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Counterdiabatic transfer of a quantum state in a tunable Heisenberg spin
chain via the variational principle
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We present a couple of counterdiabatic (CD) schemes for a rapid and high-fidelity transfer of quantum state
across a one-dimensional spin chain, between two weakly coupled external qubits at each end. Employing the
effective low-energy Hamiltonian of the system, we first construct the optimal CD terms based on the variational
principle and then put forward two experimentally feasible shortcuts, which only need to manipulate couplings
between the external qubits and chain. Compared to traditional adiabatic protocol, the resulting schemes allow a
drastic increase in state-transfer fidelity in a short time. Furthermore, numerical simulation demonstrates that our
speed-up protocols hold robustness against the imperfections of control fields and evolution time. The proposed
schemes may be applicable to fast quantum-information transport in various spin-based physical systems.
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I. INTRODUCTION

Faithful and fast transfer of quantum information between
two different systems is necessary for scalable quantum in-
formation processing [1,2]. For short-distance quantum state
transfer (QST), spin chains are paradigmatic systems due to
native spin-spin interactions and simple physical encodings
[3–9]. Many established schemes, which depend on precisely
engineering couplings among qubits and dynamical evolution
time, are usually vulnerable to environmental noises, time
errors, and so on. To mitigate this drawback, the adiabatic con-
trol (a technique carries the advantage of inherent robustness
to pulse errors and noise) can be adopted, and it has emerged
as an appealing route to realize QST [10–16]. Nevertheless,
such controls typically achieve high-fidelity state transfer at
the cost of time, and thus, may suffer from decoherence in a
quantum system.

To speed up the quantum adiabatic processes, the tech-
nique termed shortcut to adiabaticity (STA) [17–19] was put
forward, which provides a powerful method of accelerating
quantum-information processing and inheriting the robustness
of adiabatic dynamics. Till now, STA has great applications
in many fields (see recent reviews in Refs. [20,21]), one of
which is fast quantum state transport in arrays of spin qubits
[22–30]. For example, the authors of Ref. [22] constructed
superadiabatic QST passage in an odd-size spin chain, which
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exploited CD driving and unitary transformation on the sim-
plified Hamiltonian. The authors of Ref. [25] proposed a
high-fidelity STA protocol for state transfer via quantum Zeno
dynamics and inverse Hamiltonian engineering. By means
of the approximate mapping between the spin chain and a
single particle in a harmonic potential, the authors of Ref. [29]
designed a scheme for fast and robust magnon transport in a
spin chain.

Among the known methods to construct STA, CD driving
provides a quite simple way to exactly suppress nonadiabatic
transitions by adding a CD term to the original Hamiltonian
[17,18]. However, the main challenge of obtaining CD term is
to diagonalize the Hamiltonian in the full Hilbert space, which
hinders its access to practical implementations for many-
body systems [31–34]. Recently, a variational method [35,36],
taking available resources and experimental constraints into
consideration, was proposed to obtain the best possible CD
term approximatively. It can nullify the need for exact di-
agonalization of the system. Some very recent efforts were
devoted to exploring its potential applications, ranging from
quantum chaos and phase transition [37,38] to quantum an-
nealing of many-body systems [39–42] and fast control of
complicated quantum systems [43–46].

Inspired by the variational principle to CD driving, here
we put forward two high-fidelity and minimal-control proto-
cols to transfer quantum state across a Heisenberg spin-1/2
chain, which make time significantly shorter than that using
the adiabatic schemes. The rest of the paper is organized as
follows. In Sec. II we briefly review the variational principle
to CD driving and introduce the physical system, a strongly
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coupled Heisenberg chain with an odd number of spins, to
perform the adiabatic state transfer protocol. In Sec. III, we
utilize the variational strategy in the simplified Hamiltonian
to design the optimal CD drivings with different auxiliary op-
erators, without resorting to diagonalizing the instantaneous
Hamiltonian. Subsequently, combining the results with Flo-
quet driving and unitary transformation, two high-fidelity and
feasible shortcuts for diabatic QST are constructed. The ef-
fectiveness of these protocols is reported in Sec. IV, where
we also investigate their robustness against the errors from
control fields and evolution time. Finally, a brief summary is
presented in Sec. V.

II. PRELIMINARIES

Consider a quantum system consisting of sender, channel,
and receiver subsystems, our goal is to transport a quantum
state from the sender to the receiver quickly. In what follows,
we will briefly introduce the method and system involved. For
convenience, we set h̄ = 1 and express the time-dependent
parameters implicitly unless necessary.

A. Variational method to CD driving

To counteract the possible transitions when the adiabatic
driving of a system H0(λ) is speeded up, we can drive the
system with the CD protocol [17,18]

H (λ) = H0(λ) + λ̇Aλ, (1)

where λ is a time-dependent parameter, Aλ is the adiabatic
gauge potential (AGP) [35], and the dot denotes the time
derivative. Thus, the well-designed system will follow the
time-dependent eigenstates of H0 from beginning to end with-
out requiring slow driving. In many-body systems, however,
it is hard to acquire the exact Aλ since it usually requires the
spectral information of the Hamiltonian at any time.

To avoid this problem, a variational ansatz to opti-
mally approximate the AGP (or CD term) was proposed in
Refs. [35,36]. Provided there exists a trial AGP A∗

λ consisting
of allowed operators in practice, e.g., single-spin terms and
two-body interactions, the optimal approximation can be built
by finding the minimum operator distance

D2(A∗
λ) = Tr{[Gλ(Aλ) − Gλ(A∗

λ)]2}, (2)

where the Hermitian operator Gλ is defined as

Gλ(Xλ) ≡ ∂λH0 + i[Xλ, H0]. (3)

Furthermore, this process is equivalent to minimizing the
Hilbert-Schmidt norm of the operator Gλ(A∗

λ)

S (A∗
λ) = Tr

[
G2

λ(A∗
λ)

]
, (4)

with respect to A∗
λ. In this way, the demand for diagonalizing

Hamiltonian H0 can be eliminated. For a detailed derivation,
please see Ref. [35]. However, there exists a potential prob-
lem to choose the variational basis from available operators
beforehand since the number of possible operators increases
exponentially with system size. Recently, in Ref. [43] Claeys
et al. demonstrated that the approximated A∗

λ could be
constructed from a series of nested commutators of H0

S R

C

S R

1 2 3 4 N

(a) (b)

FIG. 1. Schematic of the spin structure. (a) Two external qubits S
and R (blue balls) weakly coupled to an odd-size spin chains (yellow
balls), namely J1,2 � J0. (b) The corresponding effective model in
the low-energy subspace. The odd-size spin chain in its ground state
works as an effective 1/2 spin, labeled as C (brown ball) and J̃1,2(t )
denote the effective qubit-chain couplings.

and ∂λH0,

[H0(λ), [H0(λ), . . . , [H0(λ), ∂λH0(λ)]]], (5)

where the number of H0(λ) in the commutation relation is odd.
Generally speaking, higher-order commutators can provide
more basis operators and benefit a better approximation of
AGP in many-body systems. In virtue of simplicity and effi-
ciency, the variational principle to CD driving with the nested
commutator ansatz was further explored in the p-spin model
[40] and the honeycomb Kitaev model [46].

B. Model and adiabatic QST protocol

As paradigmatic systems, spin chains were extensively
studied in the areas of statistical physics and quantum in-
formation processing, e.g., short-distance QST. Here the
composite system we consider is the spin chain of the Heisen-
berg type, which has been experimentally realized in quantum
dots [47], ultracold atoms [48], and Josephson junction arrays
[49]. As illustrated in Fig. 1(a), two external qubits, served
as the sender and receiver (labeled as S and R, respectively),
weakly couple to an odd-size Heisenberg spin chain (labeled
from 1 to N) at both ends. The Hamiltonian is written as

H0 = J1 σS · σ1 + J0

N−1∑
i=1

σ i · σ i+1 + J2 σN · σR. (6)

Here σ = (σ x, σ y, σ z ) denote the Pauli matrices acting on
each spin, and J0 represents the uniform nearest-neighbor
couplings of the spin chain, which is much larger than the
qubit-chain couplings J1,2. Since H0 commutes with the z
component of the total spin operator, the number of excita-
tions in the QST process is preserved.

To adiabatically transfer a quantum state from the sender to
receiver, according to Ref. [22] we start with the initial state

|�(0)〉 = |ψ0〉 ⊗ |ψg〉,
where |ψ0〉 = a|0〉 + b|1〉 with a and b being arbitrary coef-
ficients represents the quantum state to-be-transported, and
|ψg〉 represents the ground state of the rest subsystems. Ac-
cordingly, the target state can be transferred to the receiver by
adiabatically switching the time-dependent qubit-chain cou-
plings J1,2(t ) from

J1(0) = 0, J2(0) = JR, (7)

to

J1(T ) = JL, J2(T ) = 0, (8)
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during which J0 keeps constant. Here we set the parameters
JL,R = 1 with no loss of generality, and in the following
we randomly choose a = e−i 2π

3 sin 2π
9 , b = cos 2π

9 for con-
venience of numerical simulation. The final quality of QST
can be assessed by performing quantum state tomography
on the receiver qubit. Since the minimal energy gap of this
system tends to zero with the growth of system size [4], i.e.,
� ∝ 1

N , the time needs to satisfy the adiabatic condition will
increase (T � 1/�). In the following sections, by simplifying
the dynamics of the system, we will construct two feasible
schemes for accelerating the adiabatic state transfer via the
variational method.

III. COUNTERDIABATIC TRANSFER OF QUANTUM
STATE VIA THE VARIATIONAL PRINCIPLE

The odd-size Heisenberg spin-1/2 chain has two-fold de-
generate ground states {|0C〉, |1C〉} and behaves like a central
spin at the low energies [4,50,51] when two marginal qubits
are weakly coupled to this chain, i.e., J1,2 � J0, as shown
in Fig. 1(b). According to the perturbed theory, the effective
Hamiltonian to first order is given by

H0 = J̃1σS · σC + J̃2σC · σR, (9)

where the central spin operator σC is defined by σ x
C =

|0C〉〈1C | + |1C〉〈0C |, σ
y
C = −i|0C〉〈1C | + i|1C〉〈0C | and σ z

C =
|0C〉〈0C | − |1C〉〈1C |. The effective couplings J̃1,2(t ) are pro-
portional to the dimensionless local magnetic moments of the
first and end spins of the chain in the ground state [4,50,51],
which read

J̃1 = J1〈0C |σ z
1 |0C〉, J̃2 = J2〈0C |σ z

N |0C〉. (10)

It means QST in an odd-size chain (6) can be explored in the
light of the effective Hamiltonian (9) qualitatively. Since J̃1,2

can be always rescaled by the factor m = 〈0C |σ z
1,N |0C〉, we

will take m = 1 in this effective three-spin model unless it is
mapped back to the whole spin chain. For brevity, we will use
the subscripts {1, 2, 3} to label the three spins in Fig. 1(b).

Substituting Eq. (9) into the different-order commuta-
tion relation of Eq. (5), the results show that the following
operators {Ok (k = 1, . . . , 6)} = {σ x

1 σ
y
2 σ z

3 , σ
y
1 σ x

2 σ z
3 , σ x

1 σ z
2σ

y
3 ,

σ
y
1 σ z

2σ x
3 , σ z

1σ x
2 σ

y
3 , σ z

1σ
y
2 σ x

3 } can work as the possible vari-
ational basis. Hence, the trial gauge potential A∗ can be
constructed as

A∗ = i
6∑

k=1

βkOk, (11)

with βk being variational coefficient. To preserve the ex-
citations in the QST, A∗ needs to fulfill the condition
[A∗,

∑
σ z

i ] = 0, which results in the following constraints:

β1 = −β2, β3 = −β4, β5 = −β6. (12)

Put it in another way, the possible operators {Ok} can be
recombined as

L1 = σ x
1 σ

y
2 σ z

3 − σ
y
1 σ x

2 σ z
3 ,

L2 = σ z
1σ x

2 σ
y
3 − σ z

1σ
y
2 σ x

3 ,

L3 = σ
y
1 σ z

2σ x
3 − σ x

1 σ z
2σ

y
3 . (13)

Then, A∗ can be rewritten as

A∗ = i
3∑

k=1

αkLk . (14)

To avoid confusion, here the symbols αk are used to stand
for the undetermined coefficients. Substituting this A∗ into
Eq. (3), we have

G(A∗
λ) =

3∑
i=1

Di(α1, α2, α3)
[
σ x

i σ x
i+1 + σ

y
i σ

y
i+1

]

+
3∑

i=1

Ki(α1, α2, α3)σ z
i σ z

i+1, (15)

in which σ ν
1 = σ ν

4 with ν = x, y, z, and the time-dependent
coefficients Di, Ki can be formulated as a matrix

D =
⎡
⎣ ˙̃J1 − 2(α1 + α3)J̃2

˙̃J2 + 2(α2 + α3)J̃1

2(α1 + α3)J̃2 − 2(α2 + α3)J̃1

⎤
⎦, (16)

and

K =
⎡
⎣ ˙̃J1 − 4α2J̃2

˙̃J2 + 4α1J̃1

4α2J̃2 − 4α1J̃1

⎤
⎦. (17)

Thus, the Hilbert-Schmidt norm of the operator (15), by virtue
of the Pauli matrices being traceless, amounts to adding up
squares of coefficients of each spin operator, i.e., S (A∗

λ) =
23 ∑3

i=1(2D2
i + K2

i ), which can be represented as a quadratic
form about the variables {αk}. Minimizing S (A∗

λ) with respect
to {αk} and leaving out a trivial constant coefficient, we can
obtain a linear system of equations

M
c = Q, (18)

Here Q = J̃1
˙̃J2 − J̇1J̃2, the column vectors 
c = [α1, α2, α3]T ,

and the coefficient matrix M reads

M =
⎡
⎣ 8J̃2

1 + 4J̃2
2 −6J̃1J̃2 4J̃2

2 − 2J̃1J̃2

−6J̃1J̃2 8J̃2
2 + 4J̃2

1 4J̃2
1 − 2J̃1J̃2

4J̃2
2 − 2J̃1J̃2 4J̃2

1 − 2J̃1J̃2 4(J̃2
1 + J̃2

2 − J̃1J̃2)

⎤
⎦.

(19)
Elements in the kth row of the matrix represent the expansion
coefficients of ∂S

∂αk
in the bases {α1, α2, α3}, respectively. Note

that if the CD operators in Eq. (13) are partially allowed,
i.e., the some coefficient αm is set to zero beforehand, the
corresponding basis αm of 
c and the elements in both the mth
row and mth column of M will not exist.

Depending on the number of the CD operators included,
the optimal variational solutions α̃k (t ) can be given by solving
Eq. (18). We list all the possible solutions, classified into
the three conditions, in Table I. The other two solutions in
case 2 were ignored due to the infinite couplings near the
boundary. Taking all the optimal solutions into consideration,
the resulting CD driving Hamiltonian is

H(l ) = H0 + H(l )
cd , (20)

where H(l )
cd = ∑

α̃
(l )
k (t )Lk involves l grouped operators in

Eq. (13) with α̃
(l )
k (t ) being corresponding coefficients listed
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TABLE I. Available solutions to Eq. (18) with the different number of CD operators in Eq. (13). Here the explicit time dependence of J̃1

and J̃2 are omitted for clarity.

Case 1 α2 = α3 = 0, α̃
(1)
1 (t ) =

˙̃J1J̃2 − ˙̃J2J̃1

8J̃2
1 + 4J̃2

2

; α1 = α3 = 0, α̃
(1)
2 (t ) =

˙̃J1J̃2 − ˙̃J2J̃1

4J̃2
1 + 8J̃2

2

; α1 = α2 = 0, α̃
(1)
3 (t ) = −

˙̃J1J̃2 − ˙̃J2J̃1

4(J̃2
1 + J̃2

2 − J̃1J̃2)
;

Case 2 α3 = 0, α̃
(2)
1 (t ) = ( ˙̃J1J̃2 − ˙̃J2J̃1)(2J̃2

1 + 3J̃1J̃2 + 4J̃2
2 )

16J̃4
1 + 22J̃2

1 J̃2
2 + 16J̃4

2

, α̃
(2)
2 (t ) = ( ˙̃J1J̃2 − ˙̃J2J̃1)(4J̃2

1 + 3J̃1J̃2 + 2J̃2
2 )

16J̃4
1 + 22J̃2

1 J̃2
2 + 16J̃4

2

;

Case 3 α̃
(3)
1 (t ) = α̃

(3)
2 (t ) = α̃

(3)
3 (t ) = α̃(3) =

˙̃J1J̃2 − ˙̃J2J̃1

8(J̃2
1 − J̃1J̃2 + J̃2

2 )
;

in Table I. In this simplified three-spin model, the effective
initial state is

|�(0)〉 = (a|0〉 + b|1〉) ⊗ |01〉 − |10〉√
2

. (21)

A general solution of the Schrödinger equation is

|�(t )〉 = T exp[−i
∫ T

0
H(l )(t )dt]|�(0)〉, (22)

with T and T being the time-ordering operator and total
evolution time, respectively.

Figure 2 shows the instantaneous fidelity F (t ) of the
evolved state |�(t )〉 with the ground state of H0(t ) when dif-
ferent variational-based CD protocols are taken into account.
Since there exist two degenerate ground states |�±

g (t )〉, F (t )
is defined as

F (t ) = |〈�−
g (t )|�(t )〉|2 + |〈�+

g (t )|�(t )〉|2. (23)

We can see that utilizing full set of the CD operators in
Eq. (13), i.e., H(3)

cd = ∑3
k=1 α̃

(3)
k (t )Lk , can keep the system in

the ground states completely (blue solid line). By contrast,
in the same situation using the native protocol leads to the
fidelity only about 0.45 at the final time (black dotted line).
If we increase the number of CD operators, the fidelity will
be significantly improved. For instance, employing two CD

FIG. 2. Instantaneous fidelity F (t ) of the evolved state using the
variational-based CD drivings: H(1)(t ) (dash-dotted green); H(2)(t )
(dashed orange); and H(3)(t ) (solid blue), respectively. As a contrast,
the native protocol using H0(t ) is also described (dotted black). Here
we adopt the linear ramp J1(t ) = t

T , J2(t ) = 1 − t
T with T = 1.

operators H(2)
cd = ∑2

k=1 α̃
(2)
k Li can make the final fidelity al-

most unit (orange dashed line).
Despite taking a rather simple form, it is still challenging to

realize H(l )
cd (t ) with physically available interactions when we

return back to the full Hilbert space, which always involves
highly nonlocal many-body operators and time-dependent
control of the couplings within the spin chain. To tackle these
issues, we will present the feasible and resource-saving short-
cuts based on the variational results in combination with two
different methods: Floquet engineering and unitary transfor-
mation.

A. Floquet engineering

Floquet engineering [52–54] provides an attractive route
to quantum state manipulation, especially in the complex
many-body systems. Recently, the idea of exploiting Floquet
engineering, periodically modulating the parameters in H0 to
effectively mimic the dynamics of CD driving, was proposed
[43,55–57], which could enable the need for the complicated
terms (not existing in the original quantum system) get can-
celed. Notice that H(3)

cd (t ) is proportional to the commutator
of σ1σ2 and σ2σ3, i.e.,

H(3)
cd = α̃(3)(t )

3∑
k=1

Lk

=
˙̃J1J̃2 − ˙̃J2J̃1

8
(
J̃2

1 − J̃1J̃2 + J̃2
2

) i

2
[σ1σ2, σ2σ3], (24)

which indicates H(3)
cd can be effectively constructed by rapidly

modulating interactions J̃1,2 in Eq. (9). According to the
general procedure in Ref. [55], H(3)

cd can be approximately
realized by

HFcd = c1(t )σ1σ2 + c2(t )σ2σ3, (25)

with the control functions c1,2(t ) taking the form of a trun-
cated Fourier series∑

l

[Al sin(lωt ) + Bl cos(lωt )]. (26)

Here ω, l are the fundamental frequency, truncated term,
respectively, and {Al ,Bl} denote the undetermined param-
eters. According to the Magnus expansion (ME) [58],
the propagator of some Hamiltonian H̃ (t ) can be repre-
sented as U (t ) = exp[�(t )] with a series expansion �(t ) =

052422-4
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�1(t ) + �2(t ) + · · · , and the first two terms read

�1(t ) = − i

h̄

∫ t

0
H̃ (t1)dt1,

�2(t ) = 1

2

(−i

h̄

)2 ∫ t

0
dt1

∫ t1

0
dt2[H̃ (t1), H̃ (t2)]. (27)

To reproduce the CD evolution driven by H(3)
cd , the evolu-

tion time T will be divided into Nt periods with the duration
τ = T/Nt = 2π/ω. During each period, the MEs for the
propagators generated by H(3)

cd and HFcd, respectively, should
coincide up to a desired order in τ . Here the first-order ap-
proximation of ME induced by H(3)

cd in the nth period is

�cd(τ ) = −iτ α̃(3)(τ/2)
3∑

k=1

Lk + O(τ 3). (28)

For simplicity, the control functions c1,2(t ) in Eq. (25) can be
chosen as

c1(t ) = A
√

ω cos(ωt ), c2(t ) = B
√

ω sin(ωt ). (29)

The amplitudes of c1,2(t ) are in proportion to
√

ω, which
makes the second term of ME to be of first order in τ [55].
The first terms of ME generated by HFcd in the nth period
read

�Fcd(τ ) = −iτAB
3∑

k=1

Lk + O(τ 3/2). (30)

To ensure Mcd(τ ) ≈ MF(τ ) at all the periods, the constraint
AB = α̃(3)(t ) for the small τ is imposed. When the origi-
nal sweep functions vary monotonically, e.g., J1(t ) = t

T and
J2(t ) = 1 − t

T , the coefficient α̃(3)(t ) will keep positive. A
possible solution of the constraint equation above is

A(t ) = B(t ) =
√

α̃(3)(t ), (31)

and thus Eq. (25) turns to

HFcd(t ) =
√

ωα̃(3)[cos(ωt )σ1σ2 + sin(ωt )σ2σ3]. (32)

Subsequently, the variational-based CD driving H(3)(t ) can
be approximately constructed by

HF = H0 + HFcd

= J1(t )σ1σ2 + J2(t )σ2σ3, (33)

with the time-dependent couplings{
J1 = J̃1 +

√
ωα̃(3) cos(ωt ),

J2 = J̃2 +
√

ωα̃(3) sin(ωt ).
(34)

As the Floquet-driving Hamiltonian (33) has the same
structure with the original Hamiltonian (9), the adiabatic
quantum-state transfer will be accelerated with no need for
auxiliary CD terms when the full Hilbert space is revived.
It is remarkable that Ref. [43] also provides an alternative
strategy for constructing Floquet-engineering counterdiabatic
protocols.

Figure 3 displays the instantaneous infidelity 1 − F (t ) of
the evolved state governed by the Floquet Hamiltonian HF(t )
when ω = 20π , 40π , and 80π , respectively. Compared with
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FIG. 3. Instantaneous infidelity 1 − F (t ) for the Floquet-
engineering protocol obtained by Eq. (34), with ω = 20π (top), 40π

(middle), and 80π (bottom). The initial sweep functions are set as
J1(t ) = t

T , J2(t ) = 1 − t
T with T = 1.

the fidelity using the original adiabatic scheme (see Fig. 2
for details), the fidelity can always keep a high level. For
instance, a final fidelity around 0.99 can be achieved in the
case of ω = 20π . There is a slight deviation in the vicinity
of the middle part, as the energy gap tends to close, and
thus, the suppression for nonadiabatic transitions gets weak-
ened. To achieve a higher-precise dynamics simulation, we
can improve the sampling rates by increasing ω. As shown
in Figs. 3(b) and 3(c), when the oscillating frequency ω in-
creases up to 40π or 80π , the undesired transitions can be
further eliminated. Nevertheless, it should be noted that HFcd

is proportional to
√

ω, i.e., higher-precise dynamics here are
obtained with the stronger qubit-chain couplings. Therefore,
choosing an appropriate ω will involve a trade-off between
a desired control precision and the validity of weak-coupling
condition in Sec. II.

B. Unitary transformation

An alternative to construct feasible shortcuts from existing
CD protocols is to perform suitable unitary transformations,
which has been explored with different methods such as mul-
tiple Schro¨dinger dynamics [59], dressed states [60], and Lie
transformation [61]. For multilevel systems, however, obtain-
ing analytic unitary transformations is still intractable. We
remark that the assisted CD term H(2)

cd = ∑2
i=1 α̃

(2)
i Li also

provides almost perfect transitionless driving as shown in
Fig. 2. Meanwhile, inspired by the work [22,35,62], here we
apply the unitary transformation U (t ) = ∏2

i=1 e−iγi (t )σ z
i σ z

i+1 on

052422-5



YUNLAN JI et al. PHYSICAL REVIEW A 105, 052422 (2022)

the variational-based CD shortcut

H(2) = H0 + H(2)
cd . (35)

Then, the unitarily equivalent Hamiltonian in the new rotation
frame reads

HU = (J̃1 + γ̇1)σ z
1σ z

2 + (J̃2 + γ̇2)σ z
2σ z

3 + (
σ x

1 σ x
2 + σ

y
1 σ

y
2

)[
J̃1 cos 2γ2 − α

(2)
1 sin 2γ2

] + (
σ x

2 σ x
3 + σ

y
2 σ

y
3

)[
J̃2 cos 2γ1 + α

(2)
2 sin 2γ1

]
+ (

σ x
1 σ

y
2 σ z

3 − σ
y
1 σ x

2 σ z
3

)[
α

(2)
1 cos 2γ2 + J̃1 sin 2γ2

] + (
σ z

1σ
y
2 σ x

3 − σ z
1σ x

2 σ
y
3

)[
J̃2 sin 2γ1 − α

(2)
2 cos 2γ1

]
. (36)

The three-body interactions are undesirable; we can eliminate
these terms by making γ1,2(t ) meet the following constraints

J̃2 sin 2γ1 = α
(2)
2 cos 2γ1, J̃1 sin 2γ2 = −α

(2)
1 cos 2γ2,

(37)
and thus, we have

γ1(t ) = 1

2
arctan

α
(2)
2

J̃2
, γ2(t ) = −1

2
arctan

α
(2)
1

J̃1
. (38)

The wave functions and Hamiltonians in the two reference
frames will coincide at the boundary times if U (0) = U (T ) =
1 and U̇ (0) = U̇ (T ) = 0, which mean the condition

γ1,2(0) = γ1,2(T ) = γ̇1,2(0) = γ̇1,2(T ) = 0 (39)

should be satisfied. Deduced from Eq. (38), γ1,2(t ) at the
initial and final times can be described as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ1(0) = 1

2
arctan

˙̃J1(0)

8
, γ1(T ) = lim

t→T

1

2
arctan

− ˙̃J2

4J̃2
,

γ2(0) = lim
t→0

1

2
arctan

− ˙̃J1

4J̃1
, γ2(T ) = 1

2
arctan

˙̃J2(T )

8
,

(40)

and the first-order derivatives at boundaries are⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

γ̇1(0) = 4 ¨̃J1(0) + 6 ˙̃J2
1 (0) − 12 ˙̃J1(0) ˙̃J2(0)

˙̃J2
1 (0) + 64

, γ̇1(T ) = 2,

γ̇2(0) = 2, γ̇2(T ) = 4 ¨̃J2(T ) + 6 ˙̃J2
2 (T ) − 12 ˙̃J2(T ) ˙̃J1(T )
˙̃J2
2 (T ) + 64

.

(41)
Equations (40) and (41) depend on the concrete forms of
J̃1,2(t ), or rather J1,2(t ), considering the relationship between
them in Eq. (10). Obviously, the condition in Eq. (39) is
inconsistent, and thus the desired unitary transformation is
impracticable.

To achieve our goal, we can make the first-order and
second-order derivatives of J1,2(t ) follow the boundary con-
straints

J̇1(0) = J̈1(0) = 0, J̇2(T ) = J̈2(T ) = 0. (42)

Consequently, the two wave functions in different reference
frames will be equivalent at the boundary times except for
global phases, i.e.,{

U (0)|�(0)〉 = e−i π
4 |�(0)〉,

U (T )|�(T )〉 = ei π
4 |�(T )〉.

(43)

Here the global phase has no impact on our goal. Furthermore,
under the conditions in Eq. (42) we can easily obtain the
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0 0.5 1
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1

0 0.5 1
0

2.0

4.0

0 0.5 1
0

2.0

4.0

0 0.5 1
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FIG. 4. The parameters γ1,2(t ) and J xy,z
1,2 (t ) in Eq. (46) with the different ramps (from left to right): 1. J1 = t3

T 3 , J2(t ) = (1 − t
T )3; 2.

J1 = sin2[ π

2 sin2( πt
2T )], J2 = 1 − J1; 3. J1 = sin πt

2T , J2 = cos πt
2T ; 4. J1 = t

T , J2 = 1 − t
T . In all panels T = 1. Notice that γ1,2(t ) are taken in the

interval [− π

4 , π

4 ] regardless of their periodicities.

052422-6



COUNTERDIABATIC TRANSFER OF A QUANTUM STATE … PHYSICAL REVIEW A 105, 052422 (2022)

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

FIG. 5. The instantaneous fidelity F (t ) of the unitarily equivalent
scheme [Eq. (45)] using four sets of sweep functions shown in Fig. 4
for T = 1. A detailed description is given in the main text.

following commuting relations:

[HU(0),H(2)(0)] = 0, [HU(T ),H(2)(T )] = 0, (44)

which indicate the Hamiltonians in the two reference frames
share common eigenstates at the boundaries. To sum-
marize, the unitarily equivalent Hamiltonian in Eq. (36)
becomes

HU = J xy
1 (t )

(
σ x

1 σ x
2 + σ

y
1 σ

y
2

) + J z
1 (t )σ z

1σ z
2

+ J xy
2 (t )

(
σ x

2 σ x
3 + σ

y
2 σ

y
3

) + J z
2 (t )σ z

2σ z
3 , (45)

with the time-dependent couplings{
J xy

1 = J̃1 cos 2γ2 − α
(2)
1 sin 2γ2, J z

1 = J̃1 + γ̇1,

J xy
2 = J̃2 cos 2γ1 + α

(2)
2 sin 2γ1, J z

2 = J̃2 + γ̇2.
(46)

Since the designed HU does not introduce operators not in-
cluded in H0, we only need to manipulate the qubit-chain
couplings, which will facilitate the experimental realization.

Then, based on Eq. (42), different driving protocols can be
designed. Here, we choose the polynomial functions

J1(t ) = t3

T 3
, J2(t ) =

(
1 − t

T

)3

, (47)

and the trigonometric functions

J1(t ) = sin2

[
π

2
sin2

(
πt

2T

)]
, J2(t ) = 1 − J1. (48)

The corresponding parameters γ1,2 and J xy,z
1,2 when T = 1 are

illustrated in Figs. 4(a), 4(e) and Figs. 4(b) and 4(f). For the
latter sweep, both J̇1,2(t ) and J̈1,2(t ) are zero at the beginning
and end of the protocol, far beyond the constraints in Eq. (42),
which brings out a smooth change of J xy,z

1,2 near the initial and
final times.

The instantaneous fidelities F (t ) are presented in Fig. 5
where the initial state |�(0)〉 is driven by HU with the
polynomial functions (47) (blue solid line) and trigonometric
functions (48) (orange dashed line), respectively. The result
shows a high-fidelity quantum state manipulation can be real-
ized via the unitarily equivalent shortcuts. In the middle time
HU does not equal to H(2), so the instantaneous fidelity F (t )
will decrease first and then increase. It is noteworthy that at

the final time the fidelity, though close to 1, can only reach
the value as same as the one using the shortcut H(2). If the
original sweeps J1,2(t ) do not satisfy the boundary condi-
tions, the final fidelity will decrease obviously. As a contrast,
Fig. 5 also presents F (t ) for the ramps J1(t ) = sin πt

2T , J2(t ) =
cos πt

2T (green dash-dotted line) and J1(t ) = t
T , J2(t ) = 1 − t

T
(black dotted line), respectively; see Figs. 4(c) and 4(d) and
Figs. 4(g) and 4(h) for a detailed description of γ1,2 and J xy,z

1,2 .
Under the same condition, the final fidelities reach merely
about 0.95 and 0.97, respectively. If we increase T , J̇1,2 tend
to zero at the boundary times. It makes Eq. (42) hold ap-
proximately and the final fidelity as same as that using sweep
functions (47) or (48) will be achieved.

IV. NUMERICAL RESULTS

To show the validity of the two constructed shortcuts de-
rived from the variational-based CD approach, we map from
the effective model back to the whole spin chain by substi-
tuting the marginal couplings with the Eqs. (34) and (46) in
the Hamiltonian (6), respectively, and explore the dynamical
evolution numerically. For simplicity, we employ Eq. (48) as
the initial adiabatic drivings and assess the QST fidelity F
with respect to T

F (T ) = 〈ψ0|ρ f (T )|ψ0〉. (49)

Here |ψ0〉 is the target state and ρ f (T ) stands for the reduced
density matrix of the receiver spin by tracing out all the others
subsystems, i.e.,

ρ f (T ) = TrR̄[U (0, T )|�(0)〉〈�(0)|U †(0, T )], (50)

with |�(0)〉 being the initial state of the whole system and
U (0, T ) being the evolution operator from time t = 0 to T
with the new designed protocols.

In Fig. 6, we plot the QST fidelity F (T ) (lines with
symbols) via the Floquet-engineering and unitarily equivalent
shortcuts, respectively. For different-size Heisenberg chains,
F (T ) rise up quickly and then maintain a high level for both
designed strategies. Since the minimum energy gap between
the ground and first excited states decreases with the growth
of system size, it will take a longer time to reach the same
level for larger systems. If using the original adiabatic scheme
(lines without symbols), the desired state transfer occurs un-
til T is large enough to satisfy the adiabatic condition. For
instance, to achieve a QST fidelity of F > 0.99 across the
N = 7 spin chain, the minimal evolution time of both short-
cuts will be at least an order of magnitude less than that
of the adiabatic protocol. However, the shorter the evolution
time is, the larger the qubit-chain couplings in Eqs. (34) and
(46) require. Therefore, the weak-coupling condition becomes
invalid as T continues to decrease, which accounts for a dra-
matic drop of F in both shortcuts. In addition, compared to the
unitarily equivalent scheme, the Floquet-engineering shortcut
has larger qubit-chain couplings for a short duration T , which
gives rise to a lower fidelity at the beginning in Fig. 6(a).

To further demonstrate the robustness of the designed
protocols, we choose N = 5 spin channel without loss of gen-
erality and numerically investigate the resilience with respect
to the errors from the control fields and the evolution time.
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FIG. 6. QST fidelity F (T ) using (a) Floquet-engineering shortcut [Eq. (34)] and (b) unitarily equivalent shortcut [Eq. (46)] for N = 3, 5,
7 spin chain. The lines marked with symbols denote the speed-up results, and the lines without symbols are the adiabatic results. Here we set
J0 = 70, ω = 20π and choose the original driving protocol having the form of Eq. (48).

A. Errors of control fields

Here we assume that the errors of time-dependent control
fields mainly come from the imperfections in amplitudes of
the two fringe couplings

Ji = Ji + δJi, (i = 1, 2). (51)

As shown in Figs. 7(a) and 7(b) for T = 0.5, even if the rela-
tive errors ζJi = |δJi/Ji| = 15%, both shortcuts can achieve
a fidelity of F > 0.99. It manifests that our speed-up schemes
are robust against the amplitudes errors. In practice, it is hard
to create a desired spin channel by precisely manipulating the
couplings between spins based on artificial structures. Ander-
son localization due to this inevitable disorder will limit state
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FIG. 7. (a), (b) The logarithm of infidelity log10(1 − F ) ver-
sus the imperfections of the control fields. (c), (d) The logarithm
of infidelity log10(1 − F ) versus the errors of evolution time. The
subfigures in the left and right columns denote the results of Floquet-
engineering and unitarily equivalent shortcuts [Eqs. (34) and (46)],
respectively. The values of contour lines are labeled in each sub-
figure. Here we set J0 = 70, ω = 20π , and use trigonometric ramp
[Eq. (47)].

transfer beyond a distance in the chain [63]. Nevertheless, the
spin channel with the strong couplings here still behaves as an
effective 1/2 spin, even if random static variations exist, and
thus the quantum information transfer across a large distance
[64].

B. Errors of evolution time

The robustness of our schemes against time errors is also
investigated. As displayed in Figs. 7(c) and 7(d), we numer-
ically calculate the final fidelity F of the evolved state via
the two shortcuts, where deviation δT is added to the total
evolution time, i.e.,

T = T + δT . (52)

We set the maximum relative deviation ζT = |δT /T | = 15%
for different T and find that the fidelity F using the two
speed-up schemes can still exceed 0.99 in most situations. If
we transfer the target state as fast as possible i.e., T → 0,
the infidelity, originating from imperfectly mapping to the
effective three-spin model, would take place obviously, as the
inner coupling of spin chain is finite in practice. The higher-
order approximation should be introduced into the effective
Hamiltonian (9), e.g., the direct interaction between the sender
and receiver [51] and it will be left for future research.

V. CONCLUSION

High-fidelity and fast information transfer between two
distant parties is of importance in quantum computation and
quantum communication. To this end, we propose two alter-
native schemes to speed up the adiabatic state transfer across a
one-dimensional odd-size Heisenberg spin chain with strong
couplings. On one hand, by exploiting an simplified Hamilto-
nian in the subspace spanned by the ground doublet states of
the odd-size chain and the states of externally coupled qubits,
the optimal transitionless passages are effectively constructed
by virtue of the variational principle to CD driving, with-
out the need for the diagonalization of the Hamiltonian. On
the other hand, combined with Floquet driving and unitary
transformation, two feasible protocols derived from the ex-
isted variational results are constructed, respectively. Both the
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speed-up protocols only require the control of the marginal
qubit-chain couplings, which can greatly reduce the difficulty
of physical implementations in practice.

Numerical simulation confirms that our designed shortcuts
allow for high-fidelity and robust quantum state transfer de-
spite not being in the adiabatic limit, which provide potential
applications for multi-spin systems, such as quantum dots
[16] and ultracold atoms [48]. In the future we may explore
the influence of high-order approximation [51] in Eq. (9)
when the couplings within the chain are not strong enough
and design the possible shortcuts for perfect and fast QST.
In addition, extending these results to the transportation of

two-qubit states [65,66], e.g., the Bell state, could also be
considered.
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