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Controlling long ion strings for quantum simulation and precision measurements
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Scaling a trapped-ion based quantum simulator to a large number of ions creates a fully controllable quantum
system that becomes inaccessible to numerical methods. When highly anisotropic trapping potentials are used
to confine the ions in the form of a long linear string, several challenges have to be overcome to achieve high-
fidelity coherent control of a quantum system extending over hundreds of micrometers. In this paper, we describe
a setup for carrying out many-ion quantum simulations including single-ion coherent control that we use for
demonstrating entanglement in 50-ion strings. Furthermore, we present a set of experimental techniques probing
ion qubits by Ramsey and Carr-Purcell-Meiboom-Gill pulse sequences that enable detection (and compensation)
of power-line-synchronous magnetic-field variations, measurement of path-length fluctuations, and detection of
the wavefronts of elliptical laser beams coupling to the ion string.
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I. INTRODUCTION

Trapped ions have been one of the leading candidates for
precision and metrology research due to their high degree
of isolation from the surrounding perturbations [1,2]. More
recently, the development of entangling operations in qubits
encoded in trapped ions [3–5] has led to high fidelity quantum
computation and simulations [6–8] In order to fully utilize the
power of quantum computation and simulations, one needs
quantum systems composed of a large number of (quantum-
error corrected) qubits. There has been a strong push to scale
up the number of trapped ions by designing specific trap
geometries for shuttling and reconfiguring ion crystals [9,10]
or arrays of ion traps [11,12], and by potentially connecting
them via quantum networks [13]. In order to trap large-sized
crystals, Penning traps, which utilize static electric and mag-
netic fields to trap charged particles [14,15], have been used
for trapping planar crystals of several hundred ions and first
quantum simulations have been carried out [16]. However,
due to the rotation of ion crystals in a Penning trap, individual
qubit control, which is an essential ingredient for developing
fully programmable quantum simulators [8,17], has not been
demonstrated yet.

Controlling the quantum state of a many-ion crystal
presents various challenges.

(1) The large number of ions implies a large number of
motional modes that need to be cooled to low temperatures
[18,19]. The collision rate of background gas molecules with
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the ions increases in proportion to the number of ions, which
can give rise to frequent melting events of the crystal that
require recrystallization.

(2) Many-ion linear crystals require highly anisotropic
trapping potentials which are typically achieved by lowering
the confinement along the axis of the ion string, resulting in
high motional occupation numbers after Doppler cooling and
a high heating rate of the center-of-mass (c.m.) motion in the
direction of the ion string.

(3) The large spatial extent of many-ion strings results in
a spread of qubit transition frequencies because of spatially
varying electromagnetic fields.

(4) It makes single-ion addressing across the entire ion
string difficult to achieve.

In this paper, we present a set of techniques for controlling
and characterizing long crystals containing tens of ions. We
extended single-ion addressing to strings of up to 51 ions
which enable us to investigate many-body nonequilibrium
dynamics with tens of ions and to demonstrate entanglement
between all pairs of neighboring ions (see Fig. 1) as discussed
later in more detail. The paper is structured as follows: In
Sec. II, we describe the experimental platform and discuss
sub-Doppler cooling techniques for long ion strings. We dis-
cuss the collision rate of the background gas with the ion
crystal which limits the time available for performing ex-
periments with the ions. In Sec. III, we describe techniques
for characterizing the electromagnetic environment of the ion
crystal and discuss how to mitigate errors in coherent control
of long ion strings. In particular, we present two applica-
tions of probing external fields with the ion crystal using a
Carr-Purcell-Meiboom-Gill (CPMG) sequence: First, CPMG
sequences exciting the ion qubits are used for probing the
line-synchronous components of the magnetic field, which
enable a feedforward compensation of these disturbances.

2469-9926/2022/105(5)/052426(13) 052426-1 ©2022 American Physical Society

https://orcid.org/0000-0001-6046-8949
https://orcid.org/0000-0002-7146-713X
https://orcid.org/0000-0001-5239-9752
https://orcid.org/0000-0001-7121-8259
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.052426&domain=pdf&date_stamp=2022-05-18
https://doi.org/10.1103/PhysRevA.105.052426


FLORIAN KRANZL et al. PHYSICAL REVIEW A 105, 052426 (2022)

FIG. 1. (a) Magnetization dynamics under a XY Hamiltonian for
a 51-ion chain initially prepared in a Néel state |↓↑↓↑ . . . 〉 (Sec. V).
(b) Log negativity measured for connected pairs after T = 3 ms of
time evolution.

Second, CPMG sequences are employed for characterizing
the wavefronts of a laser beam that collectively couples to
all qubits; by these measurements, the laser beam direction
can be optimized and its wavefront curvature at the location
of the ions can be reduced. Furthermore, we show Ramsey
experiments done with beams from two separate light paths
which we use to assess path-length fluctuations in the optical
fibers delivering light to the ions. In Sec. IV, we show the
results of the single-ion addressing of the full 51-ion crystal.
In Sec. V, entanglement generation in the 51-ion crystal is
demonstrated by a measurement of the logarithmic negativity
for connected pairs and triplets.

II. TRAP CHARACTERIZATION

A. Experimental setup

The experimental platform discussed in this paper has
been developed for quantum simulations with trapped atomic
ions. The centerpiece of the experiment is a linear Paul trap,
used for confining long strings of 40Ca

+
ions (Fig. 2). The

trap potential is made highly anisotropic by keeping the con-

FIG. 2. (a) Ion string in a linear Paul trap. A string of up to 51
ions is cooled, manipulated, and detected with laser beams imping-
ing from various angles. Two counterpropagating beams creating a
polarization gradient along the axis of the ion string are directed
through holes in the ion trap’s endcaps. (b) Partial level scheme of
40Ca

+
. The qubit is encoded in the states 42 S1/2(m = +1/2) and

32 D5/2(m = +5/2) (gray dots).

finement along the trap’s symmetry axis (along the z axis)
fairly weak to allow for confining up to 51 ions as a linear
string. The calcium ions are created in the trapping region
by photoionizing neutral calcium atoms emanating from a
resistively heated oven that contains pure calcium in solid
form. The ions are captured by the trapping fields and cooled
via Doppler cooling. The Doppler cooling laser beam prop-
agates at 45◦ to the trap axis, while having roughly equal
overlap with the two other principal trap axes (x and y). The
confinement in the radial plane (xy plane) is made slightly
anisotropic to enable efficient Doppler cooling of all motional
modes. Typical values for the radial trapping frequencies are
ωx ≈ 2π × 2.93 MHz and ωy ≈ 2π × 2.89 MHz and for the
axial trapping frequency ωz ≈ 2π × 127 kHz. A set of SmCo
magnets defines the quantization axis in the trapping region
by creating a magnetic field of B = 4.17 G pointing along the
trap axis. Further details can be found in Ref. [20].

A typical experimental sequence to coherently control the
electronic and motional states (Fig. 2) consists of the fol-
lowing steps: As a first step, ions are cooled approximately
to the Doppler temperature by a 397-nm laser beam, which
is red-detuned by about half a linewidth from the S1/2 ↔
P1/2 transition, in conjunction with lasers at 866 and 854 nm
pumping out the metastable D3/2 and D5/2 levels. The Doppler
cooling duration is set to 3 ms. The second step, sub-Doppler
cooling of ions, which is essential to achieve high fidelity
quantum control, is carried out by polarization gradient (PG)
and resolved sideband cooling techniques. During sideband
cooling, a laser at 854 nm pumps out population from the
D5/2 level. For further details, see Sec. II B. As a third step,
the coherent manipulation of ions is performed on the S1/2 ↔
D5/2 transition with a laser at 729 nm having a linewidth of
less than 10 Hz. In this step, ions are prepared in coherent
superpositions of their internal states or entangled with each
other. In the final step, the state of the individual ions is
detected by imaging the fluorescence emitted by the ions onto
an EMCCD camera.

The key ingredients of quantum simulation experiments
are single-qubit operations, with individual and global con-
trols, and entangling operations. The laser beams at 729 nm
performing these operations are sketched in Fig. 2(a). The
entangling interaction is generated by a bichromatic laser
beam with frequencies ω±, that simultaneously interacts with
the motional and electronic degrees of freedom of all trapped
ions. The laser beam illuminates the ion chain from a radial
direction such that it couples to the 2N transverse motional
modes, which mediate a Mølmer-Sørensen interaction be-
tween the qubits. In this way, we achieve a variable long-range
interaction [21]. The interaction Hamiltonian is expressed as

H =
∑
i< j

Ji jσ
x
i σ x

j + B
∑

k

σ z
k , (1)

where σα
k (α = x, y and z) are Pauli operators for ion index

k. The elements of the spin-spin matrix (Ji j) are set by the
bichromatic laser beam intensity at the ions and the laser
detuning from the sidebands; the strength of the transverse
field B is controlled by the centerline detuning δ = (ω+ +
ω−)/2 − ω0, where ω0 is the qubit transition frequency [22].
The Ji j matrix and B-field terms are related to the laser-ion
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interaction parameters via

Ji j = �i� j

2

2N∑
m=1

ηi,mη j,m

	m
, B = δ/2, (2)

where �i is the Rabi frequency of the frequency components
of the bichromatic beam coupling to ion i, ηi,m is the Lamb-
Dicke parameter of ion i and mode m, and 	m is the detuning
of bichromatic beam from the motional mode of interest.

B. Laser cooling and motional heating of long strings

Sub-Doppler cooling of long ion strings is a prerequi-
site for most entanglement-generating atom-light interactions
employed in quantum information processing, quantum simu-
lation, and quantum metrology. The challenge is to efficiently
cool many modes (possibly spread over hundreds of kilohertz)
close to the motional ground state, in the shortest possible
time. All radial modes need to be ground-state cooled in order
to reduce fluctuations in coupling strength and ac-Stark shifts
for the realization of single- and multiqubit gate operations
with high fidelity. In our experiments, ground-state cooling of
all 2N radial modes of an N-ion string is achieved by resolved
sideband cooling.

Due to weak confinement along the principal trap axis,
the longitudinal motion suffers from a considerable motional
heating [23] which, in combination with the weak confine-
ment, gives rise to a rather weak localization of the ions
as compared to the laser wavelength. This compromises the
quality of single-qubit gate operations for long experimental
sequences, because high phonon numbers result in a large
spatial spread of the individual ions such that the laser-ion
coupling strength of the addressing beam decreases with
increasing size of the ion’s wave packet (see Fig. 11 in
Sec. IV). Therefore, we cool the longitudinal motional modes
before and after sideband cooling of the radial modes, via
polarization-gradient cooling [24]. Figure 3 shows the longi-
tudinal c.m. mode’s heating rate normalized to the number N
of ions, dn/dt

N , as a function of the trapping frequency ω for
N = 1, 28, and 50 ions. The measurements show an increase
of the heating rate in proportion to the number of ions and
a dependence on the trapping frequency ω as dn/dt ∝ 1

ωα ,
where α = 1.9(2).

C. Langevin collisions and recrystallization

Laser-cooled atomic ions stored in an ultrahigh vacuum
still experience Langevin collisions with background gas
molecules. These collisions heat the ions and can even melt
the ion Coulomb crystals or, less frequently, turn atomic ions
into unwanted molecular ions [25,26]. As the rate at which
Langevin collisions occur increases in proportion with the
number of trapped ions, efficient recrystallization routines
are required in order to maximize the time the ion crystal is
available for a quantum physics experiment.

We detect collision-induced melting of the ion crystals
that occurs prior to the start of an experimental sequence
by a drop of the number of photons detected while Doppler
cooling the ions. When a collision is detected, the melting
event is time-tagged and a refreeze sequence is called. In
a refreeze sequence, the ions are cooled by a cooling beam

FIG. 3. Normalized heating rate vs axial trap frequency, normal-
ized by the number of ions N . Open circles show data measured
with a single ion (red circles), 28 ions (blue square), and 50 ions
(green diamond). The line is a fit of an expression dn/dt ∝ 1

ωα to the
experimental data, where we estimate α = 1.9(2).

that is red-detuned by 220 MHz from the S1/2 ↔ P1/2 atomic
transition and with an intensity that is about 50% higher than
the one of the Doppler-cooling beam. The recooling beam’s
detuning was empirically optimized to quickly restore the
crystalline order in 50-ion strings. In Fig. 4, we show the
survival probabilities for 25- and 51-ion crystals as a function
of time. Both ion crystals are studied at ωz = 2π × 127 kHz
and ωx = 2π × 2.93 MHz. A fit of the curves with an expo-
nentially decaying function yields lifetimes of τs= 29.2(2)
and 27.0(2) s for the 25- and 51-ion crystals, respectively.
Even though the collision rate should be twice as high for the
51-ion crystal, both crystals exhibit nearly identical melting
rates. Clearly, some Langevin collisions transfer an amount
of energy to an ion that is not high enough to melt the
ion crystal [27]. It seems that for larger ion crystals the

FIG. 4. Survival probability of the ion crystal against melting by
collisions vs time for 25-ion and 51-ion strings.

052426-3



FLORIAN KRANZL et al. PHYSICAL REVIEW A 105, 052426 (2022)

redistribution of motional energy among all ions is quick
enough to reduce the deleterious effect of radio-frequency
heating such that Doppler cooling with standard parameters
suffices to recool the ions quickly. The measurements are in
rough agreement with single-ion measurements for which we
measure collision-induced drops of the ion fluorescence every
2000 s, which indicates a background gas pressure of about
2 × 10−11 mbar at the location of the ion.

In addition to melting of ion crystals, we also experimen-
tally detect collision events which leave the ions in a high
mean phonon state. Most importantly, collisions that occur
during sideband cooling or coherent probing leave the ions
so hot as to affect the quantum operation. In this case, the
ions are mostly detected as being in the bright state, because
the energy transferred to the crystal is still too small to have
melted the ion string, yet high enough to strongly reduce the
excitation probability on the quadrupole transition. We detect
these events by applying a resonant carrier π pulse during the
probe time. For a 51-ion crystal, we measure a total rate of
7(3) × 10−5 collisions/ms.

We also detect collisions turning calcium ions into molec-
ular ions by the appearance of nonfluorescing ions in the
camera images. Heavier molecular ions, most likely CaOH+,
are deterministically eliminated by lowering the rf-trapping
potential. In some events, we observe formation of CaH+

molecules [28], which has a mass very close to the calcium
ion itself, making it difficult to eliminate the ion from the trap.
This molecule has a dissociation channel for blue light and
hence is dissociable via light at 375 nm, used for photoioniza-
tion of calcium atoms in our system or the Doppler cooling
(397 nm) laser beam [29]. We observe about six ions turning
dark per 24 h for a 51-ion string and on an average two to
three ions for a 25-ion string.

III. COHERENT MANIPULATION OF LONG QUBIT
REGISTERS

A. Compensation of line-synchronous
magnetic-field fluctuations

Power supplies and other electrical devices contribute to
ambient magnetic field in the laboratory. The 50-Hz electricity
mains (ac power line) especially, powering the laboratory
devices, induce a line-synchronous alternating magnetic field.
Nonlinearities in the electrical loads generate components
with higher harmonics of 50 Hz, with odd-multiple com-
ponents generally being stronger than the even ones. This
ambient magnetic field leads to a modulation of the ions’
transition frequencies. A mu-metal shield surrounding the
vacuum system reduces these fluctuations; however, it does
not fully protect the qubits from the fluctuating magnetic fields
that arise from some power cables required to run inside the
mu-metal shield. In addition to the shielding we use a line-
trigger system, in which the experiment is synchronized with
the 50-Hz power line cycle. In this way, the experiment is in
phase with the line-synchronous magnetic field and the ion
experiences the same modulation of the transition frequencies
in every experiment. The line trigger eliminates dephasing
due to line-synchronous magnetic-field fluctuations, at the
expense of a deterministic time variation of the laser-ion

FIG. 5. (a) Pulse timing of a CPMG pulse sequence containing
Np π pulses and total duration τ . (b) Magnitude of a filter function
with Np = 2 and τ = 20 ms. (c) Mean excitation after a CPMG se-
quence (Np = 2, τ = 20 ms) probing 50-Hz noise before (red circles)
and after (blue squares) field compensation. Solid curves are fits of
Eq. (4) to the data. (d) Ramsey measurement with τ = 4.5 ms probe
time.

detuning. To suppress these temporal variations, we built a
feedforward system that applies a time-varying current to a
pair of magnetic-field coils such that the generated field can-
cels out temporal variations of the ambient magnetic field at
the location of the ions [30].

For detecting line-synchronous magnetic-field contribu-
tions at a particular frequency, we employ a π -pulse sequence
[31], namely, a CPMG sequence [32]. As illustrated in
Fig. 5(a) the time separation between the two embedding
π/2 pulses and the first (last) π pulse is half the interpulse
separation. A general π -pulse sequence acts as a filter with
the filter function in the frequency domain given by [33]

F̃ ( f ) = 1√
2π iω

[
1 + (−1)Np+1eiωτ + 2

Np∑
j=1

(−1) jeiωτδ j

]

(3)

with the overall sequence duration τ , the angular frequency
ω = 2π f , the number of π pulses Np, and the occurrence of
the jth pulse at τδ j . In the case of a CPMG sequence, δ j =
j− 1

2
Np

. In this formula, the length of π pulses is considered to be
negligible, which is a good approximation in our experiment,
where the length of a π pulse is on the order of ≈5 μs com-
pared to the sequence length τ = 20 ms. The absolute value of
a filter function with two π pulses is shown in Fig. 5(b). From
the graph, one can see that the maximum of the filter function
occurs at a frequency fmax ≈ Np

2τ
. Smaller local maxima occur

for odd integer multiples of fmax. Signals with frequencies
f = k

τ
for even numbers of pulses and f = k

τ
+ 1

2τ
for odd

numbers of pulses are suppressed, except fmax and its odd
multiples. This feature enables us to probe the different fre-
quency components of line-synchronous noise one by one. To
characterize the modulation amplitude A (in rad/s) and phase
φnoise, we scan the start t0 of the CPMG sequence with respect
to the line-trigger event over one period of the probed noise
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TABLE I. Magnetic-field strength before and after the com-
pensation of the relevant noise components and the corresponding
frequency shift 	 of the S1/2 ↔ D5/2 transition.

B after 	 after
f (Hz) B (μG) compensation 	 (Hz) compensation

50 37.2(5) 1.3(6) 104(2) 3(2)
150 9.3(8) 0.9(6) 26(2) 2(2)
250 23.3(6) 0.7(5) 65(2) 2(1)

component. If only a single noise component at frequency f
is present, one expects the excited-state probability to be given
by

P↑(A, t0) = 1

2
+ C

2
sin{

√
2π |F̃ ( f ; Np, τ )|A sin[2π f t0

+ φnoise + arg(F̃ ( f ; Np, τ ))]}. (4)

The empirical constant C accounts for broadband noise reduc-
ing the overall contrast of the CPMG signal.

A CPMG measurement of line-synchronous noise was
carried out with a string of eight ions. A programmable Red-
Pitaya [34] board was used for generating a compensation
current sent to the magnetic-field coils of our experiment. The
board was line triggered for the creation of a line-synchronous
feedforward signal. To sense frequency components at 50,
150, and 250 Hz, we chose a CPMG sequence with a du-
ration of τ = 20 ms with Np = 2, 6, and 10 π pulses. Due
to the fact that the contributions from the 150- and 250-Hz
components show up in the measurement for the 50-Hz com-
ponent, the compensation routine is started by compensating
the higher-frequency components first (before compensating
the dominant 50-Hz component). Towards this end, we fitted
the measured signal by Eq. (4) with A, φnoise, and C as fit
parameters, and programed the RedPitaya to apply an out-of-
phase signal based on the calculated amplitude and phase to
the magnetic-field coils. The fine tuning is performed by trial
and error and remeasuring the remaining signal.

Figure 5(c) displays a CPMG measurement of the 50-Hz
component before compensation (red circles) and after (blue
squares), together with fits shown as solid lines. The measured
magnetic-field strength of all three frequency components,
before and after compensation, are listed in Table I. In general,
a reduction of the modulation amplitude by at least a factor
of 10 was reached for all components. Fluctuations of the
noise amplitudes and phases occurring on a time scale of
minutes made a perfect compensation of line-synchronous
noise impossible.

To test the effect of the feedforward system on the qubit
coherence, we carried out Ramsey contrast measurements as
shown in Fig. 5(d) for a probe time of τ = 4.5 ms. We com-
pared the results of three cases; line-trigger and feedforward
compensation both “on” [red squares, C = 0.84(2)], only the
compensation “on” [green diamonds, C = 0.85(5)], and both
“off” [blue circles, C = 0.25(3)]. The strongly reduced con-
trast found in the latter case shows that in the absence of a
feedforward compensation, line triggering the experiment is
indispensable. Application of the feedforward compensation
restores the contrast and demonstrates that no additional noise

is created by the feedforward system. Using the feedforward
compensation, we do not have to rely on the line trigger
anymore, which comes with the added benefit of a faster
repetition rate of the experimental cycle.

B. Wavefront tilt and curvature measurements

Collective single-qubit operations as well as entangling
operations are performed with a 729-nm beam that is illumi-
nating the entire ion string from a direction perpendicular to
the ion string. Experimentally, we observe that a tilt in the
wavefront of this transverse beam leads to infidelities of the
collective single-qubit operations via a coupling to the com-
paratively hot axial modes of motion. Such a tilt can arise from
an imperfectly aligned beam direction. Moreover, a spatially
varying tilt can be caused by wavefront curvature, which can
result, for example, if the ion string is situated outside the
focus of a Gaussian beam. In this section, we show how such
a wavefront tilt can be detected using the ions as a probe
and how a proper beam shaping creates plane and parallel
wavefronts which improves the fidelity of our collective qubit
operations.

In order to efficiently couple the available laser power to
the linear ion string, we shape the transverse 729-nm beam
into an elliptical beam shape. Until recently, this was achieved
with two crossed cylindrical lenses that created an astigmatic
beam [35]. The ion string was located at the vertical focus
of beam radius of 24(6) μm where the beam had a diameter
of about 690(20) μm in the horizontal direction. As a conse-
quence of the ions being placed outside the horizontal focus,
the ions were subjected to curved wavefronts.

As a result, the quality of global qubit operations was
affected by spurious coupling to the string’s axial modes of
motion. This source of imperfections can be understood in
terms of a simple semiclassical model: The axial c.m. mode
of the ion string is considerably populated even after polariza-
tion gradient cooling [n̄ = 170(20) at ωz = 2π × 128 kHz].
Therefore, each ion may be considered as a pointlike particle
oscillating back and forth with the axial trapping frequency.
This ion oscillation leads to a phase modulation of the laser
light seen by the ion if the wavefronts are not parallel to the
ion string. The phase modulation gives rise to global unitaries
with time-dependent rotation axes.

This effect can be observed in a Ramsey experiment. The
ions are initially prepared in |S〉 and a π/2 pulse is applied.
After a wait time, a π/2 pulse with a phase shifted by π ide-
ally rotates the qubits back to the initial state. However, when
scanning the wait time in such an experiment, we observe
an excitation of up to 0.3% that is modulated with the axial
trapping period Tax.

The coupling to the axial c.m. mode can be amplified and
detected more precisely by the use of a CPMG sequence,
similar to the one described in Sec. III A. Again, the wait time
between the π pulses of the CPMG sequence is scanned. If the
wait time equals Tax(n + 1/2), with n ∈ N0, two consecutive
π pulses probe the phase modulation of the laser light at
points of opposite sign, which leads to an accumulation of the
phase by the CPMG sequence. A sequence of 20 alternating
π pulses of length 4 μs gives rise to a series of distinct peaks
separated by half a trapping period [Fig. 6(a)]. At one end of
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FIG. 6. Wavefront detection using a CPMG sequence. The de-
tected signal is produced by scanning the wait time between the
pulses of the CPMG sequence. (a) Elliptical astigmatic beam. (b) El-
liptical nonastigmatic beam. (c) The tilted and curved wavefronts of
the astigmatic beam of the old beam shaping optics give rise to peaks
under a CPMG sequence (Np = 20 pulses, axial trapping frequency
ωz = 2π × 112 kHz, ion string temperature T = 4.6 mK). (d) After
the implementation of new beam shaping optics that deliver straight
wavefronts, the peaks vanish.

the ion string the peak excitation is emax ≈ 0.4 and at the other
end it is approximately zero. We attribute the variation of the
peak height to a curvature of the transverse beam wavefronts
hitting the ions in combination with a slight misalignment
of the beam’s k vector. The excitation for a wait time of
Tax(n + 1/2) can be estimated from the semiclassical model
as (see Appendix A1)

pD = emax = 1
2

(
1 − e

− 2kBT k2
z (Np+1)2

mω2
z

)
, (5)

where Np is the number of π pulses, ωz is the axial trapping
frequency, kz is the wave-vector component along the axial
trap axis, T is the ion temperature, m is the ion mass, and kB is
Boltzmann’s constant. For the experimental parameters used
in the CPMG experiment (Np = 20, ωz = 2π × 112 kHz, T =
4.6 mK, and m = mCa40) a variation of the angles between the
local wavefront and the axial direction from α1 ≈ 4.8 mrad
to α51 ≈ 1.4 mrad over the ion string would give rise to the
measured peak excitation. This variation of 	α = 3.4 mrad
over an ion string of length 	z = 269 μm corresponds to a
wavefront curvature of radius R = 	z/	α = 79(2) mm. The
ions were placed 36(2) mm from the horizontal focus. Thus,
the expected wavefront curvature was 36(2) mm, being signif-
icantly smaller than the value inferred from the wavefronts. A
possible explanation for this discrepancy could be distortions
in the wavefronts of the beam.

We improved the quantum operations induced by the
global laser beam by replacing the astigmatic beam with
an elliptical, nonastigmatic beam. This beam is shaped by
two crossed cylindrical-lens telescopes. The foci along the
horizontal and the vertical axis coincide whereby plane wave-
fronts are created along both axes. At the ion string, the beam

has a radius (1/e2 intensity) of 235(10) and 23(4) μm, respec-
tively. Probing the plane wavefronts with a CPMG sequence
shows that the peaks vanish as soon as the wavefronts are
made parallel with respect to the ion string [Fig. 6(b)]. While
no peaks are visible in the CPMG signal, the noise floor gives
an upper bound on the wavefront tilt of 0.8 mrad.

Interestingly, the CPMG signal shows not only peaks that
are separated by a full trapping period but also intermediate
peaks that are separated by half a trapping period. While these
peaks are not predicted by a semiclassical model assuming
infinitely fast π pulses, we find that a numerical solution of
the Schrödinger equation describing the action of the CPMG
sequence gives rise to intermediate peaks (see Appendix A2).
The intermediate peaks get the strongest when the Rabi fre-
quency of the light-matter interaction is of similar size as the
trapping frequency. In the experimental data [Fig. 6(c)] there
is no intermediate peak visible at 9 μs, for which we do not
have an explanation so far.

C. Path-length fluctuations of optical beams

Coherent laser-ion interactions are affected by phase noise
that can occur from three main sources: phase noise from
the laser itself, fluctuating electromagnetic fields shifting the
atomic energy levels, or instabilities in the beam path from
laser to ion. In the following, we will investigate the latter by
designing a Ramsey-type experiment, with two different beam
paths, that is sensitive only to relative path-length fluctuations.

We consider a single ion addressed by light from two
separate beam paths, termed 1 and 2. The light incident
on the ions from each path has electric fields ∼ei[ω1t1+φ1(t )]

and ∼ei[ω2t2+φ2(t )], respectively, where φi(t ) accounts for laser
phase noise and optical path-length fluctuations between the
laser and the ion. If it is assumed that any beam path
fluctuations which may be present in the two paths are inde-
pendent, the phases from the two separate beam paths will
consequently be uncorrelated. Correlations in time between
measurements of consecutive Ramsey experiments at times i
and j then take the form [36]

Ci, j = 〈cos(	φi − 	φ j )〉, (6)

with 	φi = (φ1 − φ2)i. As such, the correlations between two
such Ramsey experiments can be used to determine temporal
changes of the phase difference between the first and second
laser pulse. As this experiment is insensitive to laser phase
noise for short Ramsey probe times, instabilities in the path
lengths are the only contributions to the phase noise, and
so the dynamics of these correlations will reveal information
about fluctuations in the path lengths from one experiment to
the next.

Practically, this experiment was implemented using the
global beam path and the addressing beam path [indicated
in Fig. 2(a)], and a short Ramsey probe time on the order
of 5 μs, with the phase of the second pulse then scanned
over. Figure 7 shows the results from performing this ex-
periment. The figure shows the correlations of the ion with
itself as a function of the length of time separating the two
measurements. Shown are two fits to the data: an exponential
decay (blue dashed line) and a Gaussian decay (green solid
line). For fast frequency noise, an exponential decay of the
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FIG. 7. Autocorrelations from a single-ion experiment. Plotted
are both exponential (blue dashed line) and Gaussian (green solid
line) fits to the data (black points). Insets: Normal Q − Q plots for
each fit, along with their associated R2 values. It can be seen that
the Gaussian decay better fits the data, indicating that the decay in
correlations is predominantly affected by slow phase noise.

correlations can be expected. For low-frequency noise, the
decay curve is likely to be nonexponential, with a Gaussian
shape expected [37]. From the figure, it can be seen that
a Gaussian decay better fits the decay of these correlations
over the short timescales probed in the experiment. This is
confirmed by looking at the normal quantile-quantile (Q − Q)
plots of the residuals for each fit [38], shown in the insets,
along with their R2 values. This indicates that the correlations
here are predominantly affected by slow phase noise, which is
consistent with phase noise produced by expected slow drifts
in the beam path.

The correlations decay over a timescale of approximately
300 ms, which is much larger than the current coherence time
of the system (on the order of 64 ms for the |S〉 to |D〉 transi-
tion [36]), and so it can be concluded that phase instabilities
introduced by path-length fluctuations are not, currently, a
dominant source of noise in the system.

IV. INDIVIDUAL QUANTUM STATE CONTROL
OF LONG ION STRINGS

We perform single-qubit gate operations with a tightly fo-
cused laser beam at 729 nm the focal spot of which is steered
over the ion string using an acousto-optic deflector (AOD)
[39]. A system of five lenses maps the output of the AOD
onto an objective, such that each beam defracted by the AOD
is projected to the same area on the objective. The objective
focuses the beam to about 2-μm radius. With this setup, we
achieve individual ion addressing in a 51-ion string, which, at
an axial confinement frequency ωz = 2π × 127 kHz, extends
over a range of 246 μm. Addressing of the ions 1, 13, 26, 39,
and 51 is demonstrated in Fig. 8, which shows the excitation
probability of the individual ions as a function of the AOD
frequency.

FIG. 8. Single-ion addressing of a 51-ion string illustrated for
a few selected ions. The ions were initialized in the X basis, then
addressed by a laser pulse inducing an ac-Stark shift with the pulse
length set to realize a π rotation, and measured in the X basis. For
ion 51 the double-frequency component of the AOD leads to an
excitation of ion 1 and 2.

Single-qubit gates are realized by using the strongly fo-
cused beam for inducing ac-Stark shifts on individual qubits
in combination with laser pulses from the global beam that
induce resonant π/2 pulses on all ions simultaneously. By
sandwiching ac-Stark-shift induced π pulses on a subensem-
ble of ions between a pair of resonant π/2 pulses of opposite
phase, product states can be produced, in which the qubits
are initialized in the up or down state, as shown for various
examples in Fig. 9. More generally, it is possible to induce
arbitrary (ion-specific) single-qubit operations on all ions
simultaneously [40]. Among others, this capability enables
measurements of arbitrary correlation functions between the
qubits as required for quantum state tomography.

We characterize the addressing performance of our system
by a cross-talk analysis. Due to the finite beam size, the
neighboring ions of the ion of interest are also illuminated
by some laser light, which coherently rotates the qubit state,
thus causing an unwanted operation. In the case of a resonant
addressing beam, the neighboring ions experience a cross-
talk of 0.03–0.3 (ratio of Rabi frequencies), depending on
the position of the addressed ion in the string (see Fig. 10).
The average next-neighbor cross-talk per qubit is reduced to
3 × 10−2 (ratio of intensities) by performing ac-Stark gates
instead of resonant operations for the single-qubit gates.

Motional heating of the axial c.m. mode compromises the
quality of our single-qubit gate operations, as illustrated in
Fig. 11. To reduce this effect, we cool the axial motional
modes before and after sideband cooling of the radial modes,
via the polarization-gradient cooling technique; still, motional
heating remains a source of imperfections for long experi-
mental sequences. In Fig. 11, experimental data are fitted to

FIG. 9. Ions prepared in different initial states: (a) ion 26 ad-
dressed, (b) Néel state with odd ions addressed, (c) Néel state with
even ions addressed, and (d) ions that have a prime number as index
addressed (ions numbered from right to left).
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FIG. 10. Cross-talk in a 51-ion string, measured as the ratio of
the Rabi frequency of a nonaddressed and of the addressed ion. This
measurement was repeated for every fifth ion in the ion string.

a model which considers the effects of the thermal occupation
of the axial c.m. motional mode on the addressing flops while
individual ions are off-resonantly driven by a tightly focused
beam from the radial direction. A large value of the axial c.m.
mode motional occupation number leads to the shot-to-shot
variation of addressing flop frequency and thus decay of the
time-averaged addressing flops, and likewise in Ref. [41]. The
estimated mean phonon numbers after fitting experimental
data for three cases—with PG cooling, without PG cooling,
and an extra 20 ms of wait after PG cooling—are estimated to
be 637(70), 4515(320), and 4020(300), respectively.

Another effect that is relevant for single-ion addressing is
drift of the ion positions in the weakly confining direction.
We observe drifts of the positions by about 40 nm along
the direction of the string within a few minutes. These drifts
may be caused by surface charging effects triggered by the
Doppler cooling beam (397 nm). To counter this drift, we
automatically detect the ion positions every 5–10 minutes
using the EMCCD camera and cancel the shift by feeding
back onto the voltage of the endcap electrodes. Subsequently,
we automatically recalibrate the addressing Rabi frequency of
each ion.

FIG. 11. Addressing flop quality after PG cooling for 1 ms (blue
points) without PG cooling (red squares) and with an extra 20 ms
waiting time after PG cooling (black diamonds) of a 51-ion string.
Here we show only addressing flops for the 26th ion. Solid lines are
fits to the experimental data.

FIG. 12. Log negativities measured for adjacent ion triplets after
T = 3 ms of entangling operation in a 51-ion chain [for the corre-
sponding plot showing log negativities of pairs, please see Fig. 1(b)].

V. ENTANGLEMENT GENERATION

As discussed in Sec. II A, we realize a Mølmer-Sørensen-
type interaction the effective Hamiltonian of which is the one
of a long-range XY model. For this, a large centerline detuning
has to be chosen (δ = 2π × 3000 Hz) as compared to the
elements of the Ji j matrix (i.e., �240 rad/s). To observe the
spin dynamics induced by such an interaction, we prepare a
Néel state |↓↑↓↑ . . . 〉, i.e., a state with alternating spin orien-
tations, in the z basis, and time evolve the initial state under
the entangling interaction. Measurements of the time-evolved
state in the z basis are shown in Fig. 1(a).

The entanglement generated by the dynamics is assessed
by tomographic measurements of reduced three-qubit density
matrices, enabling the calculation of the logarithmic negativ-
ity for adjacent ion pairs and triplets [42]. The logarithmic
negativity is an entanglement monotone [43], which means
that for arbitrary bipartite systems a nonzero logarithmic neg-
ativity is a sufficient condition for entanglement [44]. For
pairs and triplets, the logarithmic negativity is expressed [42]
as

LN2(ρ) = log2 ||ρTA ||i, (7)

LN3(ρ) = 3
√

LN2(ρi, jk )LN2(ρ j,ik )LN2(ρk,i j ), (8)

where LN2(ρ) is calculated by taking the logarithm of the
partial transpose of a two-qubit density matrix over the ith
qubit for a pair formed by ith and (i + 1)th ions. On the
other hand, LN3(ρ) is a geometrical mean of three connected,
two-qubit logarithmic negativities. The logarithmic negativity
LN2(ρ) takes the value zero for a maximally mixed state and
the value 1 for a fully entangled state [44]. The results are
presented in Fig. 1(b) for adjacent ion pairs and in Fig. 12 for
triplets, for the case of a Néel state time evolved for T = 3
ms. At this time, all pairs and triplets of adjacent ions turn out
to be entangled, whereas at longer times larger subsystems
would have to be analyzed in order to detect entanglement.

VI. CONCLUSIONS

In this paper we presented a set of technical advances that
have recently enabled quantum simulation experiments with
up to 51 individually addressable ions [45]. The majority of
the techniques discussed in this paper deal with issues that
arise when large numbers of ions have to be coherently con-
trolled: confining many as a linear string requires rather weak
axial confinement, which complicates laser cooling and leads
to spatially extended long ion crystals. Combining polariza-
tion gradient cooling with sideband cooling of the transverse
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motional mode enables entanglement generation and veri-
fication by coherent-laser ion interactions as demonstrated
in the last section. In contrast to previous experiments with
20-ion strings, creating high-fidelity entanglement crucially
depended on the ability to precisely align the wave fronts of
the laser inducing entanglement with the orientation of the
ion crystal. Towards this end, the use of CPMG sequences
detecting spurious axial motion by a laser beam having wave-
fronts that were supposed to be aligned with the ion string
was key for a precision alignment of the beam. In summary,
developing techniques for controlling internal and external de-
grees of freedom of long ion strings proves to be indispensable
for scaling up trapped-ion quantum simulation experiments to
system sizes for which quantum many-body physics can no
longer be studied by exact numerical simulations [46–49].

Moreover, experiments other than quantum simulation
experiments with long ion strings can benefit from the tech-
niques presented in this paper. Recent experiments with
two-dimensional ion crystals in radio-frequency traps require
a precise alignment of laser beams that coherently couple to
the ions in order to avoid micromotion-induced inhomoge-
neous laser-ion coupling strengths [50–52]. For optical clocks
based on trapped ions, multi-ion clocks have been advocated
as a means for improving clock stability by interrogating large
numbers of ions in a cascaded clock scheme [53–55]. Such
experiments need excellent control over ions’ quantum state
in order to reduce systematic transition frequency shifts to a
minimum.

Yet another field of research using laser-cooled ion crystals
involves experiments investigating structural phase transitions
for investigations of Kibble-Zurek physics [56–58] and prob-
ing of nanofriction [59]. While these experiments were carried
out in a regime where the quantum nature of the ion motion
did not matter, future experiments probing structural phase
transitions in the quantum regime [60] will require cooling to
much lower temperatures and a precise quantum control over
all degrees of freedom of an ion string.

ACKNOWLEDGMENTS

The project leading to this application has received funding
from the European Union’s Horizon 2020 research and in-
novation program under Grant No. 817482. Furthermore, we
acknowledge support by the Austrian Science Fund through
the Spezialforschungsbereich BeyondC (Grant No. F7110)
and funding by the Institut für Quanteninformation GmbH.

APPENDIX: MODELING WAVEFRONT CURVATURE
MEASUREMENTS BY CPMG SEQUENCES

1. Derivation of the semiclassical model

The excitation of a hot ion after application of a CPMG
pulse sequence can be approximately calculated by modeling
the ion as a pointlike particle undergoing classical harmonic
motion and assuming π pulses of a duration much shorter
than the trapping period. The derivation is done in two steps:
First, the excitation after a π -pulse sequence is calculated for a
given trajectory. Second, the mean excitation is averaged over
a thermal distribution of the axial c.m. mode.

Initially, the ion is prepared in |↓〉 = |S〉. Between an initial
and a final π/2 pulse a series of Np alternating π pulses is
applied. The phase of each pulse is determined by the position
of the ion in the light field driving the pulses. The light-matter
interaction is described in the basis (1

0) = |↑〉 = |D〉 and (0
1) =

|↓〉 = |S〉 by the unitary operation

U (θ, φ) =
(

cos θ
2 −ie−iφ sin θ

2

−ieiφ sin θ
2 cos θ

2

)
, (A1)

where θ denotes the rotation angle and φ the angle of the
rotation axis within the Bloch sphere’s equatorial plane. The
total pulse sequence is described by

U = U (π/2, π/2 + φ f )U
(
(−1)Np+1π, φNp

) · · · (A2)

U (−π, φ2)U (π, φ1)U (π/2, 3π/2 + φi ),

where φi, φ f , and φ1, . . . , φNp denote the change of the angle
of the rotation axis at the time when the respective pulse
is applied. In the limit of vanishing motional excitation, we
assume the π/2 pulses to be described by rotations around the
±y axis and the π pulses by rotations around the ±x axis. The
excitation after the pulse sequence is

e = p↑ = |〈↑ |U |↓〉|2 = 1
2 (1 − cos �), (A3)

where the accumulated phase

� = φi + 2
Np∑

n=1

(−1)nφn + (−1)Np+1φ f (A4)

has been introduced.
For the case of temporally equidistant π pulses separated

by a wait time Twait acting on a harmonically trapped ion with
trapping frequency ω the accumulated phase takes a simple
form. The times at which the pulses occur are ti ∈ R, tn =
ti + nTwait for n = 1, . . . , Np and t f = ti + (Np + 1)Twait. The
classical ion trajectory of amplitude a,

z(t ) = a sin(ωt ), (A5)

then gives the phases for the pulses:

φi(ti ) = kzz(ti ) = kza sin(ωti ), (A6)

φn(ti ) = kza sin(ω(ti + nTwait )), for n = 1, . . . , Np, (A7)

φ f (ti) = kza sin(ω(ti + (Np + 1)Twait )), (A8)

where kz is the component of the wave vector along the ion
trajectory. For this case the accumulated phase � can be
written as

� = kza
[
sin(ωti )ANp (ωTwait ) + cos(ωti )BNp (ωTwait )

]
, (A9)

where the abbreviations

ANp (ωTwait ) = 1 + 2
Np∑

n=1

(−1)n cos(nωTwait )

+ (−1)Np+1 cos((Np + 1)ωTwait ), (A10)

BNp (ωTwait ) = 2
Np∑

n=1

(−1)n sin(nωTwait )

+ (−1)Np+1 sin((Np + 1)ωTwait ) (A11)
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are introduced. Using the accumulated phase � [Eq. (A9)] the
excitation can be directly evaluated with Eq. (A3). Here, the
phase of the initial pulse with respect to the ion oscillation has
to be known and the ion has to have a fixed energy.

In a realistic scenario, the excitation is the result of aver-
aging over multiple repetitions of the experiment. Since the
ion is in a thermal state neither the phase of the initial pulse
nor the energy is the same between repetitions. Therefore,
the expectation value over the thermal distribution has to be
calculated.

The thermal distribution is modeled by a Boltzmann distri-
bution which gives the excitation

e = 〈p↑(q, p)〉 =
∫

d�Z−1e−βH (q,p) p↑(q, p), (A12)

where d� = dqd p, β = 1/kBT , Z = ∫
d�e−βH (q,p) denotes

the partition sum, and

H (q, p) = 1

2
mω2q2 + p2

2m
. (A13)

In order to average over the thermal distribution, the outcome
of the experiment has to be expressed in terms of the initial
point (q, p) that is picked from phase space. Since the time
evolution for this initial point is simply the oscillation of
a harmonic oscillator, its trajectory is described by q(t ) =
a sin(ωt + δ) with some phase δ. The phases at which the π

pulses occur are described by Eqs. (A6)–(A8). The accumu-
lated phase after the π -pulse sequence can be expressed in
terms of the initial coordinates in phase space (q, p) by using

q = a sin(ωt + δ), (A14)

p = mωa cos(ωt + δ), (A15)

which yields

�(q, p) = kzANpq + kz
BNp

mω
p. (A16)

The excitation is then

e =
∫

d�Z−1e−βH (q,p) 1

2
[1 − cos(�(q, p))]. (A17)

The partition sum is

Z =
∫

d�e−βH (q,p) = 2π

β

1

ω
. (A18)

The second part of the integral consists of evaluating the
expectation value of the cosine:

〈cos(�(q, p))〉 = Z−1
∫

d�e−β( 1
2 mω2q2+ p2

2m )

× cos

(
kzANpq + kz

BNp

mω
p

)

= e− kBT

2mω2 k2
z (A2

Np+B2
Np )

. (A19)

Finally, we can write the excitation of an ion after a π -pulse
sequence as

e = 1
2 − 1

2 〈cos(�(q, p))〉 = 1
2

(
1 − e− kBT

2mω2 k2
z C2

Np
)
, (A20)

FIG. 13. Excitation after a CPMG-10 sequence. The example of
a numerical simulation for a Fock state |↓, n = 50〉 was calculated
for the trapping frequency ω = 2π , Rabi frequency �, 	 = 0, and
η = 0.01. The variation of the ratio �/ω shows the emergence of the
intermediate peaks for small Rabi frequencies, respectively, large π

times tπ = π/�. The wait time denotes the time difference between
the start of two consecutive π pulses.

where C2
Np

:= A2
Np

+ B2
Np

has been introduced. A simple but
lengthy calculation shows that

C2
Np

= 4

(
sin

(
(Np + 1) 1

2 (ωTwait + π )
)

tan
(

1
2 (ωTwait + π )

) )2

. (A21)

FIG. 14. Comparison of numerical simulation and experiment.
(a) The numerical simulation describes the full measured CPMG
signal (ion 1), while the semiclassical model captures only the main
peaks. (b), (c) Detailed scans of the first and second peak show
the different peak heights of the main and the intermediate peaks.
The parameters were the same as for Fig. 6 (Np = 20 pulses, ax-
ial trapping frequency ωz = 2π × 112 kHz, ion string temperature
T = 4.6 mK).
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The excitation reaches its maximum when ωTwait is an odd in-
teger multiple of π , ωTwait = 2(n + 1)π , with n ∈ Z. At these
points, C2

Np
takes the maximum value C2

Np,max = 4(Np + 1)2.
This gives the peak excitation:

emax = 1
2

(
1 − e− 2kBT k2

z (Np+1)2

mω2
)
. (A22)

2. Numerical solution of the quantum case

The simple semiclassical model can explain the main peaks
of the observed CPMG signal; however, it fails to explain in-
termediate peaks. To explain these intermediate peaks, too, the
Schrödinger equation is solved numerically. The simulation is
carried out using QUTIP [61] based on the following steps.

(1) The initial state is assigned to the qubit.
(2) The Schrödinger equation for the Hamiltonian (A23) is

solved for each part of the temporal evolution of the CPMG
sequence consecutively.

(3) The excitation probability p↑ is extracted from the final
state.

In order to keep the problem in a numerically accessible
regime, the light-matter interaction is modeled as a qubit mov-

ing in a one-dimensional harmonic potential and interacting
with a traveling-wave laser beam. The Hamiltonian in the
interaction picture is

HI = h̄ω
(
a†a + 1

2

) + 1
2 h̄�(eiη(a+a† )σ+e−i	t + H.c.), (A23)

where a is the annihilation operator, σ+ is the raising operator,
� is the Rabi frequency, 	 is the laser detuning from the atom
transition frequency, η is the Lamb-Dicke parameter, and t
is the time. The wavefront tilt angle α (measured against the
perpendicular beam incidence) is taken into account by the
Lamb-Dicke parameter, η = cos(π/2 − α)

√
h̄/(2mω).

To calculate the CPMG signal of a thermal state, the
problem is split up into two parts: First, the excitation en is
calculated for a set of Fock states |↓, n〉 and then averaged
over a thermal distribution with mean phonon number n̄.

The emergence of intermediate peaks, which are not pre-
dicted by the semiclassical model, is shown in Fig. 13. For
a Rabi frequency that is much higher than the trapping fre-
quency, the excitation shows peaks at Tax(n + 1

2 ). As soon as
the Rabi frequency becomes of the same order as the trapping
frequency, intermediate peaks start to appear. A comparison
between the experimental data and the numerical simulation
shows a good agreement (Fig. 14).
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