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It is recognized that Grover arrived at his original quantum search algorithm inspired by his comprehension
of the interference of classical waves originating from an array of antennas. It is also known that quantum-
mechanical characterization of electromagnetic radiation is isomorphic to the treatment of the orientation
of a spin-1/2 particle. In this paper, motivated by Grover’s original intuition and starting from this mathe-
matical equivalence, we present a quantitative link between the geometry of time-independent optimal-speed
Hamiltonian evolutions on the Bloch sphere and the geometry of intensity-preserving propagation of light
with maximal degree of coherence on the Poincaré sphere. Finally, identifying interference as the fundamental
physical ingredient underlying both physical phenomena, we propose that our work can provide in retrospect a
quantitative geometric background underlying Grover’s powerful intuition.
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I. INTRODUCTION

One of the main goals of quantum information sci-
ence (QIS), including quantum nanoengineering and quantum
optics, is the development of devices capable of reliably pro-
cessing quantum information [1–3]. When considering the
implementation of such quantum technologies, it becomes
especially relevant engineering a suitable Hamiltonian that
evolves an initial source state into a final target state. An
essential condition for these quantum information processing
devices is the capacity of having total control on the state
of a single qubit on timescales much shorter than the coher-
ence time. For such reasons, the conceptual understanding
of controlled quantum dynamics along with their limits is
becoming increasingly important in QIS. The cost functional
that quantifies the efficiency of getting to the target state from
a given initial state depends on the physical scenario being
considered. In the simplest case, one can focus on an uncon-
strained Hamiltonian time evolution, except for a bound on the
energy resource. Then, regarding time optimality as the cost
functional, the problem becomes finding the time-independent
Hamiltonian that generates maximum speed of evolution.
However, there can be a range of constraints that forbids
the implementation of such an elementary protocol in more
realistic scenarios. Indeed, in real laboratory settings needed
for the implementation of quantum technologies, one would
need to apply various optimization techniques available within
the more general framework of optimal quantum control the-
ory [4] to identify suitable time-dependent Hamiltonians that
generate the dynamics achieving required quantum tasks. The
transition to time-dependent Hamiltonians can be motivated
by several reasons, including the presence of time-varying
external magnetic fields [5] or, alternatively, the existence of

dissipation due to a coupling between the quantum system and
the environment [6]. From this wide range of physical scenar-
ios that one could take into consideration, we shall focus in
this paper on the simplest case, namely, that of time-optimal
quantum mechanical unitary evolution in the presence of a
bound on the energy resource.

It is known that the quantum-mechanical treatment of pho-
ton polarization is mathematically equivalent to the treatment
of the orientation of a spin-1/2 particle [7]. In particular,
focusing on the physics of two-level quantum systems and
classical polarization optics in two dimensions, the concepts
of Bloch vector and Bloch sphere [8] are the analogs of the
notions of Stokes vector and Poincaré sphere [9], respectively.

A remarkable link between quantum mechanics and
classical optics is represented by the interpretation of Pan-
charatnam’s optical phase that appears in the context of
interference of polarized light [10] as an early example
of Berry’s (nondynamical) geometric phase that emerges
in the context of cyclic and adiabatic quantum mechanical
evolutions [11]. For an in-depth discussion on the relation
between Pancharatnam’s phase and Berry’s phase, we refer to
Refs. [12,13]. The work in Ref. [12] is especially illuminating
since Berry, starting from the description of polarization in
terms of the Poincaré sphere, expresses Pancharatnam’s clas-
sical optics analysis in quantum mechanical language and,
moreover, clarifies the relation between the classical optical
phase and the quantum adiabatic phase. Interestingly, this
mutual interaction between quantum mechanics and classical
optics has been rather beneficial in science. For example,
borrowing ideas from Pancharatnam’s work on the classical
interference of polarized light, Samuel and Bhandari extended
the concept of Berry’s phase to nonunitary and noncyclic
quantum mechanical evolutions in Ref. [13]. Furthermore,
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just as Pancharatnam’s theory was tested in an experimental
fashion with the detection of the predicted phase shifts by
interference, the first experimental manifestation of Berry’s
phase was carried out in an optical experiment [14] where the
Berry phase measured corresponded to an angle of rotation
of a plane of polarization of light [15]. A second close simi-
larity between quantum mechanics and classical optics is the
correspondence between the degree of polarization of beams
of light and the parity of qubits as reported in Refs. [16,17].
The origin of this similarity can be explained as follows. In
the quantum mechanical Bloch sphere formalism, the origin
represents a maximally mixed state, whereas points on the
surface of the sphere are pure states. In the Poincaré sphere
formalism in classical optics, the origin represents a com-
pletely unpolarized light beam, whereas points on the surface
of the sphere are completely polarized beams.

In quantum mechanics, there are several ways in which one
can derive an expression of time-independent optimal-speed
Hamiltonians evolving an initial state |A〉 into a final state
|B〉. For instance, a simple derivation can rely on finding
Hamiltonians {H}. that evolve |A〉 into |B〉 in the least time
subject to the constraint that the difference between the largest
and the smallest eigenvalues of H is held fixed [18]. Another
straightforward derivation, instead, can put the emphasis on
choosing the Hamiltonian so that the uncertainty in energy is
maximized [19]. In any case, the trajectories connecting |A〉
and |B〉 generated by such optimal-speed unitary evolutions
{U } can be viewed as geodesic curves on the Bloch sphere
(or, alternatively, the two-sphere S2). For this reason, it is
especially interesting the geometric interpretation of these
unitary operators {U } with |A〉 U→ |B〉 in terms of rotations
of the Bloch sphere around the axis that is orthogonal to the
hemispherical plane containing the origin along with |A〉 and
|B〉. In particular, the Hamiltonian that generates the rotation
takes the form H = E+|E+〉〈E+| + E−|E−〉〈E−| for a pair of
real parameters E± with the axis of rotation corresponding
to a pair of orthogonal states |E±〉 [20,21]. More generally,
given that the dynamics induced by a optimal-speed unitary
evolution can be regarded as a rigid rotation of the two-sphere
S2, if there exists a unitary evolution transforming |A〉 into |B〉
with 〈A|B〉 = 0 along a geodesic path, then there must exist a
pair of energy eigenstates |E+〉 and |E−〉, say, at the equator of
S2, such that |A〉 and |B〉 lie at the poles of S2 [22]. Moreover,
in terms of an efficiency measure defined by means of the ratio
between the distance along the shortest geodesic path join-
ing |A〉 and |B〉 and the distance along the actual dynamical

trajectory traced by the state vector |ψ (t )〉 def= e− i
h̄ Ht |A〉, these

optimal-speed unitary quantum mechanical evolutions exhibit
unit quantum geometric efficiency [23,24].

In classical polarization optics, it is known that the degree
of polarization of a light wave propagating along the ẑ direc-
tion does not depend on the choice of the x̂ and ŷ directions.
Furthermore, such a degree of polarization is an upper bound
for the so-called degree of coherence between the electric
vibrations in the x̂ and ŷ directions [9]. Interestingly, it can
be demonstrated that there always exists a pair of orthogonal
directions for which the degree of coherence has its maximum
value, and this value is equal to the degree of polarization
of the light wave [25]. Therefore, considering the ratio be-

tween the degree of coherence and the degree of polarization
as some sort of classical optical efficiency, it happens that
there is always an optimal optical configuration in which the
propagation of polarized light occurs with maximal degree of
coherence.

In this paper, we wish to investigate an unexplored link
between optimal-speed quantum mechanical evolutions and
propagation of light with maximal degree of coherence. Our
investigation is inspired by the above mentioned existing links
between quantum mechanics and classical optics. Further-
more, we rely on our familiarity with both digital and analog
quantum search algorithms [24,26–30]. In addition, our pro-
posed investigation finds additional motivation by recalling
that Grover’s original intuition that helped him creating his
quantum search algorithm [31] was based upon a classical op-
tics phenomenon. Specifically, Grover arrived at his quantum
search algorithm by observing the interference of classical
waves originating from an array of antennas [32]. In this
way, by mimicking the interference of classical waves, Grover
arrived at his quantum search scheme.

Therefore, motivated by this intriguing similarity between
the existence of a convenient pair of orthogonal energy
eigenstates in the geometrical description of optimal-speed
quantum evolutions and the existence of a suitable pair of
orthogonal directions for the electric field in the geometric
description of propagation of polarized light with optimal co-
herence, we provide in this paper a quantitative link between
quantum mechanics and classical polarization optics. Specif-
ically, starting from the mathematical equivalence between
the quantum-mechanical characterization of electromagnetic
radiation and the treatment of the orientation of a spin-1/2
particle, we discuss in a quantitative manner the connec-
tion between the geometry of time-independent optimal-speed
Hamiltonian evolutions on the Bloch sphere and the geome-
try of intensity-preserving propagation of light with maximal
degree of coherence on the Poincaré sphere. Identifying in-
terference as the essential physical ingredient underlying both
phenomena being studied in our paper, we conclude by ar-
guing that our work can provide a quantitative geometric
background underlying Grover’s powerful intuition.

To summarize, we are aware of the following known links:
(1) connection between interference in classical wave theory
and interference in quantum mechanics and (2) equivalence
between the Bloch sphere and the Poincaré sphere. In this
paper, however, we provide a link between the geometry
of the unitary dynamics of time-independent optimal-speed
Hamiltonians on the Bloch sphere and the geometry of
intensity-preserving propagation of light with maximal degree
of coherence on the Poincaré sphere. Our finding establishes a
bridge between the physics of two-level quantum systems and
the physics of classical polarization optics via the discovery
of this previously unknown connection.

The layout of the remainder of this paper is as follows.
In Sec. II we discuss two alternative characterizations of
optimal-speed Hamiltonians. The first analysis focuses on
minimizing the evolution time subject to the energy eigen-
value constraint. The second one, instead, relies on the
maximization of the energy uncertainty that yields the spec-
tral decomposition of the optimal Hamiltonian. We conclude
Sec. II with a discussion on unit geometric efficiency on the
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Bloch sphere. In Sec. III, after providing some motivational
background, we characterize the propagation of light in terms
of the polarization ellipse, the Stokes parameters, and the
Poincaré sphere. Then we briefly present the concepts of
coherence of electric vibrations along with degree of coher-
ence, coherency matrix, and degree of polarization of a light
wave. In Sec. IV we discuss the propagation of polarized light
with maximal degree of coherence, that is, propagation of
light with unit optical efficiency on the Poincaré sphere. The
quantitiative link between the geometry of time-independent
optimal-speed Hamiltonian evolutions on the Bloch sphere
and the geometry of intensity-preserving propagation of light
with maximal degree of coherence on the Poincaré sphere is
carried out throughout Secs. II and IV. In Sec. V we discuss
the physical origin of our proposed link. Our concluding re-
marks appear in Sec. VI. A number of technical details and
remarks appear in Appendixes A, B, C, and D. Specifically, in
Appendix A we place some specific properties of the Mueller
matrices in optics. In Appendix B we employ the Poincaré
sphere formalism to describe the dependence of the modulus
of the complex degree of coherence of a partially polarized
light beam in terms of the ellipticity and orientation angles.
In Appendix C we report some mathematical details on the
parametrization of qubits and polarization states regarded as
points on the Bloch sphere and the Poincaré sphere, respec-
tively. Finally, we present in Appendix D a discussion on
the role played by interference effects in light propagation,
quantum searching, and optimal-speed quantum evolutions.

II. QUANTUM EVOLUTIONS WITH UNIT GEOMETRIC
EFFICIENCY

In this section, we discuss two alternative descriptions
of optimal-speed Hamiltonians. The first characterization fo-
cuses on minimizing the evolution time subject to the energy
eigenvalue constraint. The second one, instead, depends on the
maximization of the energy uncertainty that leads to the spec-
tral decomposition of the optimal Hamiltonian. We conclude
this section with a discussion on unit geometric efficiency on
the Bloch sphere.

When studying the geometric characterization of unit effi-
ciency [23] quantum mechanical unitary evolutions specified
by time-independent Hamiltonians {H} under which a nor-
malized initial state vector |A〉 evolves into a normalized final
state vector |B〉, one notices at least two alternative approaches
in the literature. In a first approach, researchers aim to find an
expression of the Hamiltonian by minimizing the evolution
time �t

def= TAB needed for evolving |A〉 into |B〉 subject to
the constraint that the difference between the largest (E+) and
smallest (E−) eigenvalues of the Hamiltonian is kept fixed
[18], E+ − E−

def= E0 = fixed. In a second approach, instead,
investigators seek for an expression of the Hamiltonian by
maximizing the uncertainty in energy �E of the system [19].
This approach is motivated by the fact that the (angular) speed
of the minimal-time evolution v of the quantum system is
proportional to �E , v

def= dsFS/dt ∝ �E , with sFS denoting
the Fubini-Study distance between the two points on the pro-
jective Hilbert space P (H) that corresponds to the selected
initial and final states |A〉 and |B〉, respectively. Despite the

fact that these two quantum approaches are essentially equiv-
alent since the constraint on the difference between the largest
and the smallest eigenvalues of the Hamiltonian is similar to
upper bounding the energy uncertainty �E since �Emax =
(E+ − E−)/2, they do put the emphasis on distinct features
that will help us better understanding the details of the optimal
evolution Hamiltonian. Ultimately, these complementary fea-
tures will help us describing the formal analogies between the
geometry of quantum evolutions with unit quantum geometric
efficiency and the geometry of classical polarization optics
for light waves with degree of polarization P that equals the
degree of coherence | jxy| between the electric vibrations in
any two mutually orthogonal directions of propagation of the
wave [25]. Unit quantum geometric efficiency means here that

ηQM
def= s0/s = 1, where s0 is the distance along the shortest

geodesic joining the initial and final points of the evolution
that are distinct on the projective Hilbert space while s is
the distance along the effective evolution of the system in
the projective Hilbert space as measured by the Fubini-Study
metric. Finally, unit classical optical efficiency means here

ηoptics
def= | jxy|/P= 1.

A. Minimizing the evolution time

The starting point of the first approach can be summarized
as follows. Given a time-independent Hamiltonian H with a

corresponding unitary time-evolution operator U (t )
def= e− i

h̄ Ht ,
one wishes to evolve a state |A〉 into a state |B〉 in the shortest
possible time subject to the constraint that the difference E+ −
E− between the largest (E+) and the smallest (E−) eigenvalues
of H is kept fixed. In summary, we wish to find the optimal
Hamiltonian acting in the two-dimensional subspace spanned
by |A〉 and |B〉 that yields the optimal time evolution subject

to the constraint E+ − E−
def= E0 = fixed.

We begin by considering the following unitary evolution
scheme:

|A〉 =
(

α1

α2

)
e− i

h̄ Ht

→

|B〉 =
(

β1

β2

)
, with H

def=
(

h11 h12e−iφ

h12eiφ h22

)
, (1)

and where h11, h12, h22, and φ are four real quantities.
We assume that |A〉 and |B〉 are normalized to one so that
|α1|2 + |α2|2 = 1 and |β1|2 + |β2|2 = 1. The spectral decom-
position of H in Eq. (1) can be recast as H = E+|E+〉〈E+| +
E−|E−〉〈E−| with the energy eigenvalue constraint given by

(E+ − E−)2 = (h11 − h22)2 + 4h2
12 = const

def= E2
0 . (2)

In view of our interest in studying the action of e− i
h̄ Ht onto

|A〉, it is convenient to observe that H in Eq. (1) can be

decomposed in terms of the Pauli matrices �σ def= (σx, σy, σz ) as

H = h11 + h22

2
I + E0

2
â · �σ . (3)

In Eq. (3), I denotes the identity matrix while â
def= �a/‖�a‖
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with ‖�a‖ = E0/2 is a unit vector defined as

â
def= 2

E0

(
h12 cos (φ), h12 sin (φ),

h11 − h22

2

)
. (4)

We emphasize at this stage that finding the optimal
evolution Hamiltonian reduces to finding the optimal set

of the four real parameters {h11, h12, h22, φ} in Eq. (1) or,
equivalently, the optimal â that appears in Eq. (3). Using
Eq. (3) along with algebraic manipulations that are typical
in quantum mechanics with Pauli matrices, the action
of e− i

h̄ Ht onto |A〉 leading to the state |B〉 in a time TAB

yields

(
β1

β2

)
= e− i

h̄
h11+h22

2 TAB

(
α1

[
cos

(E0
2h̄ TAB

) − i h11−h22
E0

sin
(E0

2h̄ TAB
)] + α2

[−ie−iφ 2h12
E0

sin
(E0

2h̄ TAB
)]

α1
[−ieiφ 2h12

E0
sin

(E0
2h̄ TAB

)] + α2
[
cos

(E0
2h̄ TAB

) + i h11−h22
E0

sin
(E0

2h̄ TAB
)] )

. (5)

At this point, we note that the components of the states |A〉 and
|B〉 depend on the choice of the basis of the two-dimensional
subspace spanned by these two vectors. Therefore, for
the sake of computational simplicity and without loss of
generality, we choose a basis so that |A〉 = (1, 0) and
|B〉 = (α, β ). With this choice, Eq. (5) reduces to(

α

β

)
= e− i

h̄
h11+h22

2 TAB

(
cos

(E0
2h̄ TAB

) − i h11−h22
E0

sin
(E0

2h̄ TAB
)

−ieiφ 2h12
E0

sin
(E0

2h̄ TAB
) )

.

(6)
Considering the modulus of β as expressed in Eq. (6), we
note that the expression of the evolution time TAB becomes

TAB = 2h̄

E0
sin−1

(
E0|β|
2h12

)
. (7)

We observe that the sin−1(x) function is a monotonic
increasing function of its argument x with sin−1(0) = 0.
Therefore, since E0 and |β| are held fixed, the minimum
value of TAB in Eq. (7) is reached when h12 assumes its
maximum possible value. The maximum possible value hmax

12
of h12 compatible with the eigenvalue constraint in Eq. (2) is
reached when h11 = h22 and equals hmax

12 = E0/2. Therefore,
the optimal evolution time T min

AB = TAB(hmax
12 ) is equal to

T min
AB = 2h̄

E0
sin−1 (|β|), (8)

or, equivalently, T min
AB = (2h̄/E0) cos−1(|α|) using the

normalization condition |α|2 + |β|2 = 1 along with properties
of the sin−1(x) function. So far, we have realized that the
optimal set of the four real parameters {h11, h12, h22, φ}
is specified by hmax

12 = E0/2 and h11 = h22. Therefore, it
remains to find the explicit expressions for the optimal h11

and φ. These expressions can be found as follows. Let us set

α
def= |α|eiϕα and β

def= |β|eiϕβ with ϕα and ϕβ in R. Inserting
Eq. (8) into Eq. (6), we obtain(|α|eiϕα

|β|eiϕβ

)
= e− i

h̄ h11T min
AB

(√
1 − |β|2

−ieiφ |β|
)

. (9)

With the help of some algebra, Eq. (9) yields

h11 = −ω0

2

ϕα

sin−1 (|β|) , and φ = ϕβ − ϕα + π

2
. (10)

In conclusion, recalling the hmax
12 = E0/2 and h11 = h22

together with Eq. (10), the optimal evolution Hamiltonian can

be recast as [33]

H = E0

2

(
ϕα

sin−1 (|β|) e−i(ϕβ−ϕα− π
2 )

ei(ϕβ−ϕα− π
2 ) ϕα

sin−1 (|β|)

)
. (11)

Interestingly, we note that the expectation value of the
Hamiltonian 〈A|H|A〉 is equal to (ϕαE0)/2 sin−1(|β|)
while the energy uncertainty of H in Eq. (11) is given

by �E
def= [〈A|H2|A〉 − 〈A|H|A〉2]1/2 = E0/2. Using the

energy eigenvalue constraint in Eq. (2), we also notice that
�E = (E+ − E−)/2. As a final remark, we point out that
since overall phases of state vectors have unobservable
effects in quantum mechanics, the Hamiltonians H and
H − (1/2)tr(H )I assume an identical maximal value �Emax

of energy uncertainty �E . Therefore, despite having different
expectation values, these Hamiltonians generate the same
physics of quantum evolutions. For this reason, for example,
one may set the phase ϕα in Eq. (11) equal to zero.

Starting from a traceless Hamiltonian with �Emax =
(E+ − E−)/2 will be the starting point in the second approach
to optimal quantum evolutions that we treat in our paper.
This second approach is based upon maximizing the energy
uncertainty rather than minimizing the time evolution and will
be discussed in the next subsection.

B. Maximizing the energy uncertainty

The starting point of the second approach can be summa-
rized as follows. Consider a time-independent and traceless
Hamiltonian H with a spectral decomposition given by H =
E−|E−〉〈E−| + E+|E+〉〈E+|, where E+ � E− and 〈E+|E−〉 =
δ+,−. One wishes to evolve a state (not necessarily normal-
ized) |A〉 into a state |B〉 in the shortest possible time by max-

imizing the energy uncertainty �E
def= [〈A|H2|A〉/〈A|A〉 −

(〈A|H |A〉/〈A|A〉)2]1/2 and obtain �E = �Emax.
For the sake of simplicity, we denote |E±〉 = |E2,1〉 and

E± = E2,1 in what follows. To find the value of �Emax, we
note that an arbitrary unnormalized initial state |A〉 can be
decomposed as |A〉 = α1|E1〉 + α2|E2〉 with α1, α2 ∈ C. Then,
after some algebra, we get

�E = E2 − E1

2

[
1 −

( |α1|2 − |α2|2
|α1|2 + |α2|2

)2
]1/2

. (12)

From Eq. (12), we note that the maximum value of �E is
obtained for |α1| = |α2| (with α1 and α2 given by 〈E1|A〉
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and 〈E2|A〉, respectively) and equals �Emax
def= (E2 − E1)/2

as mentioned in the previous subsection. The main under-
lying idea in this second approach is that of recasting H =
E1|E1〉〈E1| + E2|E2〉〈E2| in terms of the initial and final states
|A〉 and |B〉 while keeping

�E = �Emax
def= E2 − E1

2
. (13)

Observe that in terms of the eigenvectors of the Hamilto-
nian, |A〉 and |B〉 can be decomposed as |A〉 = α1|E1〉 +

α2|E2〉, and |B〉 = β1|E1〉 + β2|E2〉, respectively. To ensure
minimum travel time T min

AB (that is, �E = �Emax), we
need to set |α1| = |α2| and |β1| = |β2|. Therefore, let α2 =
eiϕαα1 and β2 = eiϕβ β1 with ϕα,β ∈ R. Then |A〉 and |B〉
become

|A〉 = α1|E1〉 + α2|E2〉 = α1|E1〉 + eiϕαα1|E2〉 (14)

and

|B〉 = β1|E1〉 + β2|E2〉 = β1|E1〉 + eiϕβ β1|E2〉, (15)

respectively. From Eqs. (14) and (15), we obtain |E1〉 + eiϕα |E2〉 = α−1
1 |A〉 def= √

2|A〉 and |E1〉 + eiϕβ |E2〉 = β−1
1 |B〉 def=√

2e−i
ϕα−ϕβ

2 |B〉. After some matrix algebra, we get( |E1〉
|E2〉

)
=

√
2

ei
ϕα+ϕβ

2 − eiϕα ei
ϕα−ϕβ

2

(
ei

ϕα+ϕβ

2 −eiϕα

−ei
ϕα−ϕβ

2 1

)(
α−1

1√
2
|A〉

β−1
1√
2

ei
ϕα−ϕβ

2 |B〉

)
. (16)

For the sake of completeness, we emphasize that

|〈A|B〉|2 = |〈A|B〉|2
〈A|A〉〈B|B〉 = cos2

(ϕα − ϕβ

2

)
= cos2

(
θ

2

)
,

(17)

with θ
def= ϕα − ϕβ = 2sFS = sgeo where sFS and sgeo denote

the Fubini-Study and the geodesic distances, respectively. Fi-

nally, using Eq. (16) along with noting that E2 = −E1
def= E

since the Hamiltonian is assumed to be traceless, we obtain
after some simple but tedious algebra that the spectral decom-
position H = E1|E1〉〈E1| + E2|E2〉〈E2| becomes [34]

H = iE

sin
( ϕα−ϕβ

2

) [|B〉〈A| − |A〉〈B|]. (18)

In terms of the original initial and final states |A〉 and |B〉, after
some additional simple but laborious algebra, the Hamiltonian
in Eq. (18) can be finally recast as

H = iE cot
(ϕα − ϕβ

2

)[ |B〉〈A|
〈A|B〉 − |A〉〈B|

〈B|A〉
]

, (19)

while the geodesic line |ψ (t )〉 = e− i
h̄ Ht |A〉 with H in Eq. (19)

connecting the two states |A〉 and |B〉 can be written as

|ψ (t )〉 =
[

cos
(E

h̄
t
)

− cos
( ϕα−ϕβ

2

)
sin

( ϕα−ϕβ

2

) sin
(E

h̄
t
)]

|A〉

+ ei
ϕα−ϕβ

2

sin
( ϕα−ϕβ

2

) sin
(E

h̄
t
)
|B〉, (20)

where 0 � t � T min
AB with T min

AB = h̄θ/(2E ). For the sake of
completeness, we note that for H in Eq. (19), we correctly get
〈A|H |A〉/〈A|A〉 = 0 and �E = [〈A|H2|A〉/〈A|A〉]1/2 = E =
�Emax. In conclusion, the Hamiltonians in Eqs. (11) and
(19) are optimal-speed Hamiltonians yielding unit quantum
geometric efficiency ηQM = 1. For clarity, we emphasize that
Hamiltonians in Eqs. (11) and (19) are both optimal speed
Hamiltonians. However, the Hamiltonian H in Eq. (11) is not

traceless and its applicability is formally limited to connecting
the initial state |A〉 = (1, 0) to an arbitrary final state |B〉.
The Hamiltonian H in Eq. (19), instead, is traceless and can
connect an arbitrary initial state |A〉 to an arbitrary final state
|B〉.

Having discussed in detail the two main constructions of
Hamiltonians yielding unit quantum geometric efficiency, in
the next section we focus on the geometric characterization
of the propagation of polarized light with maximal degree
of coherence. As we present this classical optics description,
we will emphasize analogies and determine exactly corre-
spondences with the above mentioned quantum mechanical
characterizations.

III. PROPAGATION OF POLARIZED LIGHT AND DEGREE
OF COHERENCE

In this section we describe the propagation of light by
means of the polarization ellipse, the Stokes parameters, and
the Poincaré sphere. Then we briefly define the notions of co-
herence of electric vibrations, degree of coherence, coherency
matrix, and degree of polarization of a light wave. We end
this section with a discussion on propagation of polarized
light with maximal degree of coherence, that is, unit classical
optical efficiency on the Poincaré sphere. However, before
beginning with our formal descriptions, we present some mo-
tivational background that helps explaining our underlying
motivations for presenting this material of polarization optics.

A. Motivational background

Two important quantities in optics when studying the
physics of polarized light are the degree of polarization P
of the wave and the degree of coherence | jxy| of the electric
vibrations. The quantity P is defined as [9]

P
def= Ipol

Itot
, (21)
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with Itot
def= Ipol + Iunpol denoting the total intensity of the wave

and Ipol being the intensity of the monochromatic (hence,
polarized) part of the wave. The quantity P with 0 � P � 1
expresses the “amount of polarization” present in the wave.
In particular, the wave is completely unpolarized when P = 0
and completely polarized when P = 1. When 0 < P < 1, the
light is partially polarized. The degree of coherence | jxy|,
instead, is defined as the modulus of the complex degree of
coherence jxy [9]

jxy
def= Jxy√

Jxx
√

Jyy
. (22)

In Eq. (22), Ji j
def= 〈Ei(t )E∗

j (t )〉 are the matrix coefficients
of the so-called coherency matrix J and the angle brackets
denote the time average operation. The quantity | jxy| with
0 � | jxy| � | jxy|max, instead, measures the degree of corre-
lation of the electric vibrations. When | jxy| = 0, the electric
vibrations are uncorrelated and they may be said to be in-
coherent. Furthermore, when | jxy| = | jxy|max, the vibrations
may be said to be coherent. Finally, when 0 < | jxy| < | jxy|max,
vibrations are known as partially coherent. The quantity P can
be fully expressed in terms of the determinant and the trace
of the coherency matrix J as shown in Ref. [9]. Therefore,
it is a quantity whose value does not change under arbitrary
rotations of the orthogonal Cartesian axes used to describe the
electric vibrations. However, unlike the degree of polarization
of the wave, the degree of coherence | jxy| between the electric
vibrations in any two mutually orthogonal directions of prop-
agation of the wave is generally affected by the specific choice
of the two orthogonal directions [9]. In particular, it is possible
to show that there always exist a pair of orthogonal directions
for which the degree of coherence | jxy| of the electric vibra-
tions reaches its maximum value | jxy|max and, in addition, this
value equals the degree of polarization P of the wave [25].
Interestingly, this particular pair of orthogonal directions has
a clear geometrical interpretation. Indeed, representing the
wave as an incoherent mixture of a wave of natural radiation
and a wave of monochromatic (hence, completely polarized)
radiation, it can be shown that these directions for which the
degree of coherence | jxy| equals the degree of polarization P
are the bisectors of the principal directions (that is, major and
minor axes) of the polarization ellipse of the polarized portion
of the wave [35].

The existence of a pair of directions (x̂′, ŷ′) rotated around
the ẑ axis (that is, the axis that specifies the direction of
propagation of the wave) by a specific angle ϕopt that affects
the electric vibrations in such a manner that the quantity

ηopt
def= | jxy|/P, that we name classical optical efficiency in

this paper, equals one is reminiscent of the existence of a
pair of orthogonal states (|E+〉, |E−〉) that defines the axis of
rotation of the Bloch sphere orthogonal to the hemispherical
plane containing the initial and final unit states |A〉 and |B〉 as
discussed in the previous section. In the quantum case, this
rotation around the n̂E+ axis by an angle 2 cos−1[|〈A|B〉|] is
essentially the unitary evolution operator emerging from the

optimal-speed Hamiltonian that yields efficiency ηQM
def= s0/s

equal to one. Furthermore, just as these directions (x̂′, ŷ′) for
which | jxy| = P are the bisectors of the principal directions

TABLE I. Schematic depiction of the most relevant quantities
that specify optimal-speed unitary quantum time evolutions on the
Bloch sphere together with the analog quantities that characterize
the propagation of light with maximal degree of coherence by means
of the polarization ellipse and the Poincaré sphere representations of
polarized light.

Bloch sphere Polarization ellipse Poincaré sphere

(|A〉, |A⊥〉) (ξ̂ , η̂) �Sinitial

(|E+〉suboptimal, |E−〉suboptimal ) (x̂, ŷ) �Ssuboptimal

(|E+〉optimal, |E−〉optimal ) (x̂′, ŷ′) �Soptimal

H = a0I + �a · �σ �E J = 1
2
�S · �σ

â = â(θ , ϕ) �E = �E (β, χ ) �S = �S(2β, 2χ )

e−i
‖�a‖TAB

h̄ â·�σ Rẑ(α) MROT(α)
s0, fixed �E , fixed P, fixed
s(0) → s(TAB) [ �E ]{x̂, ŷ} → [ �E ]{x̂′ , ŷ′} | jxy| → | jx′y′ |
ηQM

def= s0/s 〈ExE∗
x 〉 − 〈EyE∗

y 〉 ηoptics
def= | jxy|/P

(ξ̂ , η̂) corresponding to the major and minor axes, respec-
tively, of the polarization ellipse, in a similar fashion, the
pair of orthogonal states (|E+〉, |E−〉) for which s0 = s lie in
the equatorial plane when the pair of states (|A〉, |A⊥〉) are
assumed to lie at the poles. Finally, the angle ϕopt seems to be
replaced in the quantum case by the azimuthal angle ϕE+ that
serves to specify the location of |E+〉 on the Bloch sphere. We
shall devote the rest of this paper to make these formal analo-
gies as quantitative as possible. We shall begin by observing
that to better characterize the propagation of the effects of this
simple two-dimensional rotation of the canonical Cartesian
axes (x̂, ŷ) on the electric vibrations along with the coherency
matrix J and, ultimately, on the degree of coherence | jxy|,
we need to better understand how to visualize and perform
calculations when considering polarized light. For this reason,
we shall introduce the concepts of polarization ellipse along
with that of the Poincaré sphere.

To better motivate the definitions and concepts of polariza-
tion optics in what follows, we present in Table I a schematic
depiction of the most relevant quantities that specify optimal-
speed unitary quantum time evolutions on the Bloch sphere
together with the analog quantities that characterize the prop-
agation of light with maximal degree of coherence by means
of the polarization ellipse and the Poincaré e sphere repre-
sentations of polarized light. Clearly, these correspondences
will become more transparent as we go through the next
subsections and Sec. IV.

B. Polarization of a light wave

In the previous section, we have explained how the
Hamiltonian operator affects the path of evolution of a quan-
tum system (specifically, a spin-1/2 particle) in terms of
geometric evolutions on a Bloch sphere. In this section,
keeping the directions of rays of light constant during its
propagation, we focus on the state of polarization and the
intensity of the light as it passes through an optical sys-
tem. In this case, the three fundamental types of optical
elements are wave plates, rotators, and polarizers. These el-
ements give rise to phase shifting, rotations, and anisotropic
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attenuation, respectively. More specifically, we are interested
here in intensity-preserving linear optical transformations
which quantify the effect of rotators on polarized light in a ge-
ometric fashion. For such a quantification, we need to arrive at
the Poincaré sphere description of polarized light. The way we
plan to pursue this goal can be outlined as follows. First, we
begin with the polarization ellipse representation of polarized
light [9]. Second, we introduce the Stokes parameters from the
polarization ellipse [36]. Finally, we introduce the Poincaré
sphere by attaching a geometric interpretation to the Stokes
parameters [37]. We remark that the traditional language for
studying the two-component electric vector of the light is the
so-called Jones-matrix formalism based upon the use of 2 × 2
complex matrices [38]. Alternatively, regarding the Stokes
parameters as the components of a column matrix or four-
vector and optical devices as represented by 4 × 4 matrices
[39], the so-called Mueller matrix method can be employed to
quantify the effect of optical devices on polarized light. For
further details on the Mueller matrices in optics, we refer to
Appendix A.

Polarization ellipse. Assume that the electric vector field
�E of the light propagating along the ẑ axis is given by
�E = Ex(t )x̂ + Ey(t )ŷ with Ex(t ) and Ey(t ) defined as Ex(t )

def=
E0x(t ) cos[ωt + δx(t )] and Ey(t )

def= E0y(t ) cos[ωt + δy(t )], re-
spectively. The quantities ω, δx(t ), and δy(t ) specify the plane
wave and denote the instantaneous angular frequency and the
two instantaneous phases, respectively. After some algebraic
manipulations of the two relations involving Ex(t ) and Ey(t ),
one arrives at an equation of an ellipse in a nonstandard form
given by

E2
x (t )

E2
0x(t )

+ E2
y (t )

E2
0y(t )

− 2Ex(t )Ey(t )

E0x(t )E0y(t )
cos [δ(t )] = sin2 [δ(t )],

(23)

with δ
def= δx − δy [36]. The ellipse defined by Eq. (23) is not in

its standard from since Ex(t ) and Ey(t ) are not directed along
the x̂ and ŷ axes. Instead, they are directed along the ξ̂ and
η̂ directions obtained from the canonical Cartesian axes via a
rotation around the ẑ axis by an angle χ . This angle is known
as the orientation angle with 0 � χ < π , and, clearly, it de-
scribes how tilted is the ellipse with respect to the canonical
Cartesian axes. For the sake of completeness and later use,
we also introduce at this point the so-called ellipticity angle

β with −π/4 < β � π/4 defined as tan β
def= b/a with a and

b being the major and minor axes of the polarization ellipse,
respectively. This angle specifies the shape of the ellipse. In
what follows, we introduce the Stokes parameters from the
polarization ellipse.

The Stokes parameters from the polarization ellipse. Fo-
cusing on monochromatic radiation with E0x, E0y, δx, and δy

constant in time, Eq. (23) reduces to

E2
x (t )

E2
0x

+ E2
y (t )

E2
0y

− 2Ex(t )Ey(t )

E0xE0y
cos δ = sin2 δ. (24)

To represent Eq. (24) in terms of observables of the elec-
tromagnetic radiation, one needs to consider a time average
over an infinite time interval. However, given the periodic
behavior of Ex(t ) and Ey(t ), averaging over a single period of

vibration T will suffice. Specifically, define the time average
of Ei(t )Ej (t ) as

〈Ei(t )Ej (t )〉 def= 1

T

∫ T

0
Ei(t )Ej (t )dt . (25)

Using Eq. (25), it can be shown following Ref. [36] that the
time-averaged version of Eq. (24) can be recast as

S2
0 = S2

1 + S2
2 + S2

3 , (26)

with S0
def= E2

0x + E2
0y, S1

def= E2
0x − E2

0y, S2
def= 2E0xE0y cos δ,

and S3
def= 2E0xE0y sin δ. The four parameters {Si} with 0 �

i � 3 are the observables of the polarization ellipse with S0

being the total intensity of the radiation, while {S1, S2, S3}
specify the state of polarization of the light beam. These
are the so-called four Stokes polarization parameters [40].
Equation (26) holds for completely polarized light, and S0 is
redundant in this case. Instead, for partially polarized light,
S2

0 � S2
1 + S2

2 + S2
3 and S0 is no longer redundant. The ex-

cess S2
0 − (S2

1 + S2
2 + S2

3 ) indicates the amount of unpolarized
light present in the beam. More specifically, for completely

polarized light beams, S0
def= Itot = Ipol. Instead, for partially

polarized light, S0
def= Itot > Ipol. We refer to Appendix B for

details on the behavior of | jxy| for partially polarized waves
using the Poincaré sphere formalism.

In what follows, we introduce the Poincaré sphere by at-
taching a geometric interpretation to the Stokes parameters.

The Poincaré sphere from the Stokes parameters. It can
be verified by a straightforward but tedious computation as
mentioned in Refs. [37,41] that for a fixed value of S0, we

have for completely polarized light S1
def= S0 cos(2β ) cos(2χ ),

S2
def= S0 cos(2β ) sin(2χ ), and S3

def= S0 sin(2β ) with β and χ

being the ellipticity and orientation angles, respectively, as
previously defined. Setting S0 = 1, the quantities {S1, S2, S3}
have the following geometric interpretation. Consider the vec-

tor �s def= (S1, S2, S3) with length ‖�s‖ = S0 = 1. The vector �s is
located on a sphere of unit length with its location determined
by the azimuth angle 2χ and the latitude angle 2β. Thus, a
beam of elliptically polarized light can be specified by the
vector �s an mapped on the sphere as originally pointed out
by Poincaré in Ref. [42]. For a graphical depiction of the
Bloch and Poincaré spheres, we refer to Fig. 1. For more
details on the parametrization of qubits and polarization states
viewed as points on the Bloch sphere and the Poincaré sphere,
respectively, we refer to Appendix C.

C. Coherence of the electric vibrations

Having discussed the basics of polarized light, in this sub-
section we present the essentials concerning the notion of
coherence of the electric vibrations.

Given the electric vector of the incident light wave in its
complex form, the so-called coherency matrix J is defined as
[25]

J =
(

Jxx Jxy

Jyx Jyy

)
def=

( 〈ExE∗
x 〉 〈

ExE∗
y

〉
〈EyE∗

x 〉 〈
EyE∗

y

〉 )
, (27)

where the angle brackets denote time average. The co-
herency matrix J is an Hermitian matrix with J∗

xy = Jyx and
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FIG. 1. (a) The Bloch sphere for pure quantum states of a single qubit. A point P = P(θ , ϕ) on the surface of the Bloch sphere is defined

by the Bloch vector �r def= (rx , ry, rz ) = (r sin θ cos ϕ, r sin θ sin ϕ, r cos θ ) with ‖�r‖ = 1. Mixed states are specified by ‖�r‖ � 1, with the origin
representing a maximally mixed state. The angles θ and ϕ are the polar and the azimuthal angles, respectively. (b) The Poincaré sphere of
unit radius for the polarized state of a beam of light. A point P = P(β, χ ) on the surface of the Poincaré sphere is defined by the vector

�s def= (S1, S2, S3) = (S0 cos 2β cos 2χ , S0 cos 2β sin 2χ , S0 sin 2β ) where �S def= (S0, S1, S2, S3) with S2
1 + S2

2 + S2
3 = S2

0 ≡ 1 is the Stokes vector
specified by the four Stokes parameters {S0, S1, S2, S3}. The parameter S0 denotes the total intensity of the beam, while the remaining three
parameters S1, S2, and S3 specify the polarization state of the beam. A partially polarized beam of light is specified by S0 � 1, with the origin
being a completely unpolarized beam. Finally, β and χ are the ellipticity and the orientation angles, respectively.

characterizes the incident wave. In particular, tr(J ) repre-
sents the intensity of the incident wave and its off-diagonal
coefficients describe the correlation between the x and y
components of �E . We observe that employing the Schwarz
inequality for integrals, it follows that |Jxy| �

√
Jxx

√
Jyy

and |Jyx| �
√

Jyy
√

Jxx. Therefore, det(J )
def= JxxJyy − JxyJyx �

0. The Stokes parameters can be expressed in terms of the

coherency matrix coefficients by the relations S0
def= Jxx + Jyy,

S1
def= Jxx − Jyy, S2

def= Jxy + Jyx, and S3
def= i(Jyx − Jxy). Invert-

ing these equations, one gets Jxx = (S0 + S1)/2, Jyy = (S0 −
S1)/2, Jxy = (S2 + iS3)/2, and Jyx = (S2 − iS3)/2. Therefore,
the relation between the Stokes parameters {S0, S1, S2, S3} and
the coherency matrix J can be recast in the following compact
form [7,25]:

J = 1

2

3∑
i=0

Siσi, (28)

where in Eq. (28) σ0 = I2×2, σ1 = σz, σ2 = σx, σ3 = −σy with
{σx, σy, σz} being the usual Pauli spin matrices in quantum
mechanics. To quantify the electric vibrations in the x̂ and
ŷ directions, we introduce the so-called complex degree of
coherence

jxy = | jxy|eiβxy def= Jxy√
Jxx

√
Jyy

. (29)

In Eq. (29), | jxy| is the modulus of the complex degree of
coherence(we shall call it, degree of coherence) and measures
the degree of correlation of the vibrations. The phase βxy ∈ R,
instead, specifies the effective phase difference between the
vibrations. As a side remark, we note that det(J ) � 0 implies
| jxy| � 1. We notice that J in Eq. (27) will change if the x̂
and ŷ axes are rotated about the direction of propagation of

the wave. Therefore, since | jxy| is not expressed in terms of
rotation-invariant terms, it depends on the choice of the x̂ and ŷ
axes. Unlike | jxy|, the degree of polarization P in Eq. (21) of a
wave can be expressed in terms of rotation-invariant quantities
built from the coherency matrix as we shall see in the next
subsection.

D. Degree of polarization and coherency matrix

To express the degree of polarization of a wave in terms
of the coherency matrix, we proceed as follows. Recall that a
general coherency matrix Jgeneral can be formally recast as

Jgeneral =
(

Jxx Jxy

Jyx Jyy

)
def=

(
α1 γ1 − iδ1

γ1 + iδ1 β1

)
, (30)

with α1, β1, γ1, δ1 ∈ R. Moreover, recall that any wave can
be represented as a superposition of a wave of natural ra-

diation with coherency matrix Jnatural
def= [D2, 0; 0, D2] and a

completely elliptically polarized (monochromatic) wave with

coherency matrix Jpol
def= [A2, − iAB; iAB, B2] with A, B, D ∈

R. Then, it can be shown that all light is a case or limiting case
of partially elliptically polarized light with coherency matrix

given by Jtot
def= Jnatural + Jpol,

Jtot =
(

A2 + D2 −iAB
iAB B2 + D2

)
. (31)

To prove this statement, it is sufficient to show there ex-
ists a transformation that allows us to set Eq. (31) equal to
Eq. (30). Indeed, it turns out that Jtot = T (χ )JgeneralT −1(χ )

where T (χ )
def= [cos χ , sin χ ; sin χ , − cos χ ] is a real uni-

tary transformation with χ being the angle (that is, the
orientation angle for the polarization ellipse that corresponds
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TABLE II. Schematic summary of the main constraint equations yielding unit efficiency geodesic paths on the Bloch sphere and optical
paths leading to polarization states with maximal degree of coherence on the Poincaré sphere.

Type of sphere Constraint description Constraint equation

Bloch Bounded energy of the system (E+ − E−)2 = (h11 − h22)2 + 4h12h21 = fixed
Bloch Maximal energy dispersion �E = �Emax, and �t = �tmin

Poincaré Bounded intensity of light I2
pol = (Jxx − Jyy )2 + 4JxyJyx = fixed

Poincaré Maximal correlations between Ex and Ey S2
2 = (

S2
2

)
max

, and S2
1 = 0

to the light beam) defined by the condition [43]

tan (2χ ) = 2γ1

α1 − β1
= Jxy + Jyx

Jxx − Jyy
. (32)

For further details on how to express A, B, and D in terms of

α1, β1, γ1, δ1, we refer to Ref. [43]. Now, setting Jxx
def= A2 +

D2, Jxy
def= −iAB, Jyx

def= iAB, and Jyy
def= B2 + D2, we finally

have

P
def= Ipol

Itot
= tr(Jpol )

tr(Jtot )
=

[
1 − 4 det (Jtot )

[tr(Jtot )]2

]1/2

. (33)

From Eq. (33), we note that P does not depend on the choice
of the x̂ and ŷ directions. Furthermore, from Eq. (33) and the
definition of | jxy|, we obtain after some algebra that | jxy| �
P [25]. The equality | jxy| = P holds iff Jxx = Jyy. It can be
shown that a pair of orthogonal directions x̂′ and ŷ′ always
exist for which this is the case.

The fact that | jxy| depends on the choice of the x̂ and ŷ
directions while P does not, along with the definition of the
angle χ in Eq. (32), will play a major role in our discussion of
unit optical efficiency in the next section.

IV. PROPAGATION OF LIGHT WITH UNIT OPTICAL
EFFICIENCY

In this section, we finally describe the propagation of po-
larized light with maximal degree of coherence.

Let us define a measure of optical efficiency as the ratio
between the degree of polarization of the wave and the degree

of coherence of the electric vibrations, ηopt
def= | jxy|/P. This

quantity achieves its maximum value 1 when | jxy| = P, that
is to say, when Jxx = Jyy. For a fixed value of P or, analo-

gously, for a fixed value of Ipol
def= tr(Jpol ) = [(Jxx + Jyy)2 +

4 det(Jpol )]1/2 = const [25], we wish to find a new pair of
orthogonal directions {x̂′, ŷ′} such that Jx′x′ = Jy′y′ and, con-
sequently, ηopt = 1. First, using the definition of det(Jtot ), we

note that the constraint on Ipol can be recast as

I2
pol = (Jxx − Jyy)2 + 4JxyJyx = const. (34)

Therefore, from Eq. (34) we have that the optimal coherency
matrix J ′ is specified by Jx′x′ = Jy′y′ and |Jx′y′ | = Ipol/2. Ob-
serve that Eq. (34) is the analog of Eq. (2). Furthermore, the
quantum conditions h11 = h22 and hmax

12 = E0/2 correspond to
the optical conditions Jx′x′ = Jy′y′ and |Jx′y′ | = Ipol/2, respec-
tively.

Alternatively, in terms of the Stokes vector components,
unit optical efficiency demands

S2
1 → (

S2
1

)
min = 0, with S2

2 → (
S2

2

)
max. (35)

Note that the minimization of S2
1 and the maximization of

S2
2 correspond to the minimization of the evolution time and

the maximization of the energy uncertainty, respectively. In
Table II we present a schematic of the main constraint equa-
tions yielding unit efficiency geodesic paths on the Bloch
sphere [Eqs. (2) and (13)] and optical paths leading to po-
larization states with maximal degree of coherence on the
Poincaré sphere [Eqs. (34) and (35)].

To find the pair of orthogonal directions {x̂′, ŷ′}, we
assume they are obtained from the canonical Cartesian di-

rections {x̂, ŷ} via a rotation Rẑ(ϕopt )
def= [cos ϕopt, sin ϕopt; −

sin ϕopt, cos ϕopt] around the ẑ axis by an angle ϕopt to be
determined. Specifically, the components of the electric field
�E with respect to the basis {x̂′, ŷ′} satisfy

[ �E ]{x̂, ŷ} → [ �E ]{x̂′, ŷ′}
def= Rẑ(ϕopt ) · [ �E ]{x̂, ŷ}. (36)

The transformation laws for the coherency matrix and the
Stokes vector emerging from Eq. (36) are given by [44]

J → J ′ def= Rẑ(ϕopt ) · J · Rẑ(−ϕopt ) (37)

and [45]

S → S′ def= MROT(ϕopt )S = U · [R∗
ẑ (ϕopt ) ⊗ Rẑ(ϕopt )] · U†,

(38)
respectively, where U is a (4 × 4)-unitary matrix and
MROT(ϕopt ) is a (4 × 4) Mueller matrix given by

U def= 1√
2

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0

⎞
⎟⎠ and MROT(ϕopt )

def=

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos (2ϕopt ) sin (2ϕopt ) 0

0 − sin (2ϕopt ) cos (2ϕopt ) 0

0 0 0 1

⎞
⎟⎟⎟⎠, (39)
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TABLE III. Schematic description of quantities of interest on the Bloch and the Poincaré spheres. In particular, we compare the description
of points P(θ , ϕ) and P(β, χ ) on the two surfaces in terms of their spherical coordinates. Moreover, we describe the rotation operations
yielding unit efficiency on the two spheres in terms of their axes of rotation (that is, Ê+ and ẑ, respectively) and their angles of rotation (that is,
cos−1[|〈A|B〉|] and ϕopt, respectively). Finally, we identify the two angles ϕE+ and ϕopt to be compared within the two geometric frameworks
of unit efficiency quantum evolutions and polarization optics.

Quantity of interest Bloch sphere Poincaré sphere

Angles (θ , ϕ) (β, χ )
Range of angles 0 � θ � π , 0 � ϕ < 2π −π/4 < β � π/4, 0 � χ < π

Point on the sphere P(θ , ϕ)
def= (sin θ cos ϕ, sin θ sin ϕ, cos θ ) P(β, χ )

def= (cos 2β cos 2χ , cos 2β sin 2χ , sin 2β )
Axis of rotation Ê+ = Ê+(θE+ , ϕE+ ) ẑ, fixed
Angle of rotation cos−1[|〈A|B〉|], fixed ϕopt

Angles to be compared ϕE+ = ϕE+ (|A〉, |B〉) ϕopt = ϕopt (P), with P = P(β, χ )

respectively. Imposing that Jx′x′ = Jy′y′ , from Eq. (37) we get
that ϕopt is such that

tan (2ϕopt ) = Jyy − Jxx

Jxy + Jyx
. (40)

Since Jxx, Jyy, and Jxy + Jyx = 2 Re(Jxy) ∈ R, Eq. (40) has a
real root. In conclusion, there always exists a pair of orthog-

onal directions {x̂′, ŷ′} with x̂′ def= x̂ cos ϕopt + ŷ sin ϕopt and

ŷ′ def= −x̂ sin ϕopt + ŷ cos ϕopt for which the two intensities Jxx

and Jyy are equal. For this pair of directions, the degree
of coherence | jxy| reaches its maximum value | jxy|max with
| jxy|max = P. This particular pair of directions {x̂′, ŷ′} has a
neat geometric interpretation. Indeed, using Eqs. (32) and
(40), it follows that

tan (2ϕopt ) tan (2χ ) = −1, (41)

that is, ϕopt − χ = π/4 or 3π/4. Therefore, the direc-

tions {x̂′, ŷ′} for which ηopt
def= | jxy|/P = 1 are the bisec-

tors of the principal directions {ξ̂ , η̂} with ξ̂
def= x̂ cos χ +

ŷ sin χ and η̂
def= −x̂ sin χ + ŷ cos χ of the polarization el-

lipse of the polarized portion of the wave [25]. Therefore,
given that x̂′ = ξ̂ cos(ϕopt − χ ) + η̂ sin(ϕopt − χ ) and ŷ′ =
−ξ̂ sin(ϕopt − χ ) + η̂ cos(ϕopt − χ ) with ϕopt − χ = π/4 or
3π/4, we have∣∣x̂′ξ̂

∣∣ = |x̂′η̂| = ∣∣ŷ′ξ̂
∣∣ = |ŷ′η̂| = 1/2, (42)

since x̂′ = (ξ̂ + η̂)/
√

2 and ŷ′ = (η̂ − ξ̂ )/
√

2. Observe that
the optical conditions in Eq. (42) correspond to the quantum
conditions

|〈E+|A〉| = |〈E−|A〉| = |〈E+|A⊥〉| = |〈E−|A⊥〉| = 1/2, (43)

obtained when maximizing the energy uncertainty in Eq. (12).
In Table III we provide a schematic description of quantities of
interest on the Bloch and the Poincaré spheres. In particular,
we characterize the points P(θ , ϕ) and P(β, χ ) on the two
surfaces in terms of their spherical coordinates. Moreover,
we specify the rotation operations yielding unit efficiency on
the two spheres by means of their axes of rotation (that is,
Ê+ and ẑ, respectively) and their angles of rotation (that is,
cos−1[|〈A|B〉|] and ϕopt, respectively). Finally, we determine
the two angles ϕE+ and ϕopt to be compared within the two
geometric frameworks of unit efficiency quantum evolutions
and unit efficiency polarized light propagation.

In the next section, we discuss the physical root that is
underlying our proposed formal analogy.

V. PHYSICAL ORIGIN BEHIND THE FORMAL ANALOGY

The formal analogy between quantum evolutions with unit
geometric efficiency and propagation of light with unit optical
efficiency, discussed in this paper and summarized in Tables I
and II, is yet another example of the close relationship that
exists between certain classes of quantum mechanical and
classical optical phenomena. Is this analogy completely un-
expected? What is the physical reason that underlines such a
formal similarity? This analogy is not completely unexpected.
After all, as mentioned in the Introduction, Grover exploited
his knowledge on the interference of classical light waves in
order to construct his quantum search algorithm. Furthermore,
the set of unit-speed quantum mechanical evolutions includes
as a special case the Farhi-Gutmann search Hamiltonian [46],
an analog version of Grover’s digital quantum search scheme.
Both Grover’s and the Farhi-Gutmann search schemes rely
heavily on the interference phenomenon for achieving their
quadratic speedup. The phenomenon of interference, either
constructive or destructive, plays a key role in both light
propagation [43,47] and quantum searching [48,49]. For addi-
tional details on the role played by interference effects in light
propagation, quantum searching, and optimal-speed quantum
evolutions, we refer to Appendix D.

In what follows, we briefly discuss the role played by
interference as the physical root underlying the formal anal-
ogy between propagation of light with maximal degree of
coherence and optimal-speed unitary quantum propagation
proposed in this paper.

A. Interference of classical light waves

In the framework of coherent light propagation [43], two
rays of light originating from the same source can interfere.
Specifically, the two rays can be combined in such a manner
to give rise to a light more intense than is ordinarily created
by two light beams of their respective intensities (constructive
interference). Alternatively, the superimposition of the two
rays of light can yield a darkness (destructive interference).
Therefore, coherent light propagation is characterized by in-
terference effects where, in addition, the degree of coherence
is equal to the degree of indistinguishability of the particle
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trajectories that yield the interference pattern [47]. When
the photon pattern becomes identifiable, the interference ef-
fects disappear, and the light propagation becomes incoherent.
In the study of coherence properties of partially polarized
electromagnetic radiation [25], there is a proper angle that
specifies a pair of directions for which the degree of coher-
ence of the electric vibrations has its maximum value (which,
in turn, equals the degree of polarization of the wave). As
discussed in this paper, this angle ϕopt is determined by a
specific value of the orientation angle χ that characterizes the
polarization ellipse used to describe the light propagation [see
Eq. (41)].

From a more quantitative standpoint, consider a quasi-
monochromatic light wave that propagates in the ẑ direction
specified by an electric field �E (t ) = Ex(t )x̂ + Ey(t )ŷ. Assume
that the component Eθ = �E · θ̂ of the electric field in the θ̂ di-

rection is given by Eθ (t ; θ , ε)
def= Ex(t ) cos(θ ) + Eyeiε sin(θ ),

with ε denoting the phase delay between Ex and Ey. The inter-
ference law of light waves can be expressed by calculating
the intensity I (θ , ε) of the light vibrations in the direction
which makes an angle θ with the positive x̂ direction. A
straightforward calculation yields [25]

I (θ , ε) = Ix + Iy + 2
√

Ix

√
Iy| jxy| cos (βxy − ε). (44)

In Eq. (44), I (θ , ε)
def= 〈Eθ (t ; θ , ε)E∗

θ (t ; θ , ε)〉 where an-

gle brackets denote time average, Ix
def= Jxx cos2(θ ), Iy

def=
Jyy sin2(θ ), Ji j are the coefficients of the coherency matrix,

and jxy
def= | jxy|eiβxy is the complex degree of coherence of the

electric vibrations in the x̂ and ŷ directions. Recall that | jxy|
in Eq. (44) is an indicator of the degree of correlation of the
vibrations, while βxy in Eq. (44) is an effective phase differ-
ence between the electric vibrations in the x̂ and ŷ directions.
In modern terminology, we emphasize that Ji j are known as
the coefficients of the polarization matrix [50]. Moreover,
in the context of the classical theory of optical fluctuations
and coherence, the analog of | jxy| is the so-called degree of
first-order coherence [51]. Regardless of notation and modern
terminology, what is most important for us here is the contri-
bution of jxy with the interference term | jxy| cos(βxy − ε) into
the expression of the total intensity I (θ , ε) in Eq. (44).

Interestingly, when studying the superposition of two co-
herent beams of light in different states of elliptic polarization,
Pancharatnam showed in Ref. [10] that if A and B represent the
states of polarization on the Poincaré sphere of the given in-
terfering beams, and C that of the resultant beam, the intensity
of the resultant beam can be recast as

IC = IA + IB + 2
√

IA
√

IB cos

(
θPoincaré

AB

2

)
cos (δ). (45)

In Eq. (45), θPoincaré
AB is the angular separation of states A and

B on the Poincaré sphere, while δ is not quite the absolute
difference of phase between the two beams and is defined
as the phase advance of the first beam being in a state of
polarization A over the A component of the second beam being
in a state of polarization B. If we set ε = εy in Eq. (44) and
consider a nonvanishing phase εx, δ can be formally identified
with εx − (εy − βxy). For more details, we refer to Ref. [10].

B. Interference of quantum probability amplitudes

In the framework of quantum searching viewed in the
context of quantum computing as multiparticle interference
[48,49], the role of interference is fundamental since it per-
mits the evolution from a source state to a target state by
manipulating the intermediate multiparticle superpositions
in a convenient way. Specifically, quantum searching can
be regarded as inducing a proper relative phase between
two eigenvectors to generate constructive interference on the
searched elements and destructive interference on the remain-
ing ones. As pointed out in this paper, this phase is quantified
by a specific value of the azimuthal angle ϕE+ that speci-
fies the location on the Bloch sphere of the eigenstates |E±〉
used to geometrically construct the optimal evolution (search)
Hamiltonian H .

Therefore, interference appears to be the essential physical
phenomenon that underlies both propagation of light with
maximal degree of coherence and continuous-time quantum
search evolution with minimum search time (i.e., optimal
speed). Interference is optimally exploited in the two above
mentioned tasks so that unit optical and quantum efficiencies
can be achieved by identifying suitable angles. These are the
orientation and azimuthal angles in the optical and quantum
search cases, respectively. The orientation angle ϕopt specifies
the optimal unitary operation [Mueller rotation, MROT(ϕopt )]
that connects the two initial and final polarization states on the
Poincaré sphere. The azimuthal angle ϕE+ , instead, character-
izes the optimal unitary operation [Bloch rotation, RÊ+ (θAB)

with θAB
def= cos−1[|〈A|B〉|] and Ê+

def= Ê+(θE+ , ϕE+ )] that con-
nects the source and the target states |A〉 and |B〉 on the Bloch
sphere.

As mentioned earlier, the essential prerequisite for achiev-
ing speedups in quantum searching is interference of quantum
probability amplitudes [52,53]. This occurs in both Grover’s
original quantum search algorithm [31] and in the Farhi-
Gutmann continuous version of Grover’s algorithm [46].
Indeed, as pointed out by Lloyd in Ref. [32], Grover arrived
at the formulation of his quantum search algorithm inspired
by the interference of classical waves emitted by an array of
antennas.

From an explicit viewpoint, consider a quantum state
|ψ〉 written as the superposition of two normalized quan-
tum states |A〉 and |B〉 with complex probability amplitudes

a
def= |a|eiϕa and b

def= |b|eiϕb , respectively, with ϕa and ϕb

in R. Furthermore, let us assume that 〈A|B〉 = 〈B|A〉∗ def=
|〈A|B〉|eiϕAB with ϕAB ∈ R. Then, the interference law of
probability amplitudes a and b can be expressed in terms
of their corresponding probabilities calculated by taking
a modulus squared of the probability amplitudes. Af-
ter some simple algebra in which we consider the inner
product of |ψ〉 with itself, the quantum interference law
becomes

pa+b = pa + pb + 2
√

pa
√

pb|〈A|B〉| cos [ϕAB − (ϕa − ϕb)],
(46)

where pa+b
def= 〈ψ |ψ〉, pa

def= |a|2, and pb
def= |b|2. In Eq. (46),

|〈A|B〉| can be viewed as cos(θBloch
AB /2) with θBloch

AB being the
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geodesic distance on the Bloch sphere between the states
|A〉 and |B〉, while ϕa − ϕb is the absolute phase differ-
ence between the interfering probability amplitudes a and

b. Interestingly, we remark the contribution of 〈A|B〉 def=
|〈A|B〉|eiϕAB with the interference term |〈A|B〉| cos[ϕAB −

(ϕa − ϕb)] into the expression of the total probability pa+b in
Eq. (46).

Considering Eqs. (44), (45), and (46 ), we note that

〈A|B〉 def= |〈A|B〉|eiϕAB corresponds to jxy
def= | jxy|eiβxy . In partic-

ular, we get

|Jxy|√
Jxx

√
Jyy

def= | jxy| ↔ cos

(
θPoincaré

AB

2

)
↔ cos

(
θBloch

AB

2

)
def= |〈A|B〉|√〈A|A〉√〈B|B〉 . (47)

Equation (47) is especially relevant since the degree of corre-
lation of the electric vibrations (| jxy|) viewed in terms of the
angular separation on the Poincaré sphere (θPoincaré

AB ) can be re-
garded as corresponding to the geodesic distance on the Bloch
sphere (θBloch

AB ). In the analysis carried out in our paper, both
cos(θBloch

AB /2) and | jxy| played a major role in the proposed

definitions of quantum geometric efficiency ηQM
def= s0/s and

classical optical efficiency ηopt
def= | jxy|/P.

In summary, we have discussed the link between prop-
agation of light with maximal degree of coherence and
optimal-speed quantum propagation by performing a punctual
comparative analysis of geometric flavor. The emergence of
this formal analogy is physically motivated by the existence
of a key physical phenomenon that underlies both types of
evolutions at their best, i.e., interference. This link among
| jxy|, θPoincaré

AB , and θBloch
AB in Eq. (47) that emerges while think-

ing of interference of classical waves (classical optics) and
interference of probability amplitudes (quantum mechanics)
should be kept in mind as a constant (hidden) theme underly-
ing our discussion in the main paper.

VI. CONCLUDING REMARKS

We present here a summary of our main findings along with
a discussion on possible future applications of our work.

A. Summary of results

In this paper, we identified and discussed in a quantitative
manner a link between the geometry of time-independent
optimal-speed Hamiltonian quantum evolutions on the Bloch
sphere and the geometry of intensity-preserving propagation
of light with maximal degree of coherence on the Poincaré
sphere.

Specifically, we carried out a detailed comparative analysis
between the quantum and optical scenarios. In the quantum
case, we focused on the main constraint equations [Eqs. (2)
and (13)] leading to the construction of the optimal unitary
evolution operator e− i

h̄ HTAB (that is, a rotation of a Bloch
vector on the Bloch sphere) with the optimal Hamiltonian
given in Eqs. (11) and (19). In the optical case, similarly,
we focused on the main constraint equations [Eqs. (34) and
(35)] leading to the construction of the optimal Mueller matrix
MROT(ϕopt ) [see Eq. (39) with ϕopt in Eq. (40)]. This Mueller
matrix acts on a Stokes vector on the Poincaré sphere [see
Eq. (38)] and leads to the propagation of light with maximal
degree of coherence in analogy to the geodesic path defined
in Eq. (20) and generated by the Hamiltonian in Eq. (19). In

particular, in Table I we presented an explicit correspondence
between the main quantum and optical quantities that enter
the two phenomena. In Table II we pointed out the two main
constraint relations that specify the two physical scenarios.
Finally, in Table III we concluded with the correspondence
between axes and angles of rotations that specify the two
optimal operations yielding unit quantum geometric efficiency
and classical optical efficiency, respectively.

Our main achievement in this paper is bringing to light
this fascinating analogy between optimal-speed quantum evo-
lutions and polarized light propagation with maximal degree
of coherence. This link constitutes a different connection be-
tween the quantum physics of two-level systems and classical
polarization optics. To a certain extent, we think that our
investigation is not only relevant from a pure theoretical per-
spective, it can also be regarded (in retrospect) as providing
a sort of conceptual and quantitative geometric background
underlying Grover’s powerful intuition about constructing a
quantum search scheme by mimicking interference of classi-
cal waves [32].

Clearly, it could be worthwhile exploring the possibility of
extending our work to higher-dimensional quantum systems
since a single two-level quantum system is so simple that
connecting it to classical wave propagation may not neces-
sarily make the two-level system more intuitive. A richer
Hilbert space structure would be more appropriate to fully
gain physical insights emerging from our proposed analogy.
Therefore, we expect that it would be very helpful outlining
the needed formalism to generalize our current result to mul-
tiqubit quantum systems and demonstrate, for instance, that
classical optics is an intuitive way to understand entangled
quantum systems. This is a crucial step that we leave to future
scientific efforts since it goes beyond the scope of the paper.
However, in the next subsection, we do explore in a qualitative
manner some possible future line of investigations that emerge
from our analysis.

B. Outlook

In addition to its intrinsic conceptual and pedagogical val-
ues, our theoretical study paves the way to several intriguing
explorative physics questions that require more attention.

First, regarding the time-optimal Hamiltonian analysis
within the general setting specified by the so-called quan-
tum brachistochrone problem (QBP [54,55]), it may be of
interest investigating similarities between propagation of light
with maximal degree of coherence and the QBP. In this
context, one may think of extending our investigation to
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higher-dimensional spin systems [56] and to constraint equa-
tions specifying cost functions other than time optimality
[57,58]. In our paper, we have provided the optical analog
of a QBP via its analogy with the propagation of light with
maximal degree of coherence. The QBP was characterized
by a cost functional defined in terms of time optimality to
be optimized by imposing a single constraint, a bound on
the energy resource. In general, defining the cost functional,
an efficiency measure of getting to a target state from a
given initial state by a suitable choice of a Hamiltonian, is
a nontrivial task that depends on the physical scenario being
investigated. As pointed out in the Introduction, there is a
variety of cost functionals that one may consider in QBPs and,
in addition, the optimization procedure may by specified by
multiple constraints to be simultaneously satisfied. A typical
set of examples includes minimization of the total amount of
time [54], the heating rate [6], the energy dispersion rate [6],
and the entropy production rate [59,60]. It would be certainly
interesting from a physics perspective uncovering possible
optical analogs of such more general QBPs. We think that
identifying suitable optical constraints would be a key step
in this direction and one may need to go beyond considering
constraints expressed in terms of the intensity of light.

Second, being in the framework of quantum speed limit
(QSL) problems concerning the minimum time needed to
transfer a given initial quantum state to a final one [61–63], it
appears that changes in coherence have significant dynamical
effects on the evolution speeds of the reduced state of certain
families of quantum gases viewed as interacting many-particle
systems [64]. More specifically, in Ref. [64] the authors study
the dynamics of the reduced single-particle density matrix
(RSPDM) of a strongly correlated bosonic quantum gas in
one dimension and a gas of spinless fermions. They focus on
two dynamical processes, a sudden quench, and the efficient
control of the system by means of a shortcut to adiabaticity.
The physics of the gases is characterized in terms of the
time-averaged Schatten-1 norm of the dynamics, that is the
speed of evolution of the system. Furthermore, the coherence
of the gases is specified by means of the largest eigenvalue of
the RSPDM, a good measure of the presence of off-diagonal
long-range order. The authors state in Ref. [64] that coher-
ences play an essential role in the evolution of the reduced
state of the systems. In the case of strongly interacting bosons,
they find larger average speeds (thus, smaller quantum speed
limit times) due to the presence of off-diagonal excitations
emerging from the scattering between particles. In our work,
the minimum quantum speed limit time is achieved in the
presence of maximal energy dispersion with the speed of
evolution of the quantum system being proportional to the en-
ergy dispersion of the Hamiltonian operator. Furthermore, our
results suggest that maximal energy dispersion corresponds
from an optical standpoint to maximal correlations between
the orthogonal electric field components of the light wave
that appear as off-diagonal terms in the coherency matrix.
Thus, the minimum quantum speed limit time appears to
correspond to a maximal correlational structure in the field
components specifying the electromagnetic radiation. Given
these formal similarities between our work and the one in
Ref. [64], it seems rather intriguing exploring if our analysis
might help further understanding the role played by coherence

in the control of many-body quantum states. We believe that
a first significant step in this direction would be exploring the
possible existence of a quantitative connection between the
degree of coherence employed in our work and the coherence
specified by means of the largest eigenvalue of the RSPDM.

Third, when studying quantum resources, it happens that
the quantum Fisher information and the super-radiant quantity
attributed to coherence are antithetical resources. Specifically,
there is a trade-off between the quantum Fisher information
and the super-radiant quantity [65]. The trade-off emerges in
a coherence limited scenario where optimizing one quantity
seems to suggest less quantum resources that can be utilized
for the other. Interestingly, identifying the energy uncertainty
and the degree of coherence with the quantum Fisher informa-
tion and the superradiant quantity, respectively, we also find
there appears to be a conflicting behavior between these two
quantities. Indeed, considering the unit efficiency scenario
where time optimality is the resource to be optimized, to an
increase of one of these two quantities there corresponds nec-
essarily a decrease of the other one for a fixed minimum total
amount of time for the evolution. To further elaborate on this
point, we remark that in Ref. [66] the authors study the Dicke
model of superradiance specified by a system of N identical
two-level atoms with transition frequency ω and interacting
in a collective fashion with the surrounding electromagnetic
field in the vacuum state at zero temperature. They find that
the l1 norm of coherence of the single-atom density operator
is proportional to the square root of the normalized average
radiation intensity emitted in a cooperative manner by the
whole superradiant system. This radiation intensity, in turn,
can be recast in terms of the coherence of the normalized total
electric dipole moment of the system. Thus, an important link
between the l1 norm of coherence of the single-atom density
operator and the coherence of the normalized total electric
dipole moment of the system is emphasized. This link leads to
the validation of the l1 norm of coherence as a figure of merit
of the superradiance phenomenon in the mean-field approach.
As a main finding, the authors showed that the evolution of
the system is faster when more coherence is stored in the
single-atom state. Interestingly, our investigation also leads
to the conclusion that optimal evolution speed corresponds to
maximal degree of coherence. Our work could be potentially
relevant for better understanding the reason why quantum
coherence speeds up the evolution of superradiant systems.
We anticipate that a basic preliminary step in this direction
would be that of clarifying the relation between the degree
of coherence employed in our work and the l1 norm of co-
herence, a very intuitive and easy to use coherence measure
related to off-diagonal elements of a quantum state with the
key feature of being the most general coherence monotone
introduced in Ref. [67] and discussed with emphasis on its
applications in Ref. [68].

Fourth, it is pointed out in Ref. [68] that quantum coher-
ence can also be used as a resource in quantum algorithms. For
instance, it is emphasized that the success probability in the
analog Grover algorithm depends on the amount of coherence,
quantified via the l1 norm of coherence, in the corresponding
quantum state [69,70]. Uncovering possible links between
our current work and the findings presented in Refs. [69,70]
could be yet another intriguing avenue to explore in future
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investigations. Given the physically intuitive link with off-
diagonal elements of both the l1 norm of coherence and the
degree of coherence used in our work, we remark once again
that a much needed step in this direction would be investigat-
ing the possibility of quantifying light propagation by means
of the l1 norm of coherence.

We hope our work will inspire other scientists and pave
the way toward further investigations in this fascinating
research direction. For the time being, we leave a more
in-depth quantitative discussion on these potential exten-
sions and applications of our theoretical findings to quantum
brachistochrone problems, quantum speed limits questions,
and quantum resources analyses to future scientific efforts.
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APPENDIX A: MUELLER MATRICES

In this Appendix, we provide further details on the Mueller
matrices mentioned in Sec. III B. Furthermore, we devote
special emphasis on their relation with the Jones matrices. Fi-
nally, we emphasize how points on the surface of the Poincaré
sphere are rotated by means of specific types of Mueller ma-
trices.

In the traditional approach to polarization optics, the light
propagates along the ẑ axis and one considers the electric
vector field components along the x̂ and ŷ directions. The
polarization state is determined by the amplitude ratio and
phase difference of the electric field components. Therefore,
polarization can be modified either by changing the ampli-
tudes or by tuning the relative phases, or both. Within the
Jones calculus [38,71], the Jones vector in C2 represents
the polarized light by means of the amplitude and the phase
of the electric field in the x̂ and ŷ directions. Furthermore,
linear optical elements (for instance, beam splitters, lenses,
and mirrors) are represented by 2 × 2 Jones matrices. Within
the Mueller calculus [39], employing the concepts of Stokes
parameters and Poincaré sphere, the change of polarization
due to the interaction of light with an optical device can be
described by the action of a 4 × 4 matrix that represents a
linear transformation acting upon a 4 × 1 matrix correspond-
ing to the Stokes vector. Within the Mueller calculus, there
are three fundamental optical elements: wave plates, rotators,
and polarizers. A wave plate and a rotator produce phase
shifts and rotations of the Stokes vector, respectively. They
are described by unitary matrices since they do not change the
intensity of the light. Polarizers cause anisotropic attenuation

and do change the intensity of light passing through them.
Therefore, unlike wave plates and rotators, they are described
by nonunitary matrices. The matricial representation of op-
tical devices is very useful. Indeed, the composite effect of
a series of optical devices crossed by a light beam is repre-
sented by the product of the matrices corresponding to the
various optical elements in the series. Mueller matrices can
be grouped into two main categories [72]: nondepolarizing
and depolarizing Mueller matrices. Nondepolarizing Mueller
matrices can modify the degree of polarization of partially
polarized light. However, they do not change the degree of
polarization of perfectly polarized light. Depolarizing Mueller
matrices, instead, while maintaining the total intensity of the
light beam, do reduce the degree of polarization of com-
pletely polarized light. Furthermore, nondepolarizing Mueller
matrices have equivalent Jones matrices. On the other hand,
depolarizing Mueller matrices have no equivalent Jones ma-
trices. For a discussion on necessary and sufficient conditions
for a Mueller matrix to be derivable from a Jones matrix, we
refer to Ref. [73]. Interestingly, it is possible to show that any
Mueller matrix can be decomposed into a sequence of three
matrix factors [74]: a diattenuator, followed by a retarder,
then followed by a depolarizer. Diattenuators and retarders
are described by Hermitian Jones matrices and change only
the amplitudes of the components of the electric field vector.
A polarizer is an example of a diattenuator. Retarders, instead,
are described by unitary Jones matrices and change only the
phases of components of the electric field vector. A wave
plate is an example of a retarder. As mentioned earlier, there
are Mueller matrices with no corresponding Jones matrices.
However, it turns out that any Jones matrix J acting on the
electric field �E can be transformed into the corresponding

Mueller matrix M given by M
def= A(J ⊗ J∗)A−1, where “∗”

and “⊗” denote the complex conjugate and the tensor product,
respectively. Moreover, A is a 4 × 4 matrix defined as

A
def=

⎛
⎜⎝

1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

⎞
⎟⎠. (A1)

Observe that the four rows {Ri
A}1�i�4 of A in Eq. (A1) are

given by the coefficients of the identity matrix I and the three
Pauli matrices {σx, σy, σz} with R1

A ↔ I , R2
A ↔ σz, R3

A ↔ σx,
and R4

A ↔ σy. It is well-known that there is a two-to-one
homomorphism between the complex special unitary group
SU (2) and the real group of three-dimensional pure rotations
O+(3) [75]

SU (2) � ei�σ ·n̂ θ
2 ↔ ei �J·n̂θ ∈ O+(3). (A2)

In Eq. (A2), n̂ denotes the axis of rotation, θ is the angle of

rotation, �σ def= (σ1, σ2, σ3) is the Pauli matrix vector, and �J def=
(J1, J2, J3) is the generator vector for O+(3). Interestingly, it
can be shown that the matrix coefficients Ri j of any rotation
matrix R in O+(3) can be recast as [76]

Ri j = 1
2 tr

(
U † · σi · U · σ j

)
, (A3)

where U is a two-dimensional unitary matrix with determinant
equal to one specified by three free (real) parameters. From
Eqs. (A2) and (A3), we note there is a global topological
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difference between SU (2) and O+(3). For example, increas-
ing the angle θ by 2π in Eq. (A2), we get U → −U in SU (2)
while R → R in O+(3). Therefore, both U and −U in SU (2)
correspond to the same R in O+(3). Thus, there exists a two-
to-one mapping of elements of SU (2) onto O+(3). Exploiting
the SU (2)-O+(3) homomorphism, it happens that to a SU (2)
matrix U acting on the vector field �E there corresponds a
4 × 4 Mueller matrix viewed as an augmented form of a
O+(3) matrix R [77]

M
def=

(
11×1 O1×3

O3×1 R3×3

)
, (A4)

where the coefficients Mi j of the matrix M are given by

Mi j
def= 1

2 tr
(
U † · �i · U · � j

)
, (A5)

with �� def= (I , σz, σx, σy). For completeness, we remark that
Eq. (A5) can also be extended by considering arbitrary com-
plex (scattering) matrices Ucomplex in place of SU (2) matrices.
In this case, the effect of the Mueller matrix with coefficients

Mi j
def= 1/2tr(U †

complex · �i · Ucomplex · � j ) is to combine a rota-
tion of the Stokes vector with a change of its length (which,
in turn, corresponds to a change in the degree of polarization).
For more details on polarization algebra with Mueller matri-
ces, we refer to Ref. [77].

APPENDIX B: DEGREE OF COHERENCE OF PARTIALLY
POLARIZED WAVES

In this Appendix, we use the Poincaré sphere formalism
to describe the behavior of the modulus | jxy| of the complex
degree of coherence jxy of partially polarized light beams
in terms of the ellipticity and orientation angles. This Ap-
pendix helps better understanding of the content of Sec. III B
with regard to partially polarized light waves with P < 1 .

Partially polarized waves can be regarded as points that are
inside the Poincaré sphere of radius Itot (i.e., the total intensity
of the wave) and at a distance Ipol (i.e., the intensity of the
polarized part of the wave) from the origin of the sphere itself.
Using the Stokes parameters {S0, S1, S2, S3}, we note that the
degree of polarization P and | jxy| can be recast as

P =
(
S2

1 + S2
2 + S2

3

)1/2

S0
, and | jxy| =

(
S2

2 + S2
3

S2
0 − S2

1

)1/2

, (B1)

respectively. From Eq. (B1), we have that if S2
0 = S2

1 +
S2

2 + S2
3 then P = | jxy| = 1. Instead, if S2

0 > S2
1 + S2

2 + S2
3

then P < 1 and | jxy| � P. Furthermore, using the two re-

lations in Eq. (B1) along with setting S0
def= Itot, S1

def=
Ipol cos(2β ) cos(2χ ), S2

def= Ipol cos(2β ) sin(2χ ), and S3
def=

Ipol sin(2β ), we get

| jxy| = | jxy|(β, χ ; P)
def= P

[
1 − cos2 (2β ) cos2 (2χ )

1 − P2 cos2 (2β ) cos2 (2χ )

]1/2

,

(B2)

where P
def= Ipol/Itot, −π/4 < β � π/4, and 0 � χ < π . Fi-

nally, we note from Eq. (B2) that for a given value of P < 1
and for any value of the ellipticity angle β ∈ (−π/4, π/4],
the maximum of | jxy| equals P and is achieved when the
orientation angle χ equals π/4.

APPENDIX C: PARAMETRIZATIONS OF QUBITS
AND POLARIZATION STATES

In this Appendix we report for completeness some
mathematical details on the parametrization of qubits and po-
larization states viewed as points on the Bloch sphere and the
Poincaré sphere, respectively. These details help comprehend
the schematic depictions in Fig. 1.

In terms of the computational basis vectors |0〉 and |1〉, a
normalized qubit is a point on the Bloch sphere that can be
parametrized as

|ψ (θ , ϕ)〉 def= cos

(
θ

2

)
|0〉 + eiϕ sin

(
θ

2

)
|1〉, (C1)

with 0 � θ � π and 0 � ϕ < 2π . The Bloch sphere metric

is given by ds2
Bloch

def= dn̂B · dn̂B = dθ2 + sin2(θ )dϕ2 with

n̂B
def= 〈ψ (θ , ϕ)|�σ |ψ (θ , ϕ)〉 = (sin θ cos ϕ, sin θ sin ϕ, cos θ )

and �σ def= (σx, σy, σz ) being the usual vector of Pauli matrices.
In terms of the orthonormal circular basis states êRC (right

circular) and êLC (left circular), the general equation of a
normalized state of polarization ê(β, χ ) viewed as a point on
the Poincaré sphere is given by

ê(β, χ )
def= cos (β ) + sin (β )√

2
êRC + ei2χ cos (β ) − sin (β )√

2
êLC,

(C2)
with −π/4 < β � π/4 and 0 � χ < π . The Poincaré

metric is given by ds2
Poincaré

def= dn̂P · dn̂P = 4[dβ2 +
cos2(2β )dχ2] where n̂P

def= 〈ê(β, χ ), �σ ê(β, χ )〉C =
(cos(2β ) cos(2χ ), cos(2β ) sin(2χ ), sin(2β )), with 〈·, ·〉C
denoting the usual complex inner product. From Eq. (C2),
note that points on the poles specify circularly polarized

light, êRC
def= ê(π/4, 0) and êLC

def= ê(−π/4, 0). Furthermore,
points on the equator correspond to linearly polarized

light, êVL
def= ê(0, π/2) (vertical linear) and êHL

def= ê(0, 0)
(horizontal linear). Ignoring an overall phase, we remark

that êRC
def= (êHL − iêVL)/

√
2 and êLC

def= (êHL + iêVL)/
√

2.
Finally, the remaining points on the Poincaré sphere represent
other elliptical polarization states.

APPENDIX D: INTERFERENCE EFFECTS IN
PROPAGATION OF LIGHT, QUANTUM SEARCHING,

AND OPTIMAL-SPEED QUANTUM EVOLUTIONS

In this Appendix we present some comments on the role
played by interference effects in light propagation, quantum
searching, and optimal-speed quantum evolutions. These re-
marks integrate those presented in Sec. V.

In the study of propagation of light, coherent sources are
required for producing interference patterns. In particular,
interference of light beams appear in the calculation of the
total intensity of the resultant beam obtained in terms of
a superposition of two coherent beams. In this context, the
objective is to obtain propagation of light with maximal de-
gree of coherence. Maximization of the absolute value of the
complex degree of coherence, interpreted as a measure of the
degree of correlation of the electric vibrations of the wave,
yield more visible interference patterns. Indeed, the degree
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of coherence establishes in a formal manner how distinctly
visible is the interference pattern [78]. We note that to have
a nonzero degree of coherence, the coherency matrix has to
have nonvanishing off-diagonal terms [9,25]. This observation
becomes especially interesting when we recall that quan-
tum computation derives its power from entanglement and
quantum interference. In particular, the degree of interference
in a N-qubit register is specified by the coherences, that is,
the off-diagonal elements ρlm with l �= m of the density op-
erator in the computation basis. Therefore, the role played by
coherences in quantifying the degree of quantum interference
viewed as a source of power for quantum computing can
be grasped in a straightforward manner [52]. These consid-
erations lead us to the following question: Where does the
phenomenon of quantum interference manifest itself in the
quantum computational tasks considered in our paper?

In Grover’s digital quantum search algorithm [31], the
interference of quantum probability amplitudes appears in
the calculation of the transition probability from the (known)
source state to the (unknown) target state. Indeed, in quantum
searching, the goal is to achieve unit transition probability
(defined as the modulus squared of the quantum overlap be-
tween the target state and the source state acted upon by a
number of iterations of Grover’s operator) with the smallest
number of iterations of Grover’s operator. More specifically,
quantum searching can be explained as inducing a desired
relative phase between two eigenvectors of Grover’s operator
to yield constructive interference on the target state (that is,
use quantum interference to nudge up the searched state) and

destructive interference on the remaining states [48,49]. In the
Farhi-Gutmann analog quantum search evolution viewed as
the continuous-time version of Grover’s search scheme [46],
the interference of quantum probability amplitudes emerges in
the computation of the transition probability from the (known)
source state to the (unknown) target state. The goal there is
to achieve unit transition probability in the shortest amount
of time. The Farhi-Gutmann search Hamiltonian specifies the
dynamical process of quantum interference which, in turn,
allows one to evolve from the source state to the target state in
the smallest possible time by modifying the explored interme-
diate superpositions of quantum states in a suitably prescribed
manner so that time optimality [54,79] is achieved. Finally, in
the optimal-speed quantum Hamiltonian evolutions [18,19],
interference of quantum probability amplitudes can be identi-
fied in the maximization of the energy uncertainty (that is, the
dispersion of the Hamiltonian operator). This maximization
is required in order to evolve from a (known) source state
to a (known) target state with optimal speed (that is, the
maximum energy uncertainty and the smallest travel time).
The optimal-speed time-independent Hamiltonian specifies,
via its eigenvector decomposition, the process of quantum
interference. The latter, in turn, allows us to transition from
the source to the target states in the shortest possible time by
navigating through a path of quantum states while preserving
maximal energy uncertainty. Interestingly, we pointed out the
correspondence between intensity of light and energy of the
quantum system in the constraint equations that appear in
Table II.
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