1b)

N } =
N∑

m=1

(−1)m−1
∑

Q∈Bm ({A(1b)
N })

JV∪(Q). (9)

As the CSS {A(1b)
N } is a disjoint union of two smaller CSS,

{A(1b)
N } = {A(1b),N

N−1 } ∪ {AN }. Thus, upon expansion of Eq. (9),
we can rewrite CN

{A(1b)
N } as

CN
{A(1b)

N } = CN−1
{A(1b)

N }−{AN } + JAN −
N−1∑
i=1

JAN ∪Ai

+
N−1∑

i< j=1

JAN ∪Ai∪Aj .. + (−1)N−1JAN ∪A1∪. ∪AN−1

= CN−1
{A(1b)

N }−{AN } − CN−1
{A(1b)

N }−{AN } + JAN ϒN−1

= 0, (10)

where ϒN−1 = ∑N−1
i=0 (−1)i

(N−1
i

) = 0. The detailed deriva-
tion of the relation Eq. (10) is shown in the Appendix C.
Thus, one can see that for a CSS of N subsystems that can
be decomposed into disjoint substructures, a vanishing global
connectivity measure CN gives rise to a vanishing N-partite
entanglement measure IN .

We have also considered a CSS of N number of subsys-
tems in which an appendage has been added to the simple
annular structure [see Fig. 1(d)]. As shown in Appendix D,
the multipartite information vanishes for this CSS as well:
IN
{A(1d )

N } = 0. In this way, we have found that the closed annular

nature of the CSS is essential for a nontrivial value of IN . We
will now analyze deformations of the CSS that keep the result
IN
{A} = (−1)Nχ log2 D invariant.

C. Individual subsystem boundary with multiple
disconnected components

We are interested in those cases of CSS with N subsystems
where individual subsystems have either holes and/or self-
handles [as shown in Fig. 2(a)]. Unlike the simple annular case
shown in Fig. 1(a), the number of disconnected boundaries of
an individual subsystem can in such cases be an integer value
higher than 1. We represent such CSS by {A(2a)

N }.
We now calculate the quantity CN

{A(2a)
N } as a deviation from

CN
{A(a)

N }, due to the increase in the number of disconnected

boundaries of the individual subsystems. Note that here,
JAi = 1 + μi, where μi is the change in the number of dis-
connected boundaries with respect to simple annular case
[see Fig. 1(a) and the discussion in Sec. III A]. Thus, we
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FIG. 2. (a) CSS {A(2a)
N } represents the case where individual

subsystems have holes or multiple self handles, but there is no
intersubsystem handles. (b) CSS representing the case where there
are handles among nearest-neighbor subsystems, but no connection
among further-neighbor subsystems. (c) CSS with a connection be-
tween two subsystems (Am and An) that lie beyond nearest neighbor
(n − m > 1).

obtain

CN
{A(2a)

N } =
N∑

m=1

(−1)m−1
∑

Q∈Bm ({A(2a)
N })

JV∪(Q),

= CN
{A(a)

N } +
N∑

m=1

(−1)m−1�N
m,

�N
m =

∑
Q∈Bm ({A(2a)

N })

∑
Ai∈Q

μi =
(

N − 1

m − 1

) ∑
Ai∈{A(2a)

N }
μi.

One can easily simplify this result using the relation

N∑
m=1

(−1)m−1

(
N − 1

m − 1

)
= 0, (11)

thereby leading to CN
{A(2a)

N } = CN
{A(a)

N }. Then, using Eq. (8), we

again obtain

IN
{A(2a)

N } = IN
{A(a)

N } = (−1)NχStopo. (12)

Thus, we find that the addition of self-handles and holes in the
individual subsystems does not affect our earlier result for the
N-partite information measure IN . This confirms the robust-
ness of our multipartite information measure in topologically
ordered phases against such a deformation.

D. Adding nearest-neighbor handles

As shown in Fig. 2(b), we now deform the simple annular
structure [Fig. 1(a)] by adding any number of intersubsystem
handles between nearest-neighbor subsystems. The deformed
CSS is denoted by {A(2b)

N }.
In order to compute the N-partite information IN

{A(2b)
N }, we

first calculate CN
{A(2b)

N }. Recall that JAi∪Ai+1modN = 1 for the sim-

ple annular case. Due to addition of extra νi number of handles
between the nearest-neighbor subsystems Ai and Ai+1modN ,
we have increased the number of disconnected boundary to

JAi∪Ai+1modN = 1 + νi. Thus,

CN
{A(2b)

N } = CN
{A(a)

N } +
N∑

m=2

(−1)m−1
N∑

i=1

νi

(
N − 2

m − 2

)

= CN
{A(a)

N } +
N∑

i=1

νi

N∑
m=2

(−1)m−1

(
N − 2

m − 2

)

= CN
{A(a)

N }. (13)

Thus the N-partite information measure is also invariant under
this deformation

IN
{A(2b)

N } = IN
{A(a)

N } = (−1)NχStopo. (14)

E. Addition of further-neighbor handles

Having analyzed deformations of the CSS that leave the
multipartite information IN invariant, we now turn to a de-
formation that trivializes it. For this, we add a single handle
between two subsystems Am and An with at least one subsys-
tem lying in between them [such that Am and An are not nearest
neighbors, see Fig. 2(c)]. We choose the subsystem label such
that n < m � N , where (m − n) > 1. It is easily seen that
upon adding such a handle, we create two closed loops C1 and
C2 formed out of p and q number of subsystems, respectively,
where p = (m − n + 1) and q = (N − m + n + 1) with q > p
and p + q − 2 = N . Thus, we can now create simple annular
CSS [of the kind seen in Fig. 1(a)] from the closed loops C1

and C2, and denoted by {Ap} and {Aq}, respectively. We now
compute

CN
{A(2a)

N } =
N∑

m=1

(−1)m−1

⎡
⎣μm +

∑
Q∈Bm ({A(a)

N })

JV∪(Q)

⎤
⎦, (15)

where the modification terms μm (apparent upon the introduc-
tion of the handle) are given by

μ1 = 0, μN = +1, μm = −
(

N − 2

j − 2

)
, ∀ 2 � m < p,

μm = 2

(
N − p

j − p

)
−
(

N − 2

j − 2

)
, ∀ p � m < q,

μm = 2

(
N − p

j − p

)
+ 2

(
N − q

j − q

)
−
(

N − 2

j − 2

)
,

∀ q � m < N. (16)

Thus, we obtain CN
{A(2a)

N } = CN
{A(a)

N } + ∑N
m=1(−1)m−1μm. Fur-

ther simplification gives

CN
{A(2a)

N } = CN
{A(a)

N } + 2(−1)N

= 2(−1)N−1 + 2(−1)N = 0. (17)

Additionally, in Appendix E, we also show that the vanish-
ing of CN

{A(2a)
N } in this case arises from the fact that CN

{A(2a)
N } =

(−1)N (χ − 2), where χ ≡ 2 is the Euler characteristic of the
CSS with N subsystems embedded on the planar manifold.
In turn, the vanishing CN of leads to the vanishing of the
N-partite information for the entire CSS

IN
{A(2c)

N } = −CN
{A(2a)

N } log2 D = 0. (18)
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FIG. 3. Summary of various results for the N-partite information
IN corresponding to different CSS topologies placed on a planar
manifold presented in Sec. III. Please refer to the text for details.

Instead, the p-partite and q-partite information for the CSS
{Ap} and {Aq} (i.e., the two smaller loops C1 and C2) are found
to be nonzero as long as p, q � 3:

I p
{Ap} = (−1)pχ log2 D, Iq

{Aq} = (−1)qχ log2 D. (19)

Finally, we summarize the results of this section in Fig. 3.
The simple annular CSS [Fig. 3(a)] with N number of sub-
systems possesses a nonzero multipartite information IN ,
dependent on the Euler characteristic (χ ) of the CSS embed-
ded on the underlying manifold and the quantum dimension
of the ground-state manifold (D). Deformations of this simple
annular structure that involve the addition of intrasubsystem
handles or holes [Fig. 3(b)] and the addition of nearest-
neighbor handles [Fig. 3(c)] leave the multipartite information
measure IN invariant. On the other hand, the addition of the
further-neighbor handles [Fig. 3(d)] trivializes the IN mea-
sure. However, the addition of the further-neighbor handles
creates two closed loops C1 and C2 [Figs. 3(e) and 3(f)] with
a lesser number of subsystems (p and q, respectively, corre-
sponding to the CSS {Ap} and {Aq}). The smaller loops C1 and
C2 again possess a nonzero multipartite information (as long
as p, q � 3). In this way, we find that it is always possible to
identify a simple annular structure with an IN that can detect
the topological entanglement entropy.

IV. MEASUREMENT CONSTRAINTS

Having ascertained the importance of subsystem topology
in attaining a nontrivial multipartite information measure IN ,
we now turn our attention to measurements for a more general
case of a CSS that has more than one hole in it, i.e., composed
of more than one annular structure. As an example, we start
with a minimally complex CSS {A(2)

5 } that has two holes
in it (see Fig. 4). Two closed annular structure is C1 and
C2 associated with the smaller CSS {AC1

3 } = {A, B,C} and
{AC2

3 } = {A, D, E}, respectively. Using Eq. (8) for the CSS
AC1

3 and AC2
3 shown in Fig. 4, it is easily seen that

I3
{AC1

3 } = I3
{AC2

3 } = (−1)3χ log2 D. (20)

Now, our goal is to calculate IN
{A(2)

5 } for the CSS {A(2)
5 }

shown in Fig. 4. For this, we first note that the N-partite

FIG. 4. CSS with five subsystems ({A(2)
5 } = {A, B,C, D, E}) and

embedded on planar manifold. The two holes in the CSS are denoted
by C1 and C2.

information for any general CSS {A}, as shown in the Eq. (2),
can be rewritten in terms of various lower-order multipartite
information measures as follows:

IN
{AN } =

N−2∑
μ=1

(−1)μ−1
∑

R∈BN−μ({A})
|R|=N−μ

I |R|
R

+ (−1)N

(∑
i

SAi − S∪Ai

)
. (21)

The detailed derivation for Eq. (21) has been shown in Ap-
pendix F. Using Eq. (21), we obtain

I5
{A(2)

5 } =
∑

{a}∈B4({A(2)
5 })

I4
{a} −

∑
{b}∈B3({A(2)

5 })

I3
{b}

+
∑

{c}∈B2({A(2)
5 })

I2
{c} + (−1)N

(∑
i

SAi − S∪Ai

)
. (22)

One can easily check that all the I4
{..} terms vanish identically,

as there is no possible closed annular region in Fig. 4 with
four subsystems and where each subsystem has two unique
nearest neighbors. Some of the I3

{..} terms also vanish for
the same reason, leaving only two nonvanishing I3 terms:
I3
{A,B,C} 
= 0 
= I3

{A,D,E}. Further, only some of the
(5

2

)
number

of I2
{..} terms vanish, as C2

Ai,Aj
= 0 if JAi∪Aj 
= 1, and C2

Ai,Aj
= 1

otherwise. Also, from its definition, we know that JA = 1 for
a subsystem A with one disconnected boundary. Finally, we
note that J∪iAi = 3, as the number of disconnected boundaries
of the entire CSS (∪iAi) in the Fig. 4 is 3. Using these proper-
ties, we find

I5
{A(2)

5 } = −(
I3
{A,B,C} + I3

{A,D,E}
) + (

I2
{A,B} + I2

{B,C}

+ I2
{C,A} + I2

{A,D} + I2
{D,E} + I2

{E ,A}
)

+ (−1)5

(∑
i

SAi − S∪Ai

)
= 0. (23)

This can be rewritten as

I3
{A,B,C} + I3

{A,D,E}

= (−1)5

[∑
i

SAi − S∪Ai

]
+ [

I2
{A,B} + I2

{B,C} + I2
{C,A}

+ I2
{A,D} + I2

{D,E} + I2
{E ,A}

]
,

= −2χ log2 D,

052428-6



UNVEILING TOPOLOGICAL ORDER THROUGH … PHYSICAL REVIEW A 105, 052428 (2022)

⇒ ∣∣I3
{A,B,C}

∣∣ + ∣∣I3
{A,D,E}

∣∣ = 2χ log2 D,

such that γABC + γADE = 2χ log2 D = 2χStopo, (24)

where γA is the topological piece in the von Neumann en-
tanglement entropy of the topologically ordered ground state,
SA = αLA − γA for the subsystem A.

Following the calculation shown in Appendix G, we iden-
tify the factor of 2 in Eq. (24) as arising from the two holes in
the subsystem configuration. For a general configuration with
nh number of holes, we find that the sum of the nh multipartite
information computed around the nh holes is related to Stopo

as
nh∑

j=1

∣∣Iμ j

{Aj}
∣∣ = χnh log2 D = χnhStopo, (25)

where μ j counts the number of subsystems around the jth
hole, and χ is the Euler characteristic of the CSS embedded on
the planar manifold (χ ≡ 2). It is now clear that the required
number of measurements of |Iμ j

{Aj}| is reduced by one. We
note that the constraint relation Eq. (25) is different from
the uncertainty relation proposed in Ref. [35]. As shown
there, the mutual information studied around the two noncon-
tractible loops of a torus are not known independently, and
can only be related to one another by invoking the strong
subadditivity property. On the other hand, our measures of
multipartite information measures are for CSS embedded on a
planar manifold, and as shown earlier, can be measured inde-
pendently. Nevertheless, Eq. (25) acts as a constraint between
them. We recall that a similar calculation (see Appendix E)
for the multipartite information IN

{A(nh )
N } of the complete CSS

{A(nh )
N } with multiple number of holes is observed to vanish

IN
{A(nh )

N } = (−1)(N−1)(χ − 2) log2 D = 0. (26)

This is a manifestation of the result shown in Eq. (18).
Thus, one can see the multipartite information measure-

ments around different holes of the CSS embedded on the
planar manifold [Eq. (25)] are constrained through the inter-
play of subsystem topology (i.e., the number of holes in the
CSS, nh) and the Euler characteristic (χ ) of the underlying
manifold.

V. TEE AND IRREDUCIBLE CORRELATIONS

If a N-partite state has multipartite entanglement, then
there should also exist signatures of multipartite correlations
among the subsystems. Indeed, such correlations can be of any
order within the N-partite state, ranging from two particle to
N particle. Following Refs. [48,49,51–54], we now seek the
connection between the multipartite information IN and the
irreducible correlations (defined below) for the simple annular
arrangement of the CSS [{A(a)

N }; see Fig. 1(a)] of a topologi-
cally ordered system. We start with a N-partite quantum state
ρ∪iAi in the state space S (HN ), where HN is the Hilbert space
and {A(a)

N } = {A1, . . . , AN } is the set of the subsystems form-
ing an annular structure. The k-partite irreducible correlation
is defined for a N-partite state (k � N), and measures the cor-
relation present purely in the k-particle reduced density matrix
but not in the l−particle reduced density matrix for l < k. As

we will see below, the k-partite irreducible correlations can
be defined [51,52] by using the notion of a maximum entropy
state.

We first define the set Rk

Rk = {
σ | ∀ak ⊂ {

A(a)
N

}
, |ak| = k : σak = ρak

}
ρ̃

(k)
{A(a)

N } ≡ argmax
σ∈Rk

S(σ ), (27)

where |ak| is the cardinality of the set ak and S (HN ) is
the state corresponding to the Hilbert space HN . Thus, for
the N-partite state ρ∪iAi , the irreducible k-partite correlation
(2 � k � N) is defined as

C (k)(ρ∪iAi ) = S
(
ρ̃

(k−1)
∪iAi

) − S
(
ρ̃

(k)
∪iAi

)
, (28)

and the total correlation is given by C T (ρ∪iAi ) =∑N
k=2 C (k)(ρ∪iAi ).
We now define the maximum entanglement entropy state

ρ̃{A} as

ρ̃A = argmax{S(σ )|σ ∈ QA}, where

QA = {σ |a ⊂ A, |a| = |A| − 1, σa = ρa, }. (29)

The irreducible correlation for the N-partite system can now
be defined in terms as ρ̃{A} as follows

EIC
(
ρ∪iAi

) = S
(
ρ̃∪iAi

) − S
(
ρ∪iAi

)
. (30)

For the case of a topologically ordered ground state, and an
annular CSS of Fig. 2(a) under consideration, we can see from
relations Eq. (27) and Eq. (30) that C (ρN−1

∪iAi
) = EIC (ρ∪iAi ).

In order to proceed towards building a link between the
multipartite information IN and irreducible correlations EIC ,
we begin by rewriting the relation Eq. (21) for IN in terms of
the total correlation CT

N

IN
{A} =

⎡
⎢⎢⎣

N−2∑
μ=1

(−1)μ−1
∑

R∈BN−μ({A})
|R|=N−μ

I |R|
R

⎤
⎥⎥⎦ + (−1)NC T

N . (31)

For the simple annular CSS structure being considered,
one can easily check that only the mutual information (I2)
terms for nearest-neighbor subsystems will have nonzero val-
ues in Eq. (31). This can be argued for as follows. Of the(N

2

)
possible mutual information terms, there are many terms

I2
{Ai,Aj } = S(ρAi ) + S(ρAj ) − S(ρAi,Aj )’s where Ai and Aj are

not nearest neighbors. For such cases of two disjoint subsys-
tems, one can write the density matrix ρAi,Aj = ρAi ⊗ ρAj . The
mutual information corresponding to Ai, Aj is clearly zero, as
S(ρAi,Aj ) = S(ρAi ) + S(ρAj ). This leaves us with N number of
nonzero mutual information terms I2

{Ai,Aj } 
= 0 (where Ai and
Aj are nearest neighbors). Similarly, all k-partite information
Ik with 3 � k � N − 1 must vanish, as no closed loops exist
for these sets of k subsystems. Taken altogether, we obtain a
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FIG. 5. CSS ({A(LW )
3 }) composed of three subsystems A, B,C,

and where B is comprised of two disjoint islands [33].

simplified expression of IN
{A}

IN
{A} = (−1)N−1

[
N∑

i=1

I2
{Ai,Ai+1modN }

]
+ (−1)NC T

N ,

= (−1)N−1

[
N∑

i=1

(SAi − SAi∪A(i+1)mod N ) + S∪Ai

]
. (32)

Using our earlier expression for IN
{A} in terms of the TEE

(Stopo), the total correlation C T is given by

C T =
N∑

i=2

C (i) =
[

N∑
i=1

I2
{Ai,Ai+1modN }

]
− χStopo. (33)

For the case of the CSS considered in Refs. [33,34]
(see Fig. 5), we can easily see that from our earlier results
that I3

{A(LW )
3 } = −χ log2 D. Indeed, this result is in general

agreement with the property of strong subadditivity of von
Neumann entanglement entropy for a CSS of N = 3 subsys-
tems [48,49]: I3

{A(LW )
3 } � 0. Similarly, from Eq. (32), we obtain

a generalized strong subadditivity relation for a CSS of N > 3
subsystems in a topologically ordered phase

S∪Ai +
N∑

i=1

(
SAi − SAi∪A(i+1)mod N

) = −χ log2 D � 0. (34)

The equality in the condition [Eq. (34)] corresponds to
the case of a topologically trivial phase (D = 1, obeying the
boundary law entanglement entropy), while the inequality
corresponds to the topologically nontrivial phases (D > 1).

Further, following a similar demonstration for a CSS of
N = 3 subsystems in Ref. [48], we obtain for a CSS of N
subsystems in a topologically ordered ground state that

S
(
ρ̃∪iAi

)
�

N∑
i=1

[
S
(
ρ̃Ai∪A(i+1)mod N

) − S
(
ρ̃Ai

)]
,

�
N∑

i=1

[
S
(
ρAi∪A(i+1)mod N

) − S
(
ρAi

)]
, (35)

where we have used the fact that S(ρ̃Ai ) = S(ρAi ) for
any individual subsystem. Now, by subtracting S(ρ∪iAi )
from both sides of Eq. (35) and using Eq. (30), we

obtain

EIC
(
ρ∪iAi

)
�

N∑
i=1

[
S
(
ρAi∪A(i+1)mod N

) − S(ρAi

)] − S
(
ρ∪iAi

)
,

EIC
(
ρ∪iAi

)
�

∣∣IN
{A(aD)

N }
∣∣ ≡ χStopo.

Thus, we obtain that the N th-order irreducible correlation
for the choice of subsystems ({A(aD)

N }) is bounded from above
by the product χStopo

C (N )(ρ∪iAi

) = EIC
(
ρ∪iAi

)
�

∣∣IN
{A(aD)

N }
∣∣ = χStopo. (36)

This result is the generalization of the N = 3 case previously
obtained in Refs. [48,49] for a topologically ordered ground
state. We note that the n-party irreducible correlation C (n) was
observed in Ref. [48] for n > 3, where it was shown that for a
closed annular arrangement of six spins, C (n) = 0 for n < 6.
This result can be understood partially from our analysis as
follows. As all possible sub-CSS with n < 6 number of spins
have a nonannular structure (Fig. 1), the n-partite information
measure In = 0 for n < 6, and hence C n � 0.

Our results show that, for a nonzero Stopo, the N-partite
irreducible correlation among N subsystems arranged in an
annular form has a nonzero upper bound. This suggests the
possibility of nonzero irreducible correlation among subsys-
tems in such arrangement, even though we cannot rule out
the possibility of it being zero. For the case of a nonzero ir-
reducible correlation, the entanglement Hamiltonian H̃ρ∪iAi

≡
ln ρ∪iAi on region ∪iAi cannot be a two-local Hamiltonian
[49]. As shown in Ref. [49], a nonzero three-partite irreducible
correlation (C 3) measures the distance of the tripartite state
from the set of Gibbs state of all two-local Hamiltonians, and
reveals that the corresponding entanglement Hamiltonian con-
tains terms beyond two-local terms. Thus, we conclude that
the presence of nonzero multiparty irreducible correlations
suggests a similar long-ranged nature of the entanglement
Hamiltonian. Indeed, H̃ρ∪iAi

must contain N-partite interac-
tions that act on the entire region ∪iAi of the annular CSS.
Given that the number of subsystems N is a variable, this
suggests that the topologically ordered ground state contains
correlations of all orders among subsystems in the form of
annular closed loops [1,55]. This is likely to be particularly
relevant to the nature of the entanglement encoded in the Z2

topologically ordered string loop condensed phases of models
such as the toric code [56,57].

VI. DISCUSSION

Topological entanglement entropy (denoted by Stopo) is a
property unique to a topologically ordered system, and arises
from the quantum dimension of its degenerate ground-state
manifold. In order to extract the TEE, we rely on an en-
tanglement measure (e.g., multipartite information) that does
not depend on the geometry of the subsystems employed
in the measurement. Such an entanglement measure based
on tripartite information (I3) was proposed in Refs. [33,34].
Here, we have generalixed this measure to the multipartite
information (IN ) for an annular arrangement of N subsystems.
This has then helped unveil the dependence of IN on the topol-
ogy of such an annular collection of the subsystems (CSS).
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Specifically, for all N � 3, we find that IN is a topological
invariant given simply by |IN | = χStopo, where χ (≡ 2) is
the Euler characteristic of the CSS embedded on the planar
manifold.

We have also analyzed carefully the robustness of IN to
changes in the topology of the CSS from a simple annu-
lar structure: neither the inclusion of self-handles (or holes)
within individual subsystems, nor handles between nearest-
neighbor subsystems, changes our result for IN . While the
inclusion of handles between subsystems beyond nearest-
neighbor causes IN to vanish, it becomes possible to identify
similar multipartite information measures for several smaller
annular CSS that again extract χStopo. Thus, we conclude that
one can very generally construct a simple annular structure
of N � 3 subsystems, such that their IN can unambiguously
capture Stopo. Further, we have also shown that for any com-
plex CSS structure containing nh number of holes, the sum
of the individual multipartite information measured around
each of the holes is constrained by the product nhχStopo. We
note that for the case where the CSS ({AKP

N }) of N sub-
systems are arranged in a Kitaev-Preskill-type arrangement
[34] (i.e., a pielike form without a hole at the center), we
find the N-partite information is related to the annular ar-
rangement [Levin-Wen type, Fig. 1(a)] by a factor of 1/2,
IN
{AKP

N } = IN
{A(a)

N }/2.

Further, we believe that our finding of an identical value
of IN for all annular structures with N � 3 indicates the
special nature of topologically ordered ground states. In or-
der to quantify this, we define a (N − 2)-component vector
comprising the various IN (N � 3) multipartite information
as follows:

ÊN = N
(∣∣I3

{A3}
∣∣, ∣∣I4

{A4}
∣∣, . . . , ∣∣IN

{AN }
∣∣), (37)

where the normalisation factor N =
√

N−2∑N
p=3 |I p

{Ap}|2
. We pro-

pose that ÊN can be used to classify various phases in terms
of their multipartite entanglement content, as well as the
phase transitions among them. For instance, we expect that
metallic phases should be represented by ÊM = (0, 0, . . . , 0),
i.e., the origin of (N − 2)-dimensional multipartite informa-
tion space. On the other hand, topologically ordered phases
have been shown by us to be represented by the point ÊM =
(1, 1, . . . , 1). It will be interesting to see where other phases
lie within this unit hypercube.

Our investigations have also revealed that the N-party ir-
reducible correlations among the N subsystems of a annular
arrangement is bounded from above by χStopo for any N .
The independence of this result on N provides evidence of
the fact that closed looplike structures of all sizes are present
within the ground state of a topologically ordered system. We
believe that this is of relevance to understanding the patterns
of entanglement encoded within the string loop condensed
phases of topological quantum matter (see, e.g., Ref. [1] and
references therein). We have also generalized the graph theo-
retic approach developed here to display the appearance of the
Euler characteristic on manifolds with higher genus, and this
will be presented elsewhere [58].

It will also be an interesting challenge to extend these ideas
to the topologically ordered phases that have been recently

proposed by some of us in strongly correlated electronic
(e.g., Mott liquid, Cooper pair insulator [59–64]) and quantum
spin systems in frustrated lattice geometries at finite fields
[65–67].
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APPENDIX A: CASE OF CYCLE GRAPHS

We recall the definition CN
{AN } for the CSS {AN } where there

is no overlap among all the N subsystems

CN
{AN } =

N∑
m=1

(−1)m−1
∑

Q∈Bm ({AN })

JV∪(Q)

= �{AN } + (−1)N−1JV∪({AN }),

where, �{AN } =
N−1∑
m=1

(−1)m−1
∑

Q∈Bm ({AN })

JV∪(Q),

where JA represents the number of disconnected boundaries
of the subsystem A. We define a graph � corresponding to a
CSS {AN }, � = ϒ({AN }). Each subsystem Ai in the CSS is
replaced by a node (i), and each connectivity between two
subsystems Ai and Aj is replaced by edges between corre-
sponding two nodes i and j (e.g., Fig. 6). A graph is denoted
by � = [V (�), E (�)], where V is the set of vertices and E is
the set of edges. Let v = |V | and e = |E | denote the number
of vertices and edges, respectively. We will now deal with
subgraphs. In particular, recall that a subgraph �′ with a vertex
set S is called induced if any edge in � joining two vertices in
S is also in the subgraph. We will be typically be dealing with

FIG. 6. Figures displaying the graphs equivalent to various CSS
topologies. (a) The simple annular CSS ({A(a)

N }) with N subsystems.
(b) Graph [� = ϒ({A(a)

N })] corresponding to the CSS ({A(a)
N }, (a),

where each subsystem Ai is replaced by a node i and the wall between
two subsystems Ai, Ai+1 is replaced by an edge. � = ϒ({A(a)

N }) has a
total of N nodes, as well as N edges. (c) An open CSS ({A(o)

N }) with
N subsystems. (d) Graph [� = ϒ({A(o)

N })] corresponding to the CSS
{A(o)

N }, containing N number of nodes and N − 1 number of edges.
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nontrivial induced subgraphs, i.e., an induced subgraph where
the vertex set is neither ∅ nor V (�).

Definition 1

For a finite graph �, we define the integer

ρ(�) :=
v−1∑
i=1

(−1)i
∑
Fi

H0(�′),

where Fi contains all induced subgraphs �′ of � such that
v(�′) = i. The integer H0(�′) is the number of connected
components of �′.

We will use F (�) to denote the collection of nontrivial
induced subgraphs of �. Calculating the number of dis-
connected boundaries of a subsystem A is equivalent of
calculating the number of connected components in the graph
corresponding to the subsystem A. To be exact the rela-
tion between the number of disconnected boundaries of the
subsystem and the number of connected components of the
corresponding graph is given as,∑

Q∈Bm ({AN })

JV∪(Q) =
∑
Fm

H0(�′), ∀m < N. (A1)

Thus we can see from the definitions above �{AN } =
−ρ({AN }). Here we are interested in calculating �{AN } for
a CSS {AN }.

1. CN
{A(o)

N } = 0, for an open-structured CSS {A(o)
N }

Here we are interested in calculating CN
{A(o)

N }. The graph

corresponding to the CSS {A(o)
N } is ϒ({A(o)

N }) = PN , i.e., a path
graph with N number of nodes.

Proposition 1. For the path graph Pm on m � 3 vertices,
the invariant ρ(Pm) = (−1)m−1.

Proof. A path graph Pn has n vertices and n − 1 edges.
As a path graph is contractible, i.e., homotopy equivalent to
any vertex, it follows that H0(Pn) = 1. Any induced subgraph
� is a disjoint union of path graphs. Therefore, if � = �1 �
· · · � �r , then H0(�) = r. We use induction to compute ρ(Pn).
Observe that Pn+1 is constructed from Pn by adding an extra
vertex labeled n + 1 and an edge e joining vertex n to n + 1.

Notice that the nontrivial induced subgraphs � of Pn+1 (for
n � 2) are of three mutually exclusive and exhaustive types:

(i) n + 1 
∈ V (�): These are actually induced subgraphs of
Pn, including Pn itself.

(ii) n, n + 1 ∈ V (�): These graphs are obtained from non-
trivial induced subgraphs �′ of Pn by adjoining e. Thus,
H0(�) = H0(�′).

(iii) n + 1 ∈ V (�) but n 
∈ V (�): These graphs are obtained
from induced subgraphs �′ of Pn−1, including Pn−1 and ∅, by
adjoining the vertex n + 1. Thus, H0(�) = H0(�′) + 1.

The invariant for Pn+1 can be computed from the three
types of contributions as follows. Type (i) contributes ρ(Pn),
which is the sum of three quantities:

α: the contribution from F (Pn−1);
β: the contribution from F (Pn) containing vertex n;
(−1)n−1: the contribution from Pn−1 itself;
(−1)n: the contribution from Pn itself.

As type (ii) contributes −β, the total contribution from
types (i) and (ii) is α. Type (iii) contributes

−1 +
n−1∑
i=1

(−1)i+1
∑

�′∈Fi (Pn−1 )

(H0(�′) + 1)

= −1 −
n−1∑
i=1

(−1)i
∑

�′∈Fi (Pn−1 )

H0(�′)

−
n−1∑
i=1

(−1)i|Fi(Pn−1)|

= −1 + (−1)n − α −
n−1∑
i=1

(−1)i

(
n − 1

i

)

= (−1)n − α −
n−1∑
i=0

(−1)i

(
n − 1

i

)

= (−1)n − α. (A2)

Thus, ρ(Pn+1) = (−1)n, being the sum of contributions from
(i), (ii), and (iii). Thus we find ρ(Pn) = (−1)n−1. �

Using the above relation we find that for an open-structured
CSS {A(o)

N } as shown in the Figs. 6(c), 6(d) �{A(o)
N } = (−1)N−1.

Thus

CN
{A(o)

N } = �{A(o)
N } + (−1)N−1JV∪({A(o)

N }),

= −ρ(PN ) + (−1)N−1,

= (−1)N + (−1)N−1 = 0, (A3)

Thus, it is proved that for an open-structured CSS that
the count CN

{A(o)
N } = 0. Therefore, the multipartite information

measure for this particular choice of CSS is given by IN
{A(o)

N } =
−CN

{A(o)
N } log2 D = 0.

2. �{A(a)
N } = 0 for a closed-structured CSS {A(a)

N }
We now calculate �{A(a)

N } for the closed annular structured

CSS {A(a)
N }. The corresponding graph is ϒ({A(a)

N }) = CN , i.e.,
the cycle graph with N number of vertices and nodes.

Corollary 1. For the cycle graph Cn, we have ρ(Cn) = 0.
Proof. Recall that the cycle graph Cn is a graph on n

vertices and n edges [Fig. 6(b)], such that each vertex has
valency two. This graph is usually visualized as the boundary
of a regular n-gon. Observe that Cn is obtainable from Pn by at-
taching an edge e joining 1 and n. The induced subgraphs � of
Pn (for n � 3) are of three mutually exclusive and exhaustive
types:

(i) 1, n 
∈ V (�): Let α be the contribution from these to-
wards ρ(Pn);

(ii) Exactly one of 1 and n is in V (�): let β be the contri-
bution from these towards ρ(Pn);

(iii) 1, n ∈ V (�): Let γ be the contribution from these
towards ρ(Pn).

In particular, we have α + β + γ = ρ(Pn) = (−1)n−1.
Now note that type (i) and (ii) are induced subgraphs of Cn;
the contribution of these types towards ρ(Cn) will be α and β,
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respectively. The other induced subgraphs are modifications
of those in (iii); we have to add the edge e in order to type
(iii) subgraphs. Adding an edge decreases the number of con-
nected components by 1, whence

γ̃ =
∑

i

∑
{�⊂Pn | 1,n∈V (�),v(�)=i}

(−1)i(H0(�) − 1)

=
∑

i

∑
{�⊂Pn | 1,n∈V (�),v(�)=i}

(−1)iH0(�)

−
∑

i

∑
{�⊂Pn | 1,n∈V (�),v(�)=i}

(−1)i

= γ −
n−1∑
i=2

(−1)i

(
n − 2

i − 2

)

= γ + (−1)n−2.

Adding α, β, and γ̃ we obtain ρ(CN ) = α + β + γ̃ = 0. Thus
�{A(a)

N } = −ρ(CN ) = 0. �

APPENDIX B: SIMPLE ANNULAR STRUCTURE
AND EULER CHARACTERISTIC

For a simple annular structure of CSS ({A(a)
N }) shown in

the Fig. 1(a), we can calculate the multipartite information by
using Eq. (21) as follows:

IN
{A(a)

N } =

⎡
⎢⎢⎣∑

j
μ j�3

(−1)(N−1)−μ j I
μ j

{Aμ j }

⎤
⎥⎥⎦

+
⎡
⎣(−1)(N−1)−2

∑
{Ai,Aj }∈{M}

I2
Ai,Aj

⎤
⎦

+ (−1)N

[∑
i

SAi − S∪Ai

]
. (B1)

For such a simple annular structure, we obtain a vanishing
multipartite information for all CSS composed of m(< N )
number of subsystems that do not form closed loops. Thus,∑

j
μ j�3

(−1)(N−1)−μ j I
μ j

{Aj } = 0, and we obtain

IN
{A(a)

N } = (−1)N [dnn − N + nh + 1] log2 D. (B2)

For the simple annulus, N = dnn, the number of edges is
e = N , the number of vertices is v = N and the number of
faces is f = nh + 1. This leads to χ = e − v + f = nh + 1 =
2 (confirming the value of the Euler characteristic for the
planar manifold on which the annulus is embedded). Thus,
we can write the multipartite information measure for simple
annular structure as

IN
{A(a)

N } = (−1)N [dnn − N + nh + 1] log2 D

= (−1)Nχ log2 D = (−1)NχStopo. (B3)

APPENDIX C: ISOLATED STRUCTURE

We now turn to the case of a CSS that does not form a
closed loop, {A(1b)

N } = {A(1b),N
N−1 } ∪ {AN }. Using Eq. (5), one

can easily see that

CN
{A(1b)

N } = CN−1
{A(1b)

N }−{AN } + JAN −
N−1∑
i=1

JAN ∪Ai

+
N−1∑

i< j=1

JAN ∪Ai∪Aj · · · + (−1)N−1JAN ∪A1∪ ··· ∪AN−1 .

(C1)

Using the fact that subsystem AN is disjoint from the rest of
the system, we can see that JAN ∪{B} = JAN + J{B}. Thus, we
can simplify the above equation as follows

JAN −
N−1∑
i=1

JAN ∪Ai +
N−1∑

i< j=1

JAN ∪Ai∪Aj

+ · · · + (−1)N−1JAN ∪A1∪···∪AN−1

= JAN −
N−1∑
i=1

(
JAN + JAi

) +
N−1∑

i< j=1

(
JAN + JAi∪Aj

)

+ · · · + (−1)N−1
(
JAN + JA1∪ ··· ∪AN−1

)

= JAN

N−1∑
i=0

(−1)i

(
N − 1

i

)
−

N−1∑
i=1

JAi +
N−1∑

i< j=1

JAi∪Aj

+ · · · + (−1)N−1JA1∪···∪AN−1

= JAN ϒN−1 − CN−1
{A(1b)

N }−{AN }, (C2)

where ϒN−1 = ∑N−1
i=0 (−1)i

(N−1
i

) = 0. In turn, we obtain

CN
{A(1b)

N } = CN−1
{A(1b)

N }−{AN } − CN−1
{A(1b)

N }−{AN } + JAN ϒN−1 = 0.

(C3)

Hence, the multipartite information measure for this CSS is
seen to vanish: IN

{A(1b)
N } = −CN

{A(1b)
N } log2 D = 0.

APPENDIX D: ANNULAR STRUCTURE
WITH APPENDAGE

As shown in Fig. 1(d), we consider here a CSS with N
number of subsystems and containing an appendage (the N th
subsystem). In order to compute the multipartite information
for this CSS, IN

{A(1d )
N }, we use Eq. (21)

IN
{A(1d )

N } =
N−2∑
μ=1

(−1)μ−1
∑

R∈BN−μ({A(1d )
N })

|R|=N−μ

I |R|
R

+ (−1)N

(∑
i

SAi − S∪Ai

)
. (D1)
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We can see that except for IN−1
{A1,....AN−1}, all the terms Im

{..} for
2 < m < N are zero. This is because they either form an open
line, or composed of isolated islands. Further, we have already
shown that the CSS of an open line structure, or one composed
of isolated islands, gives a vanishing multipartite information.
Thus, the above equation reduces to

IN
{A(1d )

N } = (−1)N−1I3
{A(1d )

N } + (−1)N−1
∑

R∈B2({A(1d )
N })

|R|=2

I |R|
R

+ (−1)N

(∑
i

SAi − S∪Ai

)
. (D2)

Now, we know that I2
Ai,Aj

= 0 if JAi = JAj = 1 and JAi∪Aj =
2 ∀i, j. This shows that when two subsystems are not touching
each other, i.e., they are disjoint, their joint density matrix
can be decomposed into a product form: ρAi∪Aj = ρAi ⊗ ρAj .
Using this for the case of Fig. 1(d), we obtain

IN
{A(1d )

N } = (−1)N−1(−1)3 log2 D2 + (−1)N−1[−N log2 D]

+ (−1)N (−N log2 D + 2 log2 D)

= (−1)N−1[−2 − N − (−N + 2)] log2 D = 0.

(D3)

The above result shows that adding an appendage subsystem
to a simple annular structure trivializes the computation of
the multipartite information IN , and is unable to capture the
topological entanglement entropy.

APPENDIX E: MANY HOLES IN THE CSS

We now discuss the case where the N subsystems are
arranged in such a way that the CSS has nh number of holes,
denote as {A(nh )

N }. An example is given in Fig. 7, where the
CSS has nh = 5 number of holes. As before, we are interested
in calculating the multipartite information IN

{A(nh )
N } by using

Eq. (21). Here, we are taking the simple case where an in-
dividual subsystem has a single disconnected boundary JAi =
1,∀Ai ∈ {A(nh )

N }. There are dnn number of pairs or subsystems

FIG. 7. In general, a CSS has nh number of holes, N subsystems,
and dnn partitions. (a) An example of a CSS ({A(5)

N }) with nh = 5.
(b) Graph corresponding to {A(5)

N }, where each vertex represents a
subsystem and each edge represents a partition.

(Ai, Aj) where JAi∪Aj = JAi = JAj = 1. Thus, we obtain

IN
{A(nh )

N } =

⎛
⎜⎜⎝

N−2∑
μ=1

(−1)μ−1
∑

R∈BN−μ({A})
|R|=N−μ

I |R|
R

⎞
⎟⎟⎠

+ (−1)N

(∑
i

SAi − S∪Ai

)
. (E1)

This relation shows that IN is comprised of many differ-
ent multipartite information terms that differ in the numbers
of subsystems involved. From our earlier discussions, the
only nontrivial multipartite information are those that corre-
spond to an annular CSS. Now, one can create an annular
CSS (formed out of say μ j number of subsystems) around
each hole ( j); we denote these CSS as {Ai}. Then, I

μ j

{Aj } =
(−1)μ j log2 D2. Similarly, the only nontrivial mutual infor-
mation are those where both subsystems are touching one
another: I2

Ai,Aj
= − log2 D,∀i, j if JAi∪Aj = JAi = JAj = 1,

and we represent the set of all such pairs of subsystems as
{M} (with cardinality |{M}| = dnn). Using this rule, we can
obtain the nh number of nonzero multipartite information in
the above Eq. (E1)

IN
{A(nh )

N } =
[∑

j

(−1)(N−1)−μ j I
μ j

{Aj }

]

+
⎡
⎣(−1)(N−1)−2

∑
{Ai,Aj }∈{M}

I2
{Ai,Aj }

⎤
⎦

+ (−1)N

[∑
i

SAi − S∪Ai

]
. (E2)

We focus on the case where JAi = 1,∀i, the topological part
of SAi is − log2 D, and the corresponding topological part of
S∪iAi is −(nh + 1) log2 D (as it has nh + 1 number of discon-
nected boundaries). Thus, we can further simplify the above
relation as

IN
{A(nh )

N } =
[

nh∑
j

(−1)(N−1)2 log2 D
]

+ [(−1)(N−1)−2(−1)dnn log2 D]

+ (−1)N (−N log2 D + (nh + 1) log2 D)

= [(−1)(N−1)2nh log2 D] + [(−1)N dnn log2 D]

+(−1)N [−N log2 D + (nh + 1) log2 D]

= (−1)(N−1)[nh − dnn + N − 1] log2 D
= (−1)(N−1)(χ − 2) log2 D, (E3)

where χ is the Euler characteristic of the underlying spatial
manifold. As this manifold is planar in our case, we know that
χ = 2. Hence, the above equation vanishes very generally. We
can also easily verify that this relation vanishes for the specific
case shown in Fig. 7: N = 19, dnn = 23, nh = 5, giving N −
dnn + nh − 1 = 0 = IN

{A(5)
N }.
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APPENDIX F: RECURSION IN MULTIPARTITE INFORMATION

Our goal here is to prove very generally the following relation:

IN
{AN } =

N−2∑
μ=1

(−1)μ−1
∑

R∈BN−μ(A)
|R|=N−μ

I |R|
R + (−1)N

(∑
i

SAi − S∪Ai

)
. (F1)

This equation shows the relation of N-partite information with various lower-order multipartite information. Using the fact that
I1
Ai

= SAi , we can rewrite the above equation as

IN
{AN } =

N−1∑
μ=1

(−1)μ−1
∑

R∈BN−μ(A)
|R|=N−μ

I |R|
R + (−1)N−1S∪Ai ,

N−1∑
μ=0

(−1)μ
∑

R∈BN−μ(A)
|R|=N−μ

I |R|
R = (−1)N−1S∪Ai . (F2)

We now prove Eq. (F2). Using the definition of the multipartite information (2), we can write∑
R∈Bm (A)

|R|=m

Im
R =

∑
R∈B1(A)

SR

(
N − 1

m − 1

)
−

∑
R∈B2(A)

SR

(
N − 2

m − 2

)
+ · · · + (−1)m−1

∑
R∈Bm (A)

SR

(
N − 2

0

)
,

=
m∑

μ=1

(−1)μ−1
∑

R∈Bμ(A)

SR

(
N − μ

m − 1

)
. (F3)

Using this equation, we obtain
N−1∑
μ=0

(−1)μ
∑

R∈BN−μ(A)
|R|=N−μ

I |R|
R = (−1)N−1

N∑
m=1

(−1)m−1
∑

R∈Bm (A)
|R|=m

Im
R

=
N−1∑

R∈Bμ(A)
μ=1

(−1)N−1SR

[(
N − μ

N − μ

)
−
(

N − μ

N − μ − 1

)
+
(

N − μ

N − μ − 2

)
− · · · + (−1)N−μ

(
N − μ

0

)]

+ (−1)N−1S∪iAi ,

= (−1)N−1S∪iAi , (F4)

where we have used the identity[(
N − μ

N − μ

)
−
(

N − μ

N − μ − 1

)
+
(

N − μ

N − μ − 2

)
− · · · + (−1)N−μ

(
N − μ

0

)]
= 0, ∀N > μ ∈ Z.

Thus, we have proved the relation Eq. (F1), i.e., the expansion of the N-partite information in terms of various lower-order
multipartite information.

APPENDIX G: MULTIPARTITE INFORMATION CONSTRAINT

Following the discussion in Appendix E, Eq. (E2) and the fact that IN
A

nh
N

= 0, we obtain[∑
j

(−1)(N−1)−μ j I
μ j

{Aμ j }

]
+
⎡
⎣(−1)(N−1)−2

∑
{Ai,Aj }∈{M}

I2
Ai,Aj

⎤
⎦ + (−1)N

[∑
i

SAi − S∪Ai

]
= 0,

⇒
∑

j

|Iμ j

{Aμ j }| = −
⎡
⎣ ∑

{Ai,Aj }∈{M}
I2
Ai,Aj

⎤
⎦ +

[∑
i

SAi − S∪Ai

]
,

= dnn log2 D + [−N log2 D + (nh + 1) log2 D] = [dnn − N + nh + 1] log2 D,

= 2nh log2 D.

The above result shows the dependence of the sum
∑

j |Iμ j

{Aμ j }| on the number of holes (nh) of the CSS. Thus, we again find

evidence for the dependence of the multipartite information measure of a topologically ordered ground state on the topology of
the CSS. This can also be proved easily using Appendix B. For each closed loop, one obtains |Iμ j

{Aj}| = χStopo. Thus, the total
contribution arising from nh number of holes is simply

nh∑
j=1

∣∣Iμ j

{Aj}
∣∣ = χnhStopo. (G1)
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