
PHYSICAL REVIEW A 105, 052424 (2022)

Clustering using matrix product states

Xiao Shi,1,2 Yun Shang ,1,3,* and Chu Guo4,5,†

1Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
2School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
4Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China

5Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics
and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China

(Received 20 November 2021; accepted 2 May 2022; published 18 May 2022)

The matrix product state has been demonstrated to be able to explore the most relevant portion of the
exponentially large quantum Hilbert space and find accurate solutions for one-dimensional interacting quantum
many-body systems. Inspired by this success, here we propose a clustering algorithm based on the matrix
product state, which first maps the classical data into quantum states represented as matrix product states, and
then minimizes the loss function using a variational matrix product states algorithm in the enlarged space. We
demonstrate this algorithm by applying it to several commonly used machine learning data sets, showing that this
algorithm could reach higher learning precision and that it is less likely to be trapped in local minima compared to
the standard K-means algorithm. We also show that this algorithm can achieve state-of-the-art learning precision
on popular computer vision data sets when used in combination with better initialization schemes.

DOI: 10.1103/PhysRevA.105.052424

I. INTRODUCTION

The past few years have witnessed a growing interest
in the intersection between quantum physics and machine
learning. On the one side, machine learning tools have been
used to solve quantum problems, such as phase recognition
[1–8], quantum state tomography [9–13], solving quantum
many-body problems [14–24], and non-Markovian quantum
dynamics [25]. On the other side, tools from quantum many-
body physics, especially tensor network states algorithms,
were used to solve classical machine learning problems. The
tensor network states (TNS) algorithm has become one of
the most important algorithms to study quantum many-body
systems in the last two decades. In particular, the matrix prod-
uct state (MPS), a one-dimensional variant of TNS, solves
one-dimensional strongly correlated quantum many-body sys-
tems with unprecedented efficiency and accuracy and has
thus become the algorithm of choice in this field [26–28].
In the last decade, MPS has also begun to find applications
in classical fields, such as representing the high-dimensional
probability distribution [29,30] where it is known as tensor
train, and solving classical machine learning tasks including
classification problems [31–33], generative modeling [34],
and sequence-to-sequence modeling [35].

Despite the various applications of MPS to classical prob-
lems, it is, however, extremely difficult to find a practical
instance where MPS could achieve a comparable perfor-
mance to state-of-the-art algorithms already existing in those

*shangyun602@163.com
†guochu604b@gmail.com

fields. The reverse is also true when applying machine
learning or deep learning algorithms to solve quantum many-
body physics problems. Clustering is an elementary machine
learning task to separate unlabeled data into distinct and
nonoverlapping clusters. It has important applications in
bioinformatics [36], image processing [37], and social net-
works [38]. However, for data processing and analysis,
traditional clustering algorithms still face great challenges.
With the development of quantum computing, some quantum
clustering algorithms were proposed [39–41]. In this work,
we propose an MPS-based algorithm for the clustering task
and demonstrate that it can achieve comparable or even higher
learning accuracies than the best known existing algorithms
on three popular image clustering data sets from computer
vision.

A standard approach for clustering is the K-means cluster-
ing, which divides the data into k different classes by minimiz-
ing the variance of the data in each class and can be formulated
as a minimization problem with the loss function [42]

loss({ �O1, �O2, . . . , �Ok}) =
N∑

n=1

min
1� j�k

||�xn − �O j ||2, (1)

with �O j the jth centroid, �xn the nth input data, and || · ||
denotes the Euclidean norm. However, this computational
task is NP-hard [43]. In 1982, Lloyd proposed a herustic
algorithm which works by choosing k random centroids, and
then iteratively dividing the data into k classes according to
their distances with the centroids and recomputing the center
within each cluster [44]. This algorithm is still widely used till
now due to its simplicity and efficiency, which will be referred
to as the K-means algorithm in the following. The K-means

2469-9926/2022/105(5)/052424(8) 052424-1 ©2022 American Physical Society

https://orcid.org/0000-0003-1466-5970
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.052424&domain=pdf&date_stamp=2022-05-18
https://doi.org/10.1103/PhysRevA.105.052424

XIAO SHI, YUN SHANG, AND CHU GUO PHYSICAL REVIEW A 105, 052424 (2022)

algorithm has a well-known drawback that it is prone to be
trapped at local minima, which would result in bad clustering
with high probability, especially for high-dimensional data.
Various efforts have been paid to improve the accuracy of
the K-means algorithm, such as better ways of initialization
[45–50], or smoother objective loss functions [51–54].
Recently, a deep neural network was also applied to clustering
[55–58] (deep clustering), as a completely different approach
from the standard K-means algorithm. At the time of writing,
the authors of Ref. [58] reported the most accurate image clus-
tering model termed as the selective pseudolabel clustering.

Compared to deep clustering, our MPS clustering
algorithm is still along the lines of the standard K-means
algorithm in that the elementary structure of the K-means
algorithm is kept, while the centeroids are searched within
a MPS manifold instead of the original plain vector space.
The MPS manifold is fully characterized by a single interger,
termed as the bond dimension D, in comparison with deep
neural networks, which usually contain a large number of
hyperparameters. In the following, we will first introduce our
MPS clustering algorithm and then demonstrate its perfor-
mance on both small-scale machine learning data sets and
several popular computer vision data sets.

II. MPS CLUSTERING ALGORITHM

The reason why the standard K-means algorithm results
in poor accuracy for high-dimensional data is two-fold:
(1) the existence of a huge number of local minima, such
that with a naive initialization strategy one would easily fall
into one of them and (2) the centeroids themselves are not
expressive enough, for example, different centeroids are not
orthogonal enough to each other. While a vast amount of
the literature focused on improving the first issue by gen-
erating more reasonable inputs for the K-means algorithm
(either more knowledged initial centroids or better behaved
input data after certain transformations), using, for example,
spectral clustering or subspace clustering [45,50], our MPS
clustering directly aims to improve the second one, namely,
increasing the expressivity of the centroids by representing
them as MPSs. By MPS representation, the vector elements
of centroids may have an entanglement relation and then
they will have a stronger expression than the K-means case.
Furthermore, we can see that the larger the inner product of
the center points, the less obvious the difference between the
center points. From this we can find the MPS algorithm can
have a better performance than the K-means algorithm. As a
result, our algorithm can be easily used as a substitution for
the K-means algorithm and used in combination with better
initialization strategies.

The first step of our algorithm is to map each input vec-
tor into an MPS, which is mathematically represented as a
one-dimensional chain of rank-3 tensors. This can be done
as follows. For the nth input vector �xn with L elements
(xn,1, xn,2, . . . , xn,L), one can map the lth element xn,l into a
rank-3 tensor Xn,l of size 1×2×1 as [35,59]

(Xn,l)
0
0,0 = cos

(
π

2
xn,l

)
, (Xn,l)

1
0,0 = sin

(
π

2
xn,l

)
. (2)

As a result, �xn is mapped into an MPS denoted as X �σ
n

X �σ
n =

∑
a1,...,aL+1

X σ1
n,a1,a2

X σ2
n,a2,a3

. . . X σL
n,aL,aL+1

, (3)

where σl denotes the physical indices and al denotes the
auxiliary indices of MPS, and we use X σl

n,al ,al+1
= (Xn,l)σl

al ,al+1

for short. The bond dimension D is defined as the largest size
of the auxiliary indices, namely,

D = max
2�l�L

dim(al). (4)

We note that for each X �σ
n we have dim(σl) = 2 and D = 1.

The centroids O �σ
j , in comparison, are initialized to be MPSs

with a fixed bond dimension D � 1, and can be written as

O �σ
j =

∑
b1,...,bL+1

Mσ1
j,b1,b2

Mσ2
j,b2,b3

. . . MσL
j,bL,bL+1

, (5)

with 1 � j � k. Here the larger D, the more entanglement in
the centeroid and then it has better expression. With the data
structures defined for the inputs and the centeroids, our MPS
clustering algorithm works as follows. First we randomly ini-
tialize k centeroids O �σ

j in right-canonical forms with a fixed
bond dimension D. Then we iterate the following two steps:
(1) dividing all the data into k disadjoint classes according to
their distances with the centroids, defined as

dM
n, j = (

X �σ,†
n − O �σ ,†

j

)(
X �σ

n − O �σ
j

)
, (6)

that is, an input data X �σ
n is categorized into the mth class with

m = argmink
j=1 dM

n, j ; (2) recomputing the centeriod for each
class independently by minimizing the loss function

lossM
(
O �σ

j

) = − 1

Nj

Nj∑
n j=1

ln
∣∣O �σ ,†

j X �σ
n j

∣∣2
, (7)

under the normalization condition O �σ ,†
j O �σ

j = 1. Here Nj is

the size of the jth class, X �σ ,†
n j

is the n j th data inside the jth
class and | · | means the absolute value. We note that Eq. (7)
is the same as the loss function used in Ref. [34], except that
it is used as a loss function for each centroid in our case. The
loss function in Eq. (7) is minimized using a variational MPS
algorithm, where one performs a gradient descent algorithm
for each tensor Mσl

j,bl ,bl+1
locally instead of for all these tensors

at the same time, that is,

Mσl
j,bl ,bl+1

← Mσl
j,bl ,bl+1

− η
∂lossM

(
O �σ

j

)
∂Mσl

j,bl ,bl+1

, (8)

and η the learning rate (details of the variational MPS
algorithm can be found in the Appendix A). In the predic-
tion stage, given a new input data, we compute the distances
between it and all the centeriods using Eq. (6) and label it with
the one for which the distance is minimal.

The K-means algorithm performs well on linearly sep-
arable data sets, but not on nonlinear data sets. However,
MPS-based algorithms have significantly improved perfor-
mance on nonlinear data because it maps the data to a larger
Hilbert space through MPS expressions, and in this larger
Hilbert space, the discrimination between the data will be-
come stronger. As can be seen from the results in Table I, our

052424-2

CLUSTERING USING MATRIX PRODUCT STATES PHYSICAL REVIEW A 105, 052424 (2022)

algorithm improves the accuracy by about 4 to 18 percentage
points compared to the K-means algorithm on these three
nonlinear data sets. This also embodies that the bond dimen-
sion determines the upper bound of entanglement entropy that
MPS can capture [60] and the accuracy improved.

III. APPLICATIONS

A. Benchmarking on small clustering data sets

The higher expressivity of MPS clustering is best demon-
strated on relatively small data sets where the algorithm
suffers less from being trapped in local minima. Here we
benchmark the learning accuracy of MPS clustering against
K-means algorithm without particular optimization of the ini-
tialzation stage, namely, both using random initialization. The
numerical benchmarking results on three small-scale cluster-
ing data sets, namely Ionosphere, Yeast, and Lymphography,
which are show in Table I. Since the K-means algorithm is
based on the distance measurement, if the difference between
variables of different dimensions is too large, it may cause
a small number of variables to exert an excessively high in-
fluence on the whole cost, thus eliminating the effect of the
rest variables. To avoid this effect, we divide each dimension
of the data by its largest value in the data set, namely xn,l ←
xn,l/xmax

l with xmax
l = max1�n�N xn,l , thus ensuring 0 � xn,l �

1 for all 1 � n � N and 1 � l � L. The learning accuracy
(ACC) is defined as the number of correctly predicted labels
over the whole number of data, namely N (we use the whole
data set to train and to evaluate the learning accuracy as is
commonly done in the literature). Each numerical experiment
is repeated 100 times with random initialization, and then
the final learning accuracies are taken as the average over
the ten best instances. For the K-means algorithm we use the
function sklearn.cluster.KMeans for the package sklearn. For
MPS clustering we do 30 iterations and inside each iteration
we do three sweeps. As we can see from the last three columns
of Table I, MPS clustering generally outperforms the K-means
algorithm for every data set in terms of ACC. Moreover, ACC
goes higher when increasing the bond dimension D of MPS,
which is expected since the parameter space grows as D2,
and MPS is more expressive with larger D as long as there
is enough data to avoid overfitting. (More details can be found
in the Appendix B.)

TABLE I. Comparison between K-means algorithm and our
MPS clustering algorithm. The first column lists the names of the
data sets. “N” is the total number of data in each data set. “Dim”
denotes the number of features for each data. “Classes” denotes
the number of clusters. The last three columns show the learning
accuracies (in percentages) for the K-means algorithm and MPS clus-
tering algorithm with D = 8 and D = 16, respectively. The learning
accuracy is evaluated as the average of the best ten instances from
100 trials with random initialization.

Name N Dim Classes K-means MPS-8 MPS-16

Ionosphere 351 34 2 71.23 86.81 87.26
Yeast 1484 8 10 39.87 43.23 43.75
Lymphography 148 18 4 55.81 72.77 73.04

4 8 12 16
D

70

75

80

85

90

A
C

C

(a)

60 70 80 90
ACC

0

25

50

75

100

C
ou

n
t

(b) K-means

MPS-2

MPS-4

MPS-8

MPS-16

10

20

30

40

50

N
M

I

FIG. 1. (a) Learning accuracy (blue dashed line with triangle)
and NMI (red dashed line with circle) as a function of the bond di-
mension D for our MPS clustering algorithm. The blue solid and red
solid lines are the corresponding values of the K-means algorithm.
(b) Distribution of learning accuracy for 100 trials for the K-means
algorithm (black solid line) and our MPS clustering algorithms with
different bond dimensions (dashed lines).

In the next we perform a more detailed analysis of the
performance of our MPS clustering algorithm as a function
of the only hyperparameter in the algorithm, namely, the bond
dimension D. In particular, we take the data set Ionosphere
as an example and consider two performance measures, ACC
and normalized mutual information (NMI), which is defined
as [61]

NMI(�,C) = I (�;C)

[H (�) + H (C)]/2
. (9)

Here � = {ω1, ω2, . . . , ωk} denotes all the predicted clusters
and C = {c1, c2, . . . , c j} denotes the ground truth clusters (ωl

and cl are sets with the same labels). I and H are the mutual
information and Shannon entropy, respectively.

In Fig. 1(a) we plot ACC and NMI as functions of D, with
their corresponding values from the K-means algorithm as
references. Again the results are averaged over the ten best
instances out of a total of 100 trials. We can see that the values
for both measures increase with D until becoming more or less
flat. In Fig. 1(b), we show the likelihood of MPS clustering to
be trapped in bad minima by ploting the distribution of ACC
for the 100 trials. We can see that the ACCs for the K-means
algorithm are mostly centered around the value 71%, while
for MPS clustering it is possible to reach a much higher ACC
(close to 90%) and it is more likely to result in a higher ACC
with a larger D. Larger D means more entanglement among
vector elements, which means better expressiveness to the
data points. So we can see from Fig. 1 that as D increases,
the clustering accuracy are getting higher and the number of
times that the algorithm gets stuck in the local minima are
getting less.

B. Benchmarking on computer vision data sets

Real applications in general involve data with high-
dimensional feature spaces. The straightforward application
of the K-means algorithm could easily be trapped in lo-
cal minima and result in bad clustering. Various spectrum
clustering and subspace clustering techniques were proposed
which aimed to provide better starting points for the K-means
algorithm. In practice, we find that a direct application of

052424-3

XIAO SHI, YUN SHANG, AND CHU GUO PHYSICAL REVIEW A 105, 052424 (2022)

TABLE II. Learning accuracy (ACC) and NMI of our method
compared to other top-performing image clustering models. The best
results are stressed in bold and the second best results are stressed in
italics.

Method MNIST USPS FashionMNIST

ACC NMI ACC NMI ACC NMI

K-means 53.91 49.04 65.76 60.98 52.22 51.1
AE-K-means 77.08 77.13 68.29 66.14 58.91 62.15
DEC [62] 84.3 83.4 76.2 76.7 51.8 54.6
IDEC [63] 88.06 86.72 76.05 78.46 52.9 55.7
DEPICT [64] 96.5 91.7 96.4 92.7 39.2 39.2
EnSC [65] 96.3 91.5 61.0 68.4 62.9 63.6
DynAE [66] 98.7 96.4 98.1 94.8 59.1 64.2
InfoGAN [67] 87.0 84.0 – – 61.0 59.0
ClusterGAN [57] 95.0 89.0 – – 63.0 64.0
DualAE [68] 97.8 94.1 86.9 85.7 66.2 64.5
ADSSC [50] 99.0 97.1 96.94 96.52 60.29 70.3
SPC [58] 99.03 97.04 98.4 95.42 65.58 72.09
MPS-8 62.28 58.10 66.86 69.78 55.08 53.67
AE-MPS-8 88.92 80.94 70.8 69.1 62.12 62.29
ADSSC-MPS-8 99.04 97.22 98.82 96.62 65.61 72.15

MPS clustering with random initialization would suffer from
the same problem of bad clustering for high-dimensional
data. Nevertheless, the MPS clustering algorithm can simply
be used as a drop-in replacement of the K-means algo-
rithm and thus can be used in combination with those better
initialization schemes to solve real-world problems. Particu-
larly, we introduce two kinds of improved MPS clustering
algorithms, one with an autoencoder and the other with
sequential-approximation doubly stochastic subspace cClus-
tering (ADSSC) [50], which we entitle as AE-MPS and
ADSSC-MPS, respectively. In AE-MPS an autoencoder is
first used to compress the dimensionality of the input data,
which is then fed into MPS culstering. With ADSSC-MPS
one first learns a doubly stochastic affinity matrix from the
input data and then perform spectrum clustering technique to
find the clusters, which is further fed into an autoencoder. (The
usage of autoencoder in this case is only because the spectrum
clustering produces negative numbers which do not comply
with our encoding in Eq. (2), and it may be removed with a
modified encoding scheme. For the autoencoder we choose
the activation function to be the sigmoid function, such that
the output only consists of numbers between 0 and 1.) The
output of the autoencoder is finally fed into MPS clustering.
These two algorithms are also shown in Fig. 2.

We benchmark our algorithm on three computer vision data
sets, namely MNIST, USPS, and FashionMNIST. MNIST and
USPS are handwritten digits’ data sets, and FashionMNIST
contains clothing items. Both MNIST and FashionMNIST
have 70 000 images, and USPS has 9298 images in total. In
TABLE. II we show the results of our numerical experiments
on those three data sets. We can see that our AE-MPS and
ADSSC-MPS outperforms AE-K-means and bare ADSSC in
terms of ACC and NMI in most situations. Moreover, for the
MNIST and USPS data set, our ADSSC-MPS score is the
best out of all the candidates. For the USPS data set, our

FIG. 2. Structures for (a) our AE-MPS clustering algorithm and
(b) ADSSC-MPS clustering algorithm. The fully connected autoen-
coder is used here, and the number of neurons in each layer is written
below each layer.

ADSSC-MPS scores best in terms of the NMI and second in
terms of learning accuracy. For all three cases considered here,
we choose an output dimension of 10 for the autoencoder used
in AE-MPS, while for ADSSC-MPS we choose 11 features
for the spectrum clustering similar to that found in Ref. [50],
and then an output dimension of 10 for the subsequent au-
toencoder (detailed architectures can be found in Fig. 2).
In the classic K-means algorithm, randomly initializing the
center point can easily cause the algorithm to fall into a local
minimum. Generally, the K-means algorithm with different
centroid seeds will be run many times to solve the problem.
The final result is the one with the smallest Euclidean distance
from each data point to its center point. Here we replace
the Euclidean distance by fidelity measure since the MPSs
are normalized for each data and the center; we can filter
the results similarly. In detail, for both the ACC and NMI of
AE-MPS and ADSSC-MPS, we run 100 trials and use total

052424-4

CLUSTERING USING MATRIX PRODUCT STATES PHYSICAL REVIEW A 105, 052424 (2022)

60 70 80 90 100

ACC

0

10

20

30

C
ou

n
t

(a)

80 85 90 95

NMI

0

10

20

30

C
ou

n
t

(b)

60 70 80 90 100

ACC

0

5

10

15

20

25

C
ou

n
t

(c)

75 80 85 90 95

NMI

0

5

10

15

20

C
ou

n
t

(d)

40 50 60 70

ACC

0

5

10

15

C
ou

n
t

(e)

60 65 70 75

NMI

0

5

10

C
ou

n
t

(f)

FIG. 3. (a), (b) Histograms of learning accuracies and NMIs for
MNIST. (c), (d) Histograms of learning accuracies and NMIs for
USPS. (e), (f) Histograms of learning accuracies and NMIs for Fash-
ionMNIST. The cyan, red, and yellow bars stand for D = 1, 4, 16,
respectively.

fidelity to filter out the results, which is defined as

ftotal =
∑

j

n j −
∑
j,n j

∣∣O �σ,†
j X �σ

n j

∣∣. (10)

We select 10 of the 100 results with the smallest ftotal and
calculate the average to get the final result.

From Table II, we can see MPS algorithms have better
clustering effects compared with the existing algorithms since
MPS adds the coherent relation between vector elements and
has a better expression. For the MNIST data set, it can be
seen from Table II that, although the bond dimension of MPS
is only 8, its accuracy reaches 62.28, which is almost a 10
percent increase compared with that of the K-means algorithm
(53.91). Since different data sets have different image size and
sharpness of image, they do not have significant improvement
on the other two data sets. However, by some preprocessing
tricks, the MPS-based methods are all more accurate than
the previous methods since preprocessing can reduce the di-
mensionality of the data set and shorten the running time
of the program. After processing the data set with AE, the
MPS-based algorithm shows more than a 10 percent increase
compared with that of the AE-K-means on the MNIST data
set. In particular, the ADSSC-MPS-8 method outperforms all
exisiting algorithms on the MNIST and USPS data sets. Al-

though our accuracy on the Fashion data set is a bit lower than
the existing state-of-the-art algorithm. However, compared
with the ADSSC algorithm, the accuracy of ADSSC-MPS is
more than a 5 percent increase compared with that of ADSSC
algorithm.

We also consider the effect of different bond dimensions by
taking the ADSSC-MPS algorithm as an example. The results
are shown in Fig. 3. Interestingly, we can see that the effect of
a larger D is more of an increasing of the probability to find
good clustering than of an increasing of the absolute values of
ACC or NMI. More concretely, taking the MNIST data set, for
example, the largest values for D = 1, 4, 16 are more or less
the same, which for D = 16 there is a much higher probability
(more than 30%) to get the largest ACC and NMI, while for
D = 1 this probability is only around 10%.

IV. CONCLUSION

In summary, we propose a matrix-product-states-based
clustering algorithm, where the input data are mapped to
separable states in an exponentially large Hilbert space and
then MPS is used as the ansatz for each centroid. The bench-
mark on small-scale clustering data sets with the K-means
algorithm shows that our MPS clustering algorithm can reach
a higher learning precision and that it is less likely to be
trapped in bad minima. We also demonstrate on three large-
scale image data sets that MPS clustering can be taken as
a drop-in replacement of the K-means algorithm to be used
in combination with more clever initialization schemes and
produce state-of-the-art learning precisions.

To this end, we point out that MPS is a special type of
tensor network work which allows most common arithmetic
operations and other types of tensor networks, such as tree ten-
sor networks or multiscale entanglement renormalizationan
ansatz (MERA), may be explored to study clustering problems
[32]. This algorithm could also be straightforwardly extended
to a quantum algorithm with the MPS ansatz replaced by
parameteric quantum circuits, for example. Perhaps, more
interestingly, a better initialization scheme such as spectrum
clustering which directly incorporates MPS formalism may
also be explored in future works.

ACKNOWLEDGMENTS

Y. Shang thanks the support of National Natural Science
Foundation of China (Grant No. 61872352) and the Program
for Creative Research Group of the National Natural Science
Foundation of China (Grant No. 61621003). C. Guo acknowl-
edges support from the National Natural Science Foundation
of China under Grants No. 11805279, No. 61833010, No.
12074117, and No. 12061131011.

APPENDIX A: VARIATIONAL MATRIX PRODUCT
STATES FOR EACH CENTROID

To find the optimal MPS representation for each cen-
troid, we use a variational MPS algorithm similar to that of
Ref. [34]. The main idea is to optimize the tensors on each
site one by one instead of optimizing them at the same time.
The major steps of the algorithms are summarized as follows.

052424-5

XIAO SHI, YUN SHANG, AND CHU GUO PHYSICAL REVIEW A 105, 052424 (2022)

First the MPS corresponding to each centroid is initialized in
right-canonical form, which can be done by randomly initial-
izing all the tensors of each centroid and then preparing the
resulting MPS into right-canonical form, namely, each tensor
Mσl

j,bl ,bl+1
satisfies [28,69]

∑
σl ,bl+1

Mσl
j,bl ,bl+1

Mσl

j,b′
l ,bl+1

= δbl ,b′
l
, (A1)

where j is the index of the centroid and δbl ,b′
l

is the Kronecker
delta function. This will also ensure that each centroid has
Euclidean norm 1. Then, similar to the ground-state searching
algorithm, one optimizes the tensors of the MPS one by one,
that is, optimizing the tensors from the 1th site to the Lth site,
and then from the Lth site to the 1th site (L is the size of each
input data). A full iteration like this is referred to as a sweep.
The difference compared to ground-state searching is that,
for each local optimization, we perform a gradient descent
algorithm instead of eigenvalue decomposition. For example,
to optimize the tensor Mσl

j,bl ,bl+1
during the left to right iteration

on site l , one first computes the gradient of the loss function
against this tensor as

∂lossM
(
O �σ

j

)
∂Mσl

j,bl ,bl+1

= − 2

N

Nj∑
n j=1

Lj,n j ,bl X
σl
n j

R j,n j ,bl+1

|O �σ,†
j X �σ

n j
| , (A2)

with

Lj,n j ,bl =
∑
bk ,σk

∏
k<l

Mσk
j,bk ,bk+1

X σk
n j

, (A3)

Rj,n j ,bl+1 =
∑
bk ,σk

∏
k>l

Mσk
j,bk ,bk+1

X σk
n j

, (A4)

with Lj,n j ,b1 = Rj,n j ,bL+1 = 1. Here Nj denotes the number of
data in the jth cluster. After that, the tensor Mσl

j,bl ,bl+1
is up-

dated as

Mσl
j,bl ,bl+1

← Mσl
j,bl ,bl+1

− η
∂lossM

(
O �σ

j

)
∂Mσl

j,bl ,bl+1

, (A5)

with η the learning rate. Then one prepares the resulting tensor
into left-canonical form using SVD, namely,

SVD(Mj,(σl ,bl),bl+1) =
∑
b′

l+1

U σl

j,bl ,b′
l+1

S j,b′
l+1,b

′
l+1

Vj,b′
l+1,bl+1 , (A6)

where we assumed grouping the two tensor indices (σl , bl)
into a single index during the SVD decomposition (we do
not distinguish between upper and lower tensor indices). After
that U σl

j,bl ,b′
l+1

is used to substitute Mσl
j,bl ,bl+1

while S j,b′
l+1,b

′
l+1

and

Vj,b′
l+1,bl+1 are absorbed into the next tensor Mσl+1

j,bl+1,bl+2
. After

that one moves to the l + 1th site. During the right to left
iteration at site l , one group the two tensor indices (σl , bl+1)
and perform the SVD

SVD(Mj,bl ,(σl ,bl+1)) =
∑

b′
l

Uj,bl ,b′
l
S j,b′

l ,b
′
l
V σl

j,b′
l ,bl+1

, (A7)

then one uses V σl

j,b′
l ,bl+1

to substitute Mσl
j,bl ,bl+1

while Uj,bl ,b′
l

and S j,b′
l ,b

′
l

are absorbed into with the tensor on the l − 1th
site. After that one moves to the l − 1th site. In this way the

FIG. 4. (a) The loss value as a function of the number of
K-means iterations for the K-means algorithm. (b) The loss value
as a function of the number of sweeps for MPS clustering with
D = 8 (blue line) and D = 16 (yellow line), respectively. For MPS
clustering we have used three sweeps in each K-means like the
iteration. Here the Yeast data set is used. The loss values in both
cases are divided by their initial values.

resulting MPS will automatically be right-canonical after a
full sweep.

APPENDIX B: DETAILS OF THE
NUMERICAL EXPERIMENTS

We first show the convergence of K-means and MPS clus-
tering as the number of iterations in Fig. 4, where we used
the Yeast data set. The loss values are defined as the sum
of the losses of all the different clusters. For the K-means
algorithm, we plot the loss values as a function of the K-means
iteration. While for MPS clustering, we plot the loss values as
a function of K-means-like iteration. The loss values are all
divided by their initial values. We can see that for the K-means
algorithm the loss values quickly converge to a minimum.
In comparison, MPS clustering the converges slower, but to
smaller values.

It is also insightful to look at the distances between the
learned centroids for both algorithms. We thus show the inner
products between the learned centroids in Fig. 5, where we
also used the Yeast data set. Ideally, if the diagonal terms are

FIG. 5. Inner product between the learned centroids for the
K-means algorithm (left panel) and for MPS clustering with D = 8
(right panel). Here the Yeast data set is used.

052424-6

CLUSTERING USING MATRIX PRODUCT STATES PHYSICAL REVIEW A 105, 052424 (2022)

much larger than the off-diagonal terms, then it means the
centroids are much better separated. We can see that for the
K-means algorithm, centroids cannot be well distinguished

with each other at all. Furthermore, we can infer that how
centroids are not orthogonal enough will affect the clustering
effect. While for MPS clustering, the situation is slightly bet-
ter (the learning accuracies in both cases are lower than 50%).

[1] J. Carrasquilla and R. G. Melko, Nat. Phys. 13, 431 (2017).
[2] P. Zhang, H. Shen, and H. Zhai, Phys. Rev. Lett. 120, 066401

(2018).
[3] K. Ch’ng, N. Vazquez, and E. Khatami, Phys. Rev. E 97, 013306

(2018).
[4] E. P. L. Van Nieuwenburg, Y.-H. Liu, and S. D. Huber,

Nat. Phys. 13, 435 (2017).
[5] P. Broecker, J. Carrasquilla, R. G. Melko, and S. Trebst,

Sci. Rep. 7, 8823 (2017).
[6] K. Ch’ng, J. Carrasquilla, R. G. Melko, and E. Khatami,

Phys. Rev. X 7, 031038 (2017).
[7] Y. Zhang and E.-A. Kim, Phys. Rev. Lett. 118, 216401 (2017).
[8] X.-Y. Dong, F. Pollmann, and X.-F. Zhang, Phys. Rev. B 99,

121104(R) (2019).
[9] G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko,

and G. Carleo, Nat. Phys. 14, 447 (2018).
[10] G. Torlai and R. G. Melko, Phys. Rev. Lett. 120, 240503 (2018).
[11] A. Rocchetto, E. Grant, S. Strelchuk, G. Carleo, and S. Severini,

npj Quantum Inf. 4, 28 (2018).
[12] Y. Quek, S. Fort, and H. K. Ng, npj Quantum Inf. 7, 105 (2021).
[13] J. Carrasquilla, G. Torlai, R. G. Melko, and L. Aolita, Nat.

Mach. Intell. 1, 155 (2019).
[14] L.-F. Arsenault, A. Lopez-Bezanilla, O. A. von Lilienfeld, and

A. J. Millis, Phys. Rev. B 90, 155136 (2014).
[15] L.-F. Arsenault, O. A. von Lilienfeld, and A. J. Millis,

arXiv:1506.08858.
[16] G. Torlai and R. G. Melko, Phys. Rev. B 94, 165134 (2016).
[17] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R.

Melko, Phys. Rev. X 8, 021050 (2018).
[18] J. Liu, Y. Qi, Z. Y. Meng, and L. Fu, Phys. Rev. B 95, 041101(R)

(2017).
[19] L. Huang and L. Wang, Phys. Rev. B 95, 035105 (2017).
[20] K.-I. Aoki and T. Kobayashi, Mod. Phys. Lett. B 30, 1650401

(2016).
[21] G. Carleo and M. Troyer, Science 355, 602 (2017).
[22] Y. Nomura, A. S. Darmawan, Y. Yamaji, and M. Imada,

Phys. Rev. B 96, 205152 (2017).
[23] S. Czischek, M. Gärttner, and T. Gasenzer, Phys. Rev. B 98,

024311 (2018).
[24] C. Guo and D. Poletti, Phys. Rev. E 103, 013309 (2021).
[25] I. A. Luchnikov, S. V. Vintskevich, D. A. Grigoriev, and S. N.

Filippov, Phys. Rev. Lett. 124, 140502 (2020).
[26] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[27] S. R. White, Phys. Rev. B 48, 10345 (1993).
[28] U. Schollwöck, Ann. Phys. (NY) 326, 96 (2011).
[29] I. Oseledets and E. Tyrtyshnikov, Lin. Alg. Applic. 432, 70

(2010).
[30] D. Savostyanov and I. Oseledets, in Proceedings of the 2011 In-

ternational Workshop on Multidimensional (nD) Systems (IEEE,
New York, 2011), pp. 1–8.

[31] E. Stoudenmire and D. J. Schwab, in Advances in Neural In-
formation Processing Systems, edited by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, Proceedings of NIPS
(NeurIPS, San Diego, CA, 2016), pp. 4799–4807.

[32] E. M. Stoudenmire, Quantum Sci. Technol. 3, 034003 (2018).
[33] Z.-Z. Sun, C. Peng, D. Liu, S.-J. Ran, and G. Su, Phys. Rev. B

101, 075135 (2020).
[34] Z.-Y. Han, J. Wang, H. Fan, L. Wang, and P. Zhang, Phys. Rev.

X 8, 031012 (2018).
[35] C. Guo, Z. Jie, W. Lu, and D. Poletti, Phys. Rev. E 98, 042114

(2018).
[36] M. R. Karim, O. Beyan, A. Zappa, I. G. Costa, D. Rebholz-

Schuhmann, M. Cochez, and S. Decker, Brief. Bioinform. 22,
393 (2021).

[37] C. Niu, H. Shan, and G. Wang, arXiv:2103.09382.
[38] N. Mishra, R. Schreiber, I. Stanton, and R. E. Tarjan, in Interna-

tional Workshop on Algorithms and Models for the Web-Graph
(Springer, New York, 2007), pp. 56–67.

[39] S. Lloyd, M. Mohseni, and P. Rebentrost, arXiv:1307.0411.
[40] N. Wiebe, A. Kapoor, and K. Svore, Quantum Inf. Comput. 15,

0318 (2015).
[41] X. Xie, L. Duan, T. Qiu, and J. Li, Sci. Rep. 11, 1 (2021).
[42] J. B. Macqueen, in Proceedings of the Fifth Berkeley Sympo-

sium on Mathematical Statistics and Probability (University of
California Press, Berkeley, CA, 1967).

[43] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, Mach. Learn.
75, 245 (2009).

[44] S. Lloyd, IEEE Trans. Inf. Theory 28, 129 (1982).
[45] A. Y. Ng, M. I. Jordan, and Y. Weiss, in Advances in Neural

Information Processing Systems (MIT Press, Cambridge, MA,
2002), pp. 849–856.

[46] U. von Luxburg, Stat. Comput. 17, 395 (2007).
[47] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy,

J. ACM 59, 1 (2012).
[48] M. E. Celebi, H. A. Kingravi, and P. A. Vela, Expert Syst.

Applic. 40, 200 (2013).
[49] O. Bachem, M. Lucic, H. Hassani, and A. Krause, in Ad-

vances in Neural Information Processing Systems (MIT Press,
Cambridge, MA, 2016), pp. 55–63.

[50] D. Lim, R. Vidal, and B. D. Haeffele, arXiv:2011.14859.
[51] B. Zhang, M. Hsu, and U. Dayal, Hewlett-Packard Labs, Tech-

nical Report No. HPL-1999-124 55 (1999).
[52] J. Xu and K. Lange, in International Conference on Machine

Learning (PMLR, Maastricht, The Netherlands, 2019), pp.
6921–6931.

[53] R. C. De Amorim and B. Mirkin, Pattern Recog. 45, 1061
(2012).

[54] S. Chakraborty and S. Das, Pattern Recog. Lett. 100, 67 (2017).
[55] P. Huang, Y. Huang, W. Wang, and L. Wang, in 2014 22nd

International Conference on Pattern Recognition (IEEE, New
York, 2014), pp. 1532–1537.

[56] F. Ding, F. Luo, and Y. Yang, arXiv:1911.05210.
[57] S. Mukherjee, H. Asnani, E. Lin, and S. Kannan, in Proceedings

of the AAAI Conference on Artificial Intelligence (AAAI Press,
Menlo Park, CA, 2019), Vol. 33, pp. 4610–4617.

[58] L. Mahon and T. Lukasiewicz, in German Conference on Ar-
tificial Intelligence (Künstliche Intelligenz) (Springer, Berlin,
2021), pp. 158–178.

052424-7

https://doi.org/10.1038/nphys4035
https://doi.org/10.1103/PhysRevLett.120.066401
https://doi.org/10.1103/PhysRevE.97.013306
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/s41598-017-09098-0
https://doi.org/10.1103/PhysRevX.7.031038
https://doi.org/10.1103/PhysRevLett.118.216401
https://doi.org/10.1103/PhysRevB.99.121104
https://doi.org/10.1038/s41567-018-0048-5
https://doi.org/10.1103/PhysRevLett.120.240503
https://doi.org/10.1038/s41534-018-0077-z
https://doi.org/10.1038/s41534-021-00436-9
https://doi.org/10.1038/s42256-019-0028-1
https://doi.org/10.1103/PhysRevB.90.155136
http://arxiv.org/abs/arXiv:1506.08858
https://doi.org/10.1103/PhysRevB.94.165134
https://doi.org/10.1103/PhysRevX.8.021050
https://doi.org/10.1103/PhysRevB.95.041101
https://doi.org/10.1103/PhysRevB.95.035105
https://doi.org/10.1142/S0217984916504017
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1103/PhysRevB.96.205152
https://doi.org/10.1103/PhysRevB.98.024311
https://doi.org/10.1103/PhysRevE.103.013309
https://doi.org/10.1103/PhysRevLett.124.140502
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.laa.2009.07.024
https://doi.org/10.1088/2058-9565/aaba1a
https://doi.org/10.1103/PhysRevB.101.075135
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevE.98.042114
https://doi.org/10.1093/bib/bbz170
http://arxiv.org/abs/arXiv:2103.09382
http://arxiv.org/abs/arXiv:1307.0411
https://doi.org/10.48550/arXiv.1401.2142
https://doi.org/10.1038/s41598-020-79139-8
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1145/2395116.2395117
https://doi.org/10.1016/j.eswa.2012.07.021
http://arxiv.org/abs/arXiv:2011.14859
https://doi.org/10.1016/j.patcog.2011.08.012
https://doi.org/10.1016/j.patrec.2017.09.025
http://arxiv.org/abs/arXiv:1911.05210

XIAO SHI, YUN SHANG, AND CHU GUO PHYSICAL REVIEW A 105, 052424 (2022)

[59] C. Guo, K. Modi, and D. Poletti, Phys. Rev. A 102, 062414
(2020).

[60] L. Tagliacozzo, T. R. de Oliveira, S. Iblisdir, and J. I. Latorre,
Phys. Rev. B 78, 024410 (2008).

[61] T. O. Kvalseth, IEEE Trans. Syst., Man, Cyberne. 17, 517
(1987).

[62] J. Xie, R. Girshick, and A. Farhadi, in International Conference
on Machine Learning (PMLR, Maastricht, The Netherlands,
2016), pp. 478–487.

[63] X. Guo, L. Gao, X. Liu, and J. Yin, in Ijcai (International Joint
Conferences on Artificial Intelligence, Melbourne, Australia,
2017), pp. 1753–1759.

[64] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang,
in Proceedings of the IEEE International Conference on Com-
puter Vision (IEEE, New York, 2017), pp. 5736–5745.

[65] C. You, C.-G. Li, D. P. Robinson, and R. Vidal, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recog-
nition (IEEE, New York, 2016), pp. 3928–3937.

[66] N. Mrabah, N. M. Khan, R. Ksantini, and Z. Lachiri, Neural
Networks 130, 206 (2020).

[67] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, in Proceedings of the 30th International Conference
on Neural Information Processing Systems (NIPS, Berkeley,
CA, 2016), pp. 2180–2188.

[68] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu, in
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (IEEE, New York, 2019),
pp. 4066–4075.

[69] H.-L. Huang, W.-S. Bao, and C. Guo, Phys. Rev. A 100, 032305
(2019).

052424-8

https://doi.org/10.1103/PhysRevA.102.062414
https://doi.org/10.1103/PhysRevB.78.024410
https://doi.org/10.1109/TSMC.1987.4309069
https://doi.org/10.1016/j.neunet.2020.07.005
https://doi.org/10.1103/PhysRevA.100.032305

