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The quantum communication process usually consists of three stages: the sender who prepares encoded
carriers, the transmission in noisy channels, and the quantum receivers. The transmitted quantum information can
be inevitably affected by kinds of quantum noise in the environment. Thus, quantum protocols are extensively
studied to improve communication efficiency and accuracy under the influence of quantum noise. The optimiza-
tion strategies usually occur in these three stages. In this paper, we focus on the optimization strategy of quantum
receivers in the third stage. In quantum receiver algorithms, the key to distinguish received non-orthogonal
coherent states in free-space optical quantum communication is to construct an optimum displacement operator
for transforming the current coherent state into a state that is easier to distinguish than before. To improve the
antinoise ability and accuracy of quantum communication, this paper proposes a universal optimization strategy
of quantum receivers called learnable antinoise receiver (LAN receiver). In this strategy, a parametrized quantum
circuit is constructed as a quantum feedforward neural network as the displacement operator to improve the
antinoise ability. The parameters used in the quantum circuit are updated by gradient descent continuously to
find the best parameter combination of the quantum circuit that minimizes the error rate and the qubits affected
by quantum noise are used as training and testing data. The simulation of the proposed algorithm shows that the
LAN receiver can resist different kinds of strong quantum noise. The average error rate of the proposed algorithm
LAN receiver under the strong noise channel is 0.18, which has better performance than other type of receivers
under the influence of strong quantum noise.
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I. INTRODUCTION

The security of optical quantum communication is guaran-
teed by mature technologies such as quantum key distribution
(QKD) [1,2], quantum identity authentication [3,4], quan-
tum secure direct communication (QSDC) [5–8], etc. So that
the optical quantum communication has been broad applied
in fields of communication where the received light signal
is extremely weak, such as satellite ground communication,
deep space communication, and underwater communication.
Among them, the communication techniques that encode all
the information on qubits without sending classic bits are
mainly studied in optical quantum communication.

With the development of optical photon quantum com-
puters, the coherent state has been widely used as carrier
to encode information due to its physical feasibility [9–13].
Therefore, a vital basic problem is how to distinguish
nonorthogonal coherent states of encoded information under

*Corresponding author: qzghhh@126.com
†yzliubb@163.com

quantum noise effectively to ensure the security of quantum
communication. However, it is well known that a quantum
system in the real world cannot be a completely closed system
since it will always interact with the outside world unavoid-
ably. Such interactions are commonly referred to as quantum
noise.

The study of optimizing quantum communications under
the noisy environment has been carried out extensively. The
quantum communication process usually consists of three
stages: the sender who prepares encoded carriers, the trans-
mission in noisy channels, and the quantum receivers. The
optimization strategies usually occur in these three stages.

In the process of preparing encoded quantum carriers, the
antinoise ability and communication accuracy can be im-
proved by using optimized alphabets. For example, Dimario
et al. [14] proposed an optimized alphabet in the first stage.
It is proved to be robustness because the distinguishability
does not get reduced under phase diffusion. Another com-
monly used method in this stage to survive photon losses
in noise channels is encoding information into redundant
quantum error-correcting codes. Lassen et al. [15] pro-
vide the experimental demonstration of the quantum erasure
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correcting code and investigated two approaches for cir-
cumventing inline losses. These approaches enhance the
performance of long-distance quantum communication using
quantum coherent states in noisy channels. During the process
of the above-mentioned quantum communications, stable re-
sources of squeezed light are in urgent need. Thus, Lassen
et al. [16] also provides the experimental demonstration of
quantum continuous variable measurements. In this work,
the quantum averaging is implemented in linear system with
feedforward.

In the process of transmission, the environment-assisted
quantum erasing method is proposed to protect quantum in-
formation from being interfered with by noise environment.
The environment can be measured in some way to recover
quantum coherent states. It is also called the postselection
procedure. The possibility of this method has been addressed
by Filip and Andersen [17] and Gaussian noise is added in
the decoherence process to simulate real environment. It is
shown that this method has great potential to be employed
into quantum key distribution schemes. The idea of quantum
neural networks applies this postselection mechanism to a
higher level that Mišta et al. proposed a method of minimal-
disturbance measurement [18] which can be experimentally
realized using a linear optics scheme with feedforward.

In the stage of receiving quantum information, displace-
ment operation and the measurement operation are two main
components of the quantum receivers. These operations help
to improve distinguishability of nonorthogonal coherent states
under the noisy environment. The early quantum receiver
algorithms do not have strong antinoise ability. In the gradual
development of quantum receivers, more and more researches
focus on the improvement of antinoise ability.

Initially, Helstrom pioneered a closed-form solution to
nonorthogonal coherent states discrimination for this prob-
lem [19]. The homodyne detection receiver is optimal when
only Gaussian operation and classical communication are
used and it provides a standard quantum limit (SQL) for the
minimum error probability [20]. The best detector receivers
that reach the Helstrom boundary have been proved feasible
experimentally. However, these best detectors have a com-
plex structure because they use real-time feedback techniques
[21,22]. Therefore, it is of great practical significance to study
the near-optimum technology with a simple implementation
structure [23–27]. Kennedy proposed the first near-optimum
receiver [23], which consists of a displacement operator and
an on-off photodetector. When the average number of signal
photons per classical bit is less than 0.4, the performance of
the Kennedy receiver exceeds the classic homodyne detection
receiver [20]. Afterwards, various improved receivers were
widely proposed. For instance, two near-optimum receivers
called Type-I receiver and Type-II receiver [20,28] were pro-
posed representatively by Takeoka. These two receivers also
consist of displacement operation and on-off photodetectors
as the traditional Kennedy receiver. Receivers based on such
experimental requirements are called generalized Kennedy
receivers.

There is no doubt that the displacement operator in each
receiver is indispensable because it improves the distinguisha-
bility of nonorthogonal coherent states. Take the encoded
coherent states |±ϕ〉 used in the classic binary phase-shift

keying communication protocol [13] as an example. The op-
timum displacement operator D is functioned on pure states
|±ϕ〉 as

|ϕ〉 D(ξ )−−→ |2ϕ〉,
|−ϕ〉 D(ξ )−−→ |0〉. (1)

The quantum receivers with this type of displacement oper-
ator mentioned above are not robust enough when the system
suffers from quantum noise [29–31]. Therefore, the capability
to resist quantum noise has become more and more impor-
tant for improving the performance of quantum receivers. A
recently proposed conditional dynamics based (CD)-Kennedy
receiver algorithm based on conditional dynamics [32] shows
its capacity to resist noise. Its displacement operator is dy-
namically controlled by the input quantum state affected by
quantum channel noise, meanwhile the threshold detection
is introduced to improve the accuracy of the receiver. It is
inspiring that setting the displacement operator as a dynamic
operator conditioned by the input quantum state affected by
noise can resist the influence of noise to some extent and be
more robust in practical applications.

With the development of classical machine learning
[33] in recent years, it has been considered to combine
machine-learning technology with some widely used quantum
algorithms. For example, Wallnöfer et al. [34] found that
reinforcement learning has shown great potential in the field
of quantum communication in a noisy environment due to its
great power in the context of big-data analysis, classification,
and prediction problems. They utilized reinforcement learn-
ing in the process of designing long-distance communication
schemes. In this method, projective simulation is consid-
ered as the agent in the stochastic environment. It is proved
that the learning agent can rediscover common quantum
communication problems like teleportation and entanglement
purification. Some quantum algorithms have shown the great
advantage of quantum computing such as Fourier transform,
Grover searching algorithm, quantum counting algorithm, and
the Shor Algorithm. The combination of machine-learning
methods and quantum computing algorithms will play a big
role in quantum communication to process quantum informa-
tion. The Harrow-Hassidim-Lloyd (HHL) algorithm [35] with
phase estimation as the core and various HHL-like algorithms
[36] proposed in 2009 greatly promoted the development of
quantum machine learning. Subsequently, a series of quantum
machine-learning algorithms emerged, such as the quantum
support vector machine algorithm proposed in 2014 [37], the
quantum principal component analysis algorithm [38], and
the quantum generative adversarial network proposed in 2018
[39]. These algorithms vigorously promote the development
of quantum machine learning. So far, one of important re-
search branches of quantum machine learning is the quantum
neural networks [40,41].

This paper proposes an optimization strategy called learn-
able antinoise receiver (LAN receiver) in which a quantum
feedforward neural network is constructed as a displacement
circuit which offers better performance under strong turbulent
influence compared with traditional displacement operators.
A parametrized quantum circuit is constructed to realize a
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quantum feedforward neural network and the gradient descent
method is used to update the parameters. Since the dynamic
displacement based on the input qubits affected by quantum
noise can be more robust to a certain extent, this algorithm
uses the qubits affected by noise as the input data of the
training data in order to improve the capacity of receiver on
resisting quantum noise. This article analyzes the influence of
quantum noise on the LAN receiver strictly and proves the
antinoise performance of this receiver by simulations.

The content of this paper is arranged as follows: First of all,
the preliminary knowledge related to this article is introduced
in Sec. II. Second, the specific algorithm of LAN receiver
based on quantum feedforward neural network and its corre-
sponding practical physical realization are given in Sec. III.
Then the performance analysis of the influence by quantum
noise and the simulation on LAN receivers are performed in
Sec. IV. At last, a summary of this article and the prospects
for future research are described in Sec. V.

II. PRELIMINARY

An optical photon is an ideal physical realization of a
quantum bit. Photons are neutral particles and do not have
strong interactions with most matter. Photons can be transmit-
ted in optical fibers over long distances with low loss. Physical
devices such as mirrors, phase shifters, and beam splitters can
be used to realize basic quantum operations in optical quan-
tum computer. The noisy intermediate-scale quantum (NISQ)
computer has shown the feasibility of the optical quantum
computer [42].

A. Physical representation of qubits

Qubits can be represented by photons in the manner below
in optimal quantum communication.

Consider two cavities with a total energy of h̄ω, and take
two possible states of the qubit as being whether the photon
is in the cavity (|01〉) or in another cavity (|10〉). The cor-
responding physical state of superposition is c0|01〉 + c1|10〉
and this is called the dual-rail representation. The state of
the photon in these two cavities corresponds to logical bits
|0L〉 and |1L〉, which correspond to 0 and 1 classical bits in
communications, respectively. By analogy, 2n (n = 1, 2, . . .)
cavities can be used to represent logical qubits.

In the laboratory, the laser outputs a coherent state, which
generates single photons. The coherent state in infinite-
dimensional Hilbert space can be expressed as

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉. (2)

Here, |n〉 is the energy eigenstate of n photons. The mean
energy of the coherent state is 〈α|n|α〉 = |α|2. A coherent
state is an eigenstate of the photon annihilation operator so
that coherent state has a wide range of applications in optical
quantum communication.

FIG. 1. LAN-receiver-based quantum communication system.

B. Devices for manipulating photon states

Three of the most experimentally accessible devices for
manipulating the state of photons are the phase shifters, beam
splitters, and cavity quantum electrodynamic systems.

(1) A phase shifter P is a slab of a transparent medium
with a refractive index n different from that of free space n0.
In such a medium, the propagation distance is L with the phase
of the photon changes to eikL where k = nω

c0
and c0 is the speed

of light in vacuum. The corresponding Hamiltonian is

H = (n0 − n)Z. (3)

The operation of phase shifter is given by

P = exp
{
− iHL

2c0

}
= exp

{
− i�Z

2

}
. (4)

The action of P on the coherent state |α〉 is given by

P|α〉 = |ei�α〉. (5)

(2) A beam splitter B is a partially-silver-plated glass that
reflects the fraction R of the incident light and transmits 1 −
R. Its function is to couple two coherent beams. The angle θ

of the beam splitter is defined as cos θ = R. The relationship
between inputs and outputs of the beam splitter is

aout = ain cos θ + bin sin θ, (6)

bout = −ain sin θ + bin cos θ. (7)

Note that unitary operations of any single qubit can be realized
by using beam splitters and phase shifters.

(3) An optical cavity quantum electrodynamic system S
solves the problem that the Kerr medium is difficult to find
in the laboratory in traditional nonlinear optics. The C-QED
system S consists of a Fabry-Perot cavity containing some
atoms coupled to the optical field. The cavity is composed by
two partially-silver-plated mirrors.

III. OPTICAL QUANTUM COMMUNICATION BASED ON
LEARNABLE ANTINOISE RECEIVER

A. The optical quantum communication system

The configuration of quantum communication system with
learnable antinoise receiver is shown in Fig. 1. The system
consists of three stages: the sender with encoded carriers, the
noisy channels, and our optimized quantum receiver. Usually,
the optimization can be carried out in these three stages. In our
algorithm, we mainly optimize the displacement operator of
quantum receiver in the third stage. This is a universal method
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FIG. 2. Preprocessing circuit (a): conversion of the format of
input classical data and feature extraction.

that other quantum communication schemes can also be op-
timized in the third stage using this proposed optimization
quantum receiver.

To improve the efficiency and accuracy of the LAN re-
ceiver, it is reasonable to preprocess the input big data.
So, the first step is to preprocess input data M by extract-
ing features from it while encoding M into coherent states
{|βi〉, i = 1, 2, . . . , k}. Then, transmit encoded pure states
{|βi〉, i = 1, 2, . . . , k} to a LAN receiver through the noisy
channel. Next, the LAN receiver receives entangled quan-
tum states {|ci, βi〉, i = 1, 2, . . . , k} and processes them by
a quantum feedforward neural network to obtain the ideal
output M ′.

B. Optical quantum communication scheme based on the
learnable antinoise receiver

1. Data preprocessing

Step 1 Convert format of input data. Transform different
types of input data such as text, picture, audio, and so on into
the form of the matrix and then transform it into the unitary
matrix A.

Step 2 Extract feature from input data. Perform feature ex-
traction on A by executing phase estimation. The eigenvalues
of A can be obtained as {|λ〉i = |λ1 . . . λd〉i, i = 1, 2, . . . , k}.

In Fig. 2, the premise of phase estimation is the effec-
tive simulation of A while A may be a nonsparse matrix
which is not easy to simulate. Therefore, we introduce the
method of constructing a sparse unitary matrix approximately
in Ref. [43] to turn A into a sparse unitary SA.

Embed the elements of A into SA according to

SA =
N∑

j,k=1

Ajk|k〉〈 j| ⊗ | j〉〈k| ∈ CN2×N2
. (8)

Each column of SA contains an element of A. As is shown
in Eq. (9), the exponentiation operation of A is realized by
exponentiation and partial trace operation of to approximately
construct the unitary matrix:

tr1{e−iSA�tρ ⊗ σeiSA�t } = σ − i
�t

N
[A, σ ] + O(�t2)

≈ e−i A
N �tσei A

N �t . (9)

Here, σ is correspond to the target state of the power
of the matrix A

N . The multiple copies of the density op-
erator ρ are functioned as auxiliary quantum states. In
Step2, the input data will be preprocessed as shown in
Fig. 2. The output states of the phase estimation circuit
{|λ〉i = |λ1 . . . λd〉i, i = 1, 2, . . . , k} represents the feature of
input data.

FIG. 3. Preprocessing circuit (b): feature encoding circuit where
θmn > θmn+1 and θmn ∈ [0, π ].

Step 3 Feature coding. Construct the circuit preprocessing
circuit (b) in Fig. 3 to compress the k features obtained in Step
2 into k auxiliary qubits.

Step 4 The preprocessed data {|βi〉, i = 1, 2, . . . , k} is
transmitted to the receiver through the noisy channel and
the receiver obtains the entangled states {|ci, βi〉, i =
1, 2, . . . , k}. Then the LAN receiver is used to distinguish the
transmitted non-orthogonal coherent states.

2. Learnable antinoise receiver

The learnable antinoise receiver is composed of a quantum
feedforward neural network based on a parametrized quantum
circuit. The key of realizing a quantum neural network is to
find a model as a realization of linear and nonlinear functions.

The quantum neural network constructed in this paper
is shown as Fig. 4, and its linear model is composed of
parametrized unitary operators. Since the combination of
phase gates and X , Y revolving gates can be used to realize
arbitrary unitary operations on single qubit as

Cl
j = eiτ Rz(ς )Ry(ξ )Rz(ζ ). (10)

The construction of single-qubit controlled unitary gates is
shown in Fig. 5. The single-qubit controlled unitary gates are
functioned equivalent to a two-particle universal unitary gate.

The nonlinear model is composed of non-trace-preserving
quantum operations. The non-trace-preserving quantum op-
erations satisfy the relationship that

∑
i

E†
i Ei < I . The extra

information that appears during such quantum operations is
obtained through measurement.

The parameters in the circuit are constantly updated and
iterated during the process of training. When the value of

FIG. 4. Quantum neural network circuit for training displace-
ment. Here, p ∈ {x, y, z} and {δi, i = 1 . . . k} denotes the rotation
angle of the corresponding rotation operation Rp(δi ).
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FIG. 5. Detailed description of the multiparticle-controlled circuit.

loss function in Eq. (11) reaches an ideal threshold, the
parametrized quantum circuit becomes the optimal displace-
ment circuit. The circuit of this quantum feedforward neural
network is shown as Fig. 4. Figure 5 further presents the
detailed description on the multiparticle-controlled circuit of
Cj in Fig. 4.

As is shown in Fig. 4, the data set {(|φi〉, yi )|i = 1, . . . , N}
is given. In the data set, |φi〉 is the training data and yi ∈ {0, 1}
is the corresponding category label. The mean square error
function is used as the loss function:

� = 1

2N

N∑
i=1

[yi − f{δ,τ,ς,ξ,ζ }(|φi〉)]
2
. (11)

The initial values of the parameters of all unitary operators
denoted as κ are randomly selected in [0, 2π ], and the gradient
descent method is used for updating parameters. The gradient
can be calculated as

∂�

∂κ
= 1

2ε
[�(κ + ε) − �(κ − ε)] + O(ε2). (12)

At each iteration, the parameters are updated as

κ ′ = κ − μ
∂�

∂κ
. (13)

Here, μ is the learning rate and can be adjusted according to
the convergence of the loss function. The output of the LAN
receiver based on quantum neural network is denoted as M ′.

C. A practical realization of LAN receiver

For the proposed parametrized quantum circuit of quantum
neural network in LAN receiver, the corresponding compo-
nents introduced in Sec. II can be used for physical realization.

The physical realization of the basic unitary operation is
shown in Fig. 6. It can be seen from Sec. II that P represents a
phase shifter which applies phase shift to a qubit. B represents
a beam splitter, which couples two coherent beams. The co-
operation of phase shifter and beam splitter helps to realize
unitary operations. S represents the optical cavity quantum
electrodynamics system that helps to realize nonlinear op-
erations, such as the nonlinear coupling operation of qubits.
The physical realization of the integral parametrized quantum
circuit is shown as Fig. 7.

FIG. 6. The basic module of quantum neural network: the phys-
ical realization of arbitrary unitary operations

FIG. 7. Physical realization of quantum neural network circuit.

IV. FIDELITY ANALYSIS AND SIMULATION OF
ANTINOISE PERFORMANCE

It is necessary to analyze the influence of quantum noise
on quantum states because it inevitably exists in the pro-
cess of quantum secure communication. It will interfere with
the transmitted quantum states unavoidably and make the
encoded information more difficult to identify. If the noise
operators act on density operator ρ → ε(ρ), the quantum state
will change from pure state into mixed state with information
entropy increasing. According to the theorem whereby trace-
preserving quantum operations are contractive; that is, for a
trace-preserving quantum operation ε and density operators ρ

and σ , the theorem is satisfied by

D(ε(ρ), ε(σ )) � D(ρ, σ ). (14)

That is, the physical process ε will shorten the trace distance
between the two quantum states, which makes it more difficult
to distinguish between the two quantum states.

In some cases, the real environment noise is simply simu-
lated by Gaussian noise because the real noise is usually the
combination of random noise with different probability distri-
butions. However, the environment noise must be diversified
in the real communication. Therefore, in the following content
of this section, we analyze the influence of four kinds of
common quantum noise: bit-flip, phase-flip, amplitude damp-
ing, and depolarizing noise, and their six combinations on
quantum states in quantum secure communication.

A. Four kinds of quantum noise

There are four kinds of noise that usually affect on single
qubit: bit flip, phase flip, amplitude damping, and depolariz-
ing.

(1) Bit-flip noise
Similar to the bit flip of classical information, the bit-flip

noise changes the state of a qubit from |0〉 to |1〉 or from |1〉
to |0〉 with a probability of 1 − γ and maintains the state of a
qubit with a probability of γ . Its Kraus operators are

E0 = √
γ I, E1 =

√
1 − γ X. (15)

Here, I is the identity matrix, σx, σy, σz are the Pauli matrices,
and γ is the noise parameter satisfying 0 � γ � 1.

(2) Phase-flip noise
The phase-flip noise is defined as applying phase −1 to

quantum state |1〉 with a probability of 1 − γ and maintains
the state of a qubit with a probability of γ . Its Kraus operators
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are

E0 = √
γ I, E1 =

√
1 − γ Z. (16)

(3) Amplitude damping noise
The amplitude damping noise describes the energy con-

sumption under the effect of the quantum noise. The energy
in quantum system will be lost to the environment due to the
amplitude damping noise. Its Kraus operators are

E0 =
(

1 0
0

√
1 − γ

)
, E1 =

(
0

√
γ

0 0

)
. (17)

Here, γ = sin2(θ ) represents the probability of losing a pho-
ton.

(4) Depolarizing noise
Depolarizing noise is non-energy-dissipative noise. It de-

polarizes a qubit with a probability of 1 − γ and maintains
the state of a qubit with a probability of γ . Its Kraus operators
are

E0 = √
γ I, E1 =

√
1 − γ

3
σX ,

E2 =
√

1 − γ

3
σZ , E3 =

√
1 − γ

3
σY . (18)

Two common measures of the distance between two quan-
tum states ρ and σ are trace distance and fidelity. They are
respectively defined as

D(ρ, σ ) ≡ 1
2 tr|ρ − σ |, (19)

F (ρ, σ ) ≡ tr
√

ρ1/2σρ1/2. (20)

The trace distance and fidelity are a pair of “reversed”
concepts. The larger the trace distance between two states
is, the smaller is the corresponding fidelity. The measurement
used in the following analysis is fidelity.

Take α = √
0.1 for the coherent state given in Eq. (1), the

corresponding superposition state is

|α〉 =
√

0.90|0〉 +
√

0.09|1〉 + · · · . (21)

For a coherent state in Eq. (21), if the light can pass through
the attenuator successfully, it can be known, with a probability
higher than 95%, that it is a single photon. And 90% of the
time, it is the vacuum state that no photon will come through
in cavity.

To analyze the influence of quantum noise in the channel
on qubits in LAN receiver, the related analysis of fidelity
and simulation of this algorithm using Python package TEN-
SORFLOW QUANTUM are given below. Since the simulation
platform is an ideal environment without noise, this paper
superimposes quantum channel noise into the training and
testing data of LAN receiver to illustrate the ability of the
algorithm to resist quantum noise.

B. Fidelity analysis and simulation under different kinds of
quantum noise

We analyze the corresponding fidelities of the noise af-
fected system theoretically and superimpose the single noise
or mixed noise into coherent state {|βi〉, i = 1, 2, . . . , k} to

FIG. 8. Fidelity comparison under four kinds of single noise, am-
plitude damping (AD), bit flip (BF), phase flip (PF), and depolarizing
(D).

get {|ci, βi〉, i = 1, 2, . . . , k} as the input of LAN receiver for
simulation.

1. Single noise

The corresponding fidelities are calculated as shown in
Eqs. (22)–(25) respectively.

(1) Amplitude damping noise

FAD(|βi〉, |ci, βi〉)

= (0.01γ 2 + 0.07γ + 0.18
√

1 − γ + 0.82)1/2. (22)

(2) Bit-flip noise

FBF (|βi〉, |ci, βi〉) = (0.64γ + 0.36)1/2. (23)

(3) Phase-flip noise

FPF (|βi〉, |ci, βi〉) = (0.36γ + 0.64)1/2. (24)

(4) Depolarizing noise

FD(|βi〉, |ci, βi〉) = (0.5 + 0.5γ )1/2. (25)

Comparison of the fidelities under four different quantum
noise is shown as Fig. 8.

It can be observed from Fig. 8 that the amplitude damping
noise has the least impact on the communication system and
the fidelity under the influence of amplitude damping noise
is no less than 0.95. Bit-flip noise has the greatest impact on
the system and the fidelity is reduced to the lowest value of
0.6. Note that the effect of the noise factor γ represents the
probability of missing photons of amplitude damping noise,
while the noise factor γ of the other three noise represents the
probability that the quantum state remains unchanged. That is
why the downward direction of the amplitude damping noise
curve is different from that of the other three noise. For the
amplitude damping noise, the greater the probability of losing
photons, the greater the noise factor γ , the lower the fidelity.
The fidelities of the quantum system under the influence of the
remaining three noise decrease with the reduce of γ . Among
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FIG. 9. Simulation results under the influence of amplitude damping noise, bit-flip noise, phase-flip noise and depolarizing noise.

them, the minimum value of fidelity of phase-flip noise and
depolarizing noise reaches 0.80 and 0.71, respectively. It can
be seen that the influence of different kinds of quantum noise
on the quantum communication system cannot be ignored.
Therefore, we superimpose the influence of different kinds of
quantum noise on the system into the input quantum state of
the quantum feedforward neural network of LAN receiver for
training and testing and the corresponding loss functions are
shown as Fig. 9

It can be observed from Fig. 9 that the loss function of the
system finally converges to 0.18 after 12 epochs of training
under the impact of amplitude damping noise and the loss
function of testing data finally converges to 0.16. Relatively,
after about 40 epochs of training, the loss function of the
system under the influence of bit-flip noise converges to 0.16.
The simulation result of testing data is not much different from
the training data. For system under the influence of phase-flip
noise, more than 60 epochs are required to stabilize the value
of the loss function. Although the final value of loss function
is not much lower than those of the first two noise, it is lower
than 0.23. For system under the influence of depolarizing
noise, the value of loss function drops dramatically in the first
ten training epochs. At the end, the loss function of training
data converges to 0.22 and the loss function of testing data
converges to 0.21. In general, after dozens of epochs, the loss
functions have fallen below 0.23, that is, the error rates are
less than 0.23 under four kinds of quantum noise.

2. Mixed noise

(1) Amplitude damping and bit flip

Under the influence of amplitude damping noise and bit-
flip noise, the fidelity of the system changes with the noise
factors γBF and γAD as

FBF,AD(|βi〉, |ci, βi〉) =
(

0.16γBF γAD + 0.18
√

1 − γAD

+0.64γBF − 0.08γAD + 0.18

)1/2

.

(26)

The corresponding curve of the function is shown as the
first subgraph of Fig. 10. Under the influence of the super-
position of two noise amplitude damping and bit flip, the
fidelity of system decreases with the decrease of γBF and the
increase of γAD. When γBF = 0, γAD = 1, the fidelity reaches
the minimum value of 0.32.

The simulation result under the influence of amplitude
damping noise and bit-flip noise is displayed through the
change of the value of loss function with the increase of
epochs in Fig. 11. In the first 11 epochs, the loss function
dropped rapidly. In the end, the loss function of training data
converges to 0.17 and the loss function of testing data con-
verges to 0.16, that is, the error rate is less than 0.16.

(2) Amplitude damping and phase flip
Under the influence of amplitude damping noise and

phase-flip noise, the fidelity of the system changes with the
noise factors γAD and γPF as

FPF,AD(|βi〉, |ci, βi〉) =
(

0.36γPF

√
1 − γAD + 0.08γAD

−0.18
√

1 − γAD + 0.18

)1/2

.

(27)
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FIG. 10. The change of fidelity of the system with different combinations of noise factors γAD, γBF , γPF , and γD.

The corresponding curve of the function is shown as the
second subgraph of Fig. 10. The fidelity of the system under
the influence of amplitude damping noise and phase-flip noise
reaches the minimum value of 0.8 when γPF = γAD = 0. At
this time, the phase-flip noise is fully influenced on the system
while the amplitude damping noise has no effect at all. When
the two types of noise are completely superimposed on the
system, the fidelity rises to 0.95. It means that, when phase-
flip noise and amplitude damping noise act on the quantum
system at the same time, the existence of amplitude damping
noise will make the quantum state oscillate to a state closer to
the original quantum state to a certain extent.

The simulation result under the influence of amplitude
damping noise and phase-flip noise is displayed through the
change of loss function with the increase of epochs in Fig. 12.
In the first 37 epochs, the loss function decreases gradually.
Finally, the loss function of training data converges to 0.23
and the loss function of testing data converges to 0.13, that is,
the error rate is less than 0.13.

(3) Amplitude damping noise and depolarizing noise
Under the influence of amplitude damping noise and de-

polarizing noise, the fidelity of the system changes with the

FIG. 11. Simulation result under the influence of amplitude
damping noise and bit-flip noise.

noise factors γAD and γD, as shown by

FD,AD(|β〉, |ci, βi〉) =
(

0.13γDγAD + 0.18
√

1 − γADγD

−0.05γAD + 0.32γD + 0.5

)1/2

.

(28)

The corresponding curve of the function is shown as the
third subgraph of Fig. 10. The system is not affected by noise
when γAD = 0, γD = 1 and the fidelity is 1 at this time. With
the increase of γAD and the decrease of γD, the fidelity of
the system gradually decreases. When γAD = 1, γD = 0, the
fidelity of the system decreases to the minimum value of
0.67. The second lowest point of the fidelity is about 0.7
when γAD = γD = 0 with only depolarizing noise acting on
the quantum system.

The simulation result under the influence of amplitude
damping noise and depolarizing noise is displayed through
the change of the value of loss function with the increase of
epochs in Fig. 13. In the first 10 epochs, the loss function
decreases gradually. Finally, the loss functions of training and
testing data converge to 0.20, that is, the error rate is less than
0.20.

(4) Phase flip and bit flip

FIG. 12. Simulation result under the influence of amplitude
damping noise and phase-flip noise.
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FIG. 13. Simulation result under the influence of amplitude
damping noise and depolarizing noise.

Under the influence of phase-flip noise and bit-flip noise,
the fidelity of the system changes with the noise factors γPF

and γBF , as shown by

FPF,BF (|βi〉, |ci, βi〉) = (0.36γPF + 0.64γBF )1/2. (29)

The corresponding curve of the function is shown as the
fourth subgraph of Fig. 10. The system is not affected by
noise when γPF = γBF = 1 and the fidelity is 1. The fidelity
decreases gradually with the decrease of γPF and γBF . When
the two noise are applied to the system completely with γPF =
γBF = 0, the fidelity turns to zero. At the time only bit-flip
noise acts on the system, the fidelity gradually decreases to
0.60 with the decrease of γBF . At the time only phase-flip
noise acts on the system, the fidelity gradually decreases to
0.80 with the decrease of γPF .

The simulation result under the influence of phase-flip
noise and bit-flip noise is displayed through the change of the
value of loss function with the increase of epochs in Fig. 14.
In the first 15 epochs, the value of loss function decreases
gradually. Finally, the loss function of training data converges
to 0.20 and the loss function of testing data converges to 0.18;
that is, the error rate is less than 0.18.

(5) Depolarizing noise and bit-flip noise

FIG. 14. Simulation result under the influence of phase-flip noise
and bit-flip noise.

FIG. 15. Simulation result under the influence of depolarizing
noise and bit-flip noise.

Under the influence of depolarizing noise and bit-flip noise,
the fidelity changes with the noise factors γD and γBF as
shown by

FD,BF (|βi〉, |ci, βi〉) = (0.36γDγBF + 0.14γD + 0.5)1/2.

(30)

The corresponding curve of the function is shown as the
fifth subgraph of Fig. 10. The system is not affected by
noise when γD = γBF = 1 and the fidelity is 1. The fidelity
decreases gradually with the decrease of γD and γBF . When
the two noise are applied to the system completely with γD =
γBF = 0, the fidelity turns to 0. 70. At the time only bit-flip
noise acts on the system, the fidelity gradually decreases to
0.60 with the decrease of γBF . At the time only depolarizing
noise acts on the system, the fidelity gradually decreases to
0.71 with the decrease of γD.

The simulation result under the influence of depolarizing
noise and bit-flip noise is displayed through the change of the
value of loss function with the increase of epochs in Fig. 15. In
the first 13 epochs, the value of loss function decreases rapidly
and decreased gradually in the next 17 epochs. Finally, the
loss function of the training data converges to 0.20 and the

FIG. 16. Simulation result under the influence of depolarizing
noise and phase-flip noise.
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TABLE I. The error rates of LAN receiver under the influence of quantum channel noise.

Noise type Single noise Mixed noise

AD BF PF D AD & BF AD & PF AD & D PF & BF BF & D PF & D

Error rate 0.18 0.16 0.23 0.21 0.16 0.13 0.20 0.18 0.18 0.21

loss function of the testing data converges to 0.18; that is, the
error rate is less than 0.18.

(6) Depolarization noise and phase-flip noise
Under the influence of depolarizing noise and phase-flip

noise, the fidelity changes with the noise factors γD and γPF

as shown by

FD,PF (|βi〉, |ci, βi〉) = (0.36γDγPF + 0.14γD + 0.5)1/2.

(31)

The corresponding change of the function is shown as
the sixth subgraph of Fig. 10. The system is not affected by
noise when γD = γPF = 1 and the fidelity is 1. The fidelity
decreases gradually with the decrease of γD and γPF . When
the two noise are applied to the system completely with
γPF = γBF = 0, the fidelity turns to zero. 70. At the time
only phase-flip noise acts on the system, and the gradually
decreases to 0.70 with the decrease of γPF . At the time only
depolarizing noise acts on the system, the fidelity gradually
decreases to 0.80 with the decrease of γD. In this case, the
depolarizing noise is more destructive to the system than the
phase-flip noise.

The simulation result under the influence of depolarizing
noise and bit-flip noise is displayed through the change of the
value of loss function with the increase of epochs in Fig. 16.
In the first 20 epochs, the value of loss function decreases
rapidly. Finally, the loss function of the training and testing
data converges to 0.20 in 50 epochs; that is, the error rate is
less than 0.21.

C. Performance comparison

In Sec. IV B, we discussed the influence of quantum chan-
nel noise on the LAN receiver in detail. The error rate of the
of LAN receiver is summarized in Table I. It can be obtained
from simulation result shows that the maximum error rate is
less than 0.23 and the minimum error rate is 0.13. The average
error rate in all cases is 0.18.

The average error rate of LAN receiver is compared
with various receivers: generalized Kennedy receivers includ-

ing traditional Kennedy receivers and type-II receivers, CD
Kennedy receivers and homodyne detection receivers in Ta-
ble II. It can be seen from Table II that, when the average
number N of thermal photons is greater than 0.85, the accu-
racy of LAN receiver proposed in this paper is higher than
generalized Kennedy receivers and CD-Kennedy receiver.
Compared with the homodyne receiver, the accuracy of LAN
receiver is higher when the number of thermal photons is
greater than 0.97.

V. CONCLUSION

To improve the antinoise performance and accuracy of
optical quantum communication, an optimization strategy,
learnable antinoise receiver inspired by quantum neural net-
work is proposed in this paper. It is a universal optimization
method that can be used in other communication protocols
to improve antinoise ability and reduce communication error
rate. In this optimization strategy, the displacement operator in
the receiver is constructed by a quantum neural network which
can update the parameters in the quantum circuit according
to the noise affected training data until the combination of
parameters with the lowest error rate is found. The experimen-
tal results show that the performance of LAN receiver under
different kinds of strong noise is better compared with other
type of receivers.

However, there are still some limitations of this work.
First is the selection of alphabet. Since phase shift keyed
alphabet has been applied widely in the relevant research, this
paper chooses this type of alphabet to encode information for
transmission. However, in some other cases, other alphabets
like on-off keyed alphabet, may be more suitable. Due to
the repeatability of content, we will supplement the related
research in our future work. Second, in our numeral exper-
iments, four kinds of common quantum channel noise and
their different combinations are set as the turbulence. When
it comes to simulation, we add the corresponding noise to the
data set in advance. However, there still exists some difference
between the simulated noise and the real one caused by the
real quantum computers. If the experimental conditions get

TABLE II. Performance comparison of each receiver.

Receiver type Variable value Average error rate Numerical trend of error rate compared with LAN receiver

Learnable antinoise receiver None �0.23
Generalized Kennedy receiver N � 0.85 �0.23

N > 0.85 >0.23 ↑
CD-Kennedy receiver N � 0.85 �0.23

N > 0.85 >0.23 ↑
Homodyne receiver N � 0.97 �0.23

N > 0.97 >0.23 ↑

052427-10



LEARNABLE ANTINOISE-RECEIVER ALGORITHM BASED … PHYSICAL REVIEW A 105, 052427 (2022)

improved in the future, we expect to do our experiments on
real quantum computers.

Overall, the optimized quantum communication algorithm
and its physical implementation proposed in this paper has
broad application in secure quantum communication, espe-
cially in the field of quantum key distribution. Since the
large-scale commercial use of quantum communication is
just around the corner, the coherent states, as the com-
monly used physical resource for quantum communication,
will be transmitted through noisy quantum channels due
to the situation that NISQ devices cannot provide noise-
free environment for computation. Thus, our algorithm plays
an important role in distinguishing quantum coherent states

in the noisy environment for the implication of quantum
communications.

In future research, we will pay more attention to improving
the antinoise performance of the receivers and develop the
receiver’s ability to deal with more complex classification
problems.
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