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Distinguishing phases via non-Markovian dynamics of entanglement in topological
quantum codes under parallel magnetic field
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We investigate the static and the dynamical behavior of localizable entanglement and its lower bounds on
nontrivial loops of topological quantum codes with parallel magnetic field. Exploiting the connection between
the stabilizer states and graph states in the absence of the parallel field and external noise, we identify a specific
measurement basis, referred to as the canonical measurement basis, that optimizes localizable entanglement
when measurement is restricted to single-qubit Pauli measurements only, thereby providing a lower bound. In
situations where computing even the lower bound is difficult, we propose an approximation of the lower bound
that can be computed for larger systems according to the computational resource in hand. Additionally, we
compute a lower bound of the localizable entanglement that can be computed by determining the expectation
value of an appropriately designed witness operator. We investigate the behavior of these lower bounds in the
vicinity of the topological to nontopological quantum phase transition of the system, and perform a finite-size
scaling analysis. We also investigate the dynamical features of these lower bounds when the system is subjected
to Markovian or non-Markovian single-qubit dephasing noise. We find that in the case of the non-Markovian
dephasing noise, at large time, the canonical measurement-based lower bound oscillates with a larger amplitude
when the initial state of the system undergoing dephasing dynamics is chosen from the nontopological phase,
compared to the same for an initial state from the topological phase. On the other hand, repetitive collapses
followed by revivals to high value with time are observed for the proposed witness-based lower bound in the
nontopological phase, which is absent in the topological phase. These features can be utilized to distinguish the
topological phase of the system from the nontopological phase in the presence of dephasing noise.
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I. INTRODUCTION

The world-wide drive for achieving quantum supremacy
[1–3] and for implementing large-scale fault-tolerant quantum
computers [4,5] in the last couple of decades have estab-
lished topological quantum error correcting codes [6–9], e.g.,
the Kitaev code [10–12] and the color code [13,14] as ideal
candidate systems for the task. Robustness of these systems
against loss of physical qubits [15–18] and computational
errors [7–9,19,20] has motivated realizations of these systems
in the laboratory using substrates like trapped ions [21–23]
and superconducting qubits [24,25], which has made experi-
mental verification of theoretical results possible. Moreover,
with the introduction of noisy intermediate-scale quantum
devices built using 50–100 physical qubits [26–28], and their
use towards the goal of achieving quantum supremacy [3],
the importance of topological quantum codes hosting a large
number of qubits has now been established in the context
of building large quantum memories [10] and successfully
implementing quantum error correction protocols for errors
on multiple physical qubits [6–9].

The possibility of adverse effects of local perturbations
in quantum computation tasks has motivated investigations
of topological quantum codes as lattice models [19,29–38],
where perturbations in the form of external magnetic fields
[19,29–33,37,38] and spin-spin interactions [34,35,37] are

considered. The ground state of the system retains the topo-
logical order [39–41] when the external perturbation is small,
while with increasing perturbation strength, a topological to
nontopological quantum phase transition (QPT) takes place,
the QPT point being a quantifier of the robustness of the
code corresponding to the perturbation parameter. In contrast
to the Landau paradigm of descriptions of phases and or-
der parameters [42,43], topological to nontopological phase
transitions cannot be characterized by local order parameters
and spontaneous symmetry breaking [40,41]. While studies
of the topological to nontopological QPTs in locally per-
turbed topological quantum codes have so far been carried
out in terms of ground state energy per site and the single-
particle gap [19,29–38], the importance of the sustenance of
the topological order against local perturbations in the quan-
tum information processing and quantum computation [6–9]
highlights the necessity of investigations of these systems in
terms of quantum correlation measures that are resources in
quantum protocols [44–46].

Along with serving as resource in quantum protocols like
teleportation [44,47,48], dense coding [44,49–51], quantum
cryptography [44,52,53], and measurement-based quantum
computation [44,54–56], entanglement [44,57] is by far the
most widely accepted quantum correlation for characterizing
quantum many-body systems [58,59], including nontopolog-
ical [58–62] and topological phases [11,12,63] of lattice
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models. Advancement in the investigation of biparty- and
multiparty-entangled quantum states in the laboratory us-
ing trapped ions [64–66] and superconducting qubits [67,68]
has brought testing of theoretical results on entanglement
in characterizing phases of perturbed topological quantum
codes within our grasp. In this line of investigation, a number
of challenges have been prominent. The fact that topolog-
ical phases are characterized by nonlocal order parameters
[39–41] indicates the requirement of investigating multipartite
entanglement [44] in the ground state(s) of the system, or in
the reduced state of a chosen subsystem, which is difficult
due to the scarcity of computable multiparty entanglement
measures [44]. Also, the partial trace-based approach of com-
puting entanglement over a chosen subsystem of topological
quantum codes by determining its reduced state from the
ground state of the entire system fails as tracing out the de-
grees of freedom of the spins in the rest of the system results
in diagonal density matrices, thereby leading to vanishing
entanglement [44,69,70]. Moreover, inevitable interaction of
the system with environment [71–73] leads to a rapid decay
of entanglement over time [74–79], making it difficult to
investigate the phase structure of the perturbed topological
quantum code in terms of entanglement at a latter time in
the realistic scenario. Although the effect of thermal noise
on entanglement in unperturbed topological quantum codes
has been investigated [80–82], trends of entanglement in these
systems in the presence of noise as well as local perturbations
in the form of magnetic field or spin-spin interaction remain
unexplored.

In this paper we address the question as to whether the
topological and nontopological phases and the corresponding
QPT can be investigated in terms of appropriate entanglement
measures, both in the absence as well as presence of decoher-
ence in the system. We consider topological quantum codes,
such as the Kitaev code and the color code, in the presence
of a parallel magnetic field [29,30,37,38], and quantify entan-
glement over a multiparty subsystem of the code via a local
measurement-based protocol [83–88], where a localizable en-
tanglement [84,85] can be computed over a chosen subsystem
by maximizing the average entanglement over the subsystem
with respect to all possible single-qubit projection measure-
ments performed on all the qubits in the rest of the system.
The choice of such a measure of entanglement is based on
the recent results on the multiparty nature of localizable en-
tanglement [89], and the requirement for a nonlocal order
parameter to characterize the topological phase of the system.
We show that apart from being useful in introducing concepts
like correlation length in low-dimensional quantum spin mod-
els [86,87], characterizing phases in cluster-Ising [60,61] and
cluster-XY models [62], and as the key resource in protocols
like measurement-based quantum computation [54–56] and
entanglement percolation [90], localizable entanglement can
also aid in investigating topological to nontopological quan-
tum phase transitions occurring in topological quantum codes
under parallel magnetic field, and also under single-qubit de-
phasing noise.

To tackle the difficulty of computing the localizable entan-
glement over a chosen subsystem due to the measurement-
based optimization involved in its definition [84–87], we
numerically compute a number of lower bounds in topological

quantum codes of increasing sizes (cf. [69,70]), as a function
of the strength of the parallel magnetic field, over nontrivial
loops on the lattice under periodic boundary condition. When
the external field strength is zero, the ground states of the topo-
logical codes can be connected to graph states [91] via local
Clifford operations [69,70,92,93]. Using this, we identify a
canonical setup of Pauli measurements which optimizes the
lower bound of localizable entanglement when measurements
are restricted to single-qubit Pauli measurements. In the case
of the Kitaev code, the canonical measurement setup can
be described using the positions of the qubits in the lattice
relative to the plaquetes and vertex stabilizers through which
the nontrivial loop passes. In the presence of the external par-
allel field, the canonical measurement setup provides a lower
bound of the localizable entanglement. In situations where the
computation of even the canonical measurement-based lower
bound proves difficult due to the large size of the system,
we propose an approximation of the lower bound that can
be determined depending on the computational resource in
hand. We demonstrate that this approximation provides the
lower bound with negligible error in the case of Kitaev code
of large size under parallel magnetic field. We also consider
a lower-bound of localizable entanglement that can be com-
puted using the expectation value of an appropriately designed
witness operator [57,94,95] for the nontrivial loop in the ab-
sence of the parallel magnetic field. The witness operator can
be constructed in terms of the stabilizer operators of the code
obeying a specific set of rules [96–98], and has a one-to-one
correspondence of the chosen canonical measurement setup
[69,70]. This provides an avenue to experimentally probe the
results described in this paper.

We investigate the behavior of the canonical measurement-
based and witness-based lower bounds of localizable entan-
glement across the topological to nontopological quantum
phase transition that the system undergoes when the strength
of the parallel magnetic field is increased. We demonstrate
that in the case of the Kitaev code, the absolute value of the
first derivative of both the bounds with respect to the field
strength exhibits a maximum in the vicinity of the quantum
phase transition point. We also perform a finite-size scaling
analysis corresponding to the approach of the position of the
maximum towards the quantum phase transition point with
increasing system size. We find that although the performance
of the witness-based lower bound diminishes with the intro-
duction of the parallel magnetic field, the behaviors of its
first derivative remains unchanged across the quantum phase
transition point. We also find that the finite-size effect is more
prominent in the case of localizing entanglement over nontriv-
ial loops corresponding to the logical Z operators, compared
to the same for logical X operators. Although the investigation
of the quantum phase transition in the color code becomes
difficult due to the rapid increase in the system size, our results
regarding small color code indicate that similar behavior of
the localizable entanglement across the topological to non-
topological quantum phase transition in the color codes with
parallel magnetic field can be expected.

We also assume a situation where each of the qubits in the
system is subjected to local Markovian and non-Markovian
dephasing noise [99–103], and ask if the topological and non-
topological phases can be distinguished during the evolution
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of the system. To answer this question, we look into the
dynamics of the canonical measurement-based and witness-
based lower bounds of localizable entanglement. We show
that in the presence of non-Markovian single-qubit dephas-
ing noise on all qubits due to their connection with local
baths constituted of simple harmonic oscillators with Ohmic
spectral function [102,103], at a large time, the canonical
measurement-based lower bound of localizable entanglement
exhibits rapid oscillation with high amplitude as a function
of the strength of the parallel magnetic field in the non-
topological phase. This is in contrast to the behavior of the
lower bound of localizable entanglement in the topological
phase exhibiting the absence of an oscillation or an oscillation
with low amplitude, thereby distinguishing the two phases.
The oscillation increases with an increase in the value of the
Ohmicity parameter corresponding to the dephasing noise. On
the other hand, repetitive collapses followed by revivals to
high value of the witness-based lower bound is found during
its dynamics, when the initial state of the dynamics under non-
Markovian noise is chosen from the nontopological phase, in
contrast to the absence of such behavior in topological phase.
These features can be used to distinguish between the phases
of the model even when the system is undergoing evolution
under dephasing noise.

The paper is organized as follows. In Sec. II A we provide
brief descriptions of the topological quantum codes, including
the Kitaev code and the color code, in the presence of parallel
magnetic field. Section II B describes single-qubit dephasing
noise and the corresponding quantum master equation. The
definitions of localizable entanglement and its lower bounds,
including the witness-based lower bound, are provided in
Sec. II C. The static properties of the localizable entanglement
in the topological codes under parallel magnetic field are
discussed in Sec. III. In Sec. III A we discuss the connection
between the stabilizer ground states of the topological codes
and the graph states, and introduce the canonical measure-
ment setup. We also present the approximation scheme for
the canonical measurement-based lower bound, estimate the
error in this approximation, and demonstrate its efficiency
in the case of large systems. We also discuss the behavior
of the canonical measurement-based lower bound across the
topological to nontopological quantum phase transition in the
Kitaev model with the increasing magnetic field strength, and
perform the finite-size scaling analysis. Similar analysis is
carried out for the witness-based lower bound in Sec. III B.
We also discuss our results in the context of color codes under
parallel magnetic field. Section IV describes the behavior of
the lower bounds of localizable entanglement as a function
of time, when the system is subjected to Markovian and
non-Markovian single-qubit dephasing noise. Distinguishing
between the topological and the nontopological phases of the
model using the large time dynamics of the lower bounds of
localizable entanglement is discussed in Sec. IV A. Section V
contains the concluding remarks, and a discussion on possible
future directions.

II. MODELS AND METHODOLOGY

In this section we provide a brief overview of the topo-
logical codes in the presence of parallel magnetic field. We

also discuss the Markovian and non-Markovian dephasing
noise, and define localizable entanglement as the appropriate
measure for entanglement in topological quantum codes.

A. Topological codes in parallel magnetic field

We start our discussion with an overview of the topological
quantum codes investigated in this paper.

1. Kitaev code in a parallel magnetic field

Let us consider a 2D rectangular lattice where the sets of all
edges and plaquettes are denoted by NE and NP respectively,
hosting a total of N qubits represented by spin- 1

2 particles.
The lattice is constructed on a Nh

P × Nv
P architecture, where

Nh
P (Nv

P ) is the number of plaquettes in the horizontal (vertical)
direction, such that NP = Nh

PNv
P is the total number of plaque-

ttes in the system [see Fig. 1(a)]. Each qubit in the system
is situated on an edge of the lattice. Two types of stabilizer
operators, the plaquette operators Sp and the vertex operators
Sv , are defined on this lattice as

Sp =
⊗
i∈p

σ z
i , Sv =

⊗
i∈v

σ x
i , (1)

where σ x
i (σ z

i ) is the x (z) component of Pauli matrices, and
p (v) is the plaquette (vertex) index. The plaquette (vertex)
operator Sp (Sv ) has support on the qubits forming the plaque-
tte p (connected directly to the vertex v) of the square lattice.
The Hamiltonian describing the Kitaev model under a parallel
magnetic field is given by [29,30]

HK = −JP

∑
p

Sp − JV

∑
v

Sv − h
N∑

i=1

σ z
i , (2)

where JP and JV are respectively the plaquette and the vertex
interaction strengths, and h is the strength of the external
magnetic field on every spin. We focus on the parameter sub-
space defined by JP = JV = J > 0. In the limit h/J → 0, the
Hamiltonian in Eq. (2) represents the Kitaev model [10–12].

Under periodic boundary condition, Kitaev model on a
square lattice can be embedded on the surface of a torus of
genus 1 [see Fig. 1(c)], which holds two nontrivial loops in
horizontal and vertical directions. Let us denote the sets of
qubits supporting these nontrivial loops in the horizontal and
vertical directions by Sh and Sv , respectively. Four nontrivial
loop operators of x and z type, corresponding to these loops,
can be defined as [see Fig. 1(a)]

Lx
α =

⊗
i∈Sα

σ x
i , Lz

α =
⊗
i∈Sα

σ z
i , (3)

where α = h, v, denoting horizontal and vertical loops, re-
spectively. The Kitaev model has a fourfold degenerate
ground state, each of which is an entangled state, which can
be constructed by applying the nontrivial loop operators on

|ψ〉 = 1

2N

∏
v

[I + Sv]| |0〉⊗N , (4)

as

|ψ〉g = (
Lx

h

)a(
Lx

v

)b |ψ〉 , (5)
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FIG. 1. (a) A Kitaev code on a square lattice of 3 × 3 architecture. Each of the NE edges in the square lattice of NP plaquettes contains a
qubit, represented by the circles, constituting an N-qubit (N = NE = 2NP = 18 in the present case, with Nh

p = Nv
P = 3) system with periodic

boundary conditions in both the horizontal and vertical directions. Here NE (NP ) is the cardinality of NE (NP) (see Sec. II). A plaquette, denoted
by the index p (shown by a shaded square), and a vertex, denoted by the index v (shown by thick intersecting lines on a shaded square), consist
of four qubits each. The nontrivial loops in the vertical and horizontal directions, representing respectively the logical operators Lz

h,v and Lx
h,v ,

have been marked with the thick lines consisting of three qubits each. The Lx
h (Lz

h) and the Lz
v (Lx

h) operators intersect each other at a single qubit.
A periodic boundary condition is assumed in both the horizontal and vertical directions. (b) Color code on a hexagonal lattice. The lattice is
constituted of NP plaquettes (in the present case, NP = 6 in a 3 × 2 architecture) and N (in this example, N = 12) qubits. Red (= c1 = r), green
(= c2 = g), and blue (= c3 = b) signify three different colors of the plaquettes. The thick vertical and horizontal lines represent respectively
the vertical and horizontal nontrivial loops representing the operators Lα

h,r and Lβ
v,g [α = x(z) if β = z(x)]. Periodic boundary condition is

assumed in both the horizontal and vertical directions. (c) A torus of genus 1. The horizontal and the vertical nontrivial loops are shown by the
white (horizontal) and gray (vertical) lines.

with a, b = 0, 1, where {|0〉 , |1〉} is the computational basis
in the qubit Hilbert space [37]. With the application of the
parallel magnetic field, the ground state degeneracy is lifted,
and a nondegenerate ground state of HK is obtained. The limit
h/J → ∞ corresponds to a fully separable ground state of
the form |0〉⊗N . With increasing the strength of the parallel
magnetic field h, there is a topological to nontopological QPT
at the critical value gc = 0.328474(3) [29,30] of the dimen-
sionless system parameter g = h

J , which can be determined
by identifying the equivalence of the model with the 2D
transverse-field Ising model.

2. Color code in a parallel field

Color codes are topological quantum error correcting codes
defined on three-colorable trivalent lattices. The qubits, rep-
resented by spin- 1

2 particles, are situated on the vertices of
the lattice [13,14]. On each plaquette, two types of stabilizer
operators are defined as

Sz
p =

⊗
i∈p

σ z
i , Sx

p =
⊗
i∈p

σ x
i , (6)

where p is the plaquette index. The color code Hamiltonian in
the presence of a parallel magnetic field on a hexagonal lattice
is given by [38]

HC = −J
∑

p

(
Sx

p + Sz
p

) − h
N∑

i=1

σ x
i , (7)

where J is the plaquette interaction strength. We consider a
hexagonal lattice [see Fig. 1(b)] where the plaquettes can be
coded with three different colors such that no two adjacent

plaquette has the same color. Similarly, the lattice links can
also be colored with the same three colors such that link
of a specific color connects plaquettes of the same color. In
this paper, we assume J > 0. The color code Hamiltonian is
obtained from HC in the h/J → 0 limit.

Similar to the square lattice, the hexagonal lattice can also
be embedded on the surface of a torus of genus 1 under peri-
odic boundary condition, and sets of qubits, denoted by Sc

h and
Sc

v and constituting two nontrivial loops made of links of each
of the three colors, can be identified, where c ∈ {c1, c2, c3}
denotes the color index. Using these qubits, six fundamental
nontrivial loop operators can be constructed as [see Fig. 1(b)]

Lx
α,c =

⊗
i∈Sc

α

σ x
i , Lz

α,c =
⊗
i∈Sc

α

σ z
i . (8)

Successive applications of these nontrivial loop operators on

|ψ〉 = 1

2N

∏
p

[
I + Sx

p

]| |0〉⊗N , (9)

as

|ψ〉g = (
Lx

h,c1

)a1
(
Lx

h,c2

)a2
(
Lx

v,c1

)b1
(
Lx

v,c2

)b2 |ψ〉 , (10)

a1, a2, b1, b2 = 0, 1 and c1, c2 being any two of the three col-
ors, generates the ground state manifold |ψ〉g of the h/J → 0
limit of the Hamiltonian, consisting of 16 degenerate entan-
gled states [38]. On the other hand, a fully polarized ground
state is found at h/J → ∞, with all spins pointing in the field
direction. The topological to nontopological QPT occurring
with increasing h/J can be determined by mapping the model
to a Baxter Wu model in a transverse field on a triangular
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FIG. 2. Dephasing rate. Variation of γ (t ) as a function of t for
different values of s, across the Markovianity to non-Markovianity
transition point s = 2. Both axes are dimensionless.

lattice, where The critical value of the dimensionless system
parameter g = h

J is gc = 0.385 [38].

B. Dynamics under dephasing noise

Let us now consider a situation where each of the spin- 1
2

particles in the system starts interacting with a bath from
a collection of identical and independent thermal baths at
time t = 0. Each bath is made of harmonic oscillators, with
a bath Hamiltonian given by Hb = ∑

k ωka†
kak , where ωk is

the frequency of the kth bath mode, and a†
k (ak ) is the creation

(annihilation) operator corresponding to the mode k. The in-
teraction between each spin and its bath is given by Hsb =∑

k σ z ⊗ (gkak + g∗
ka†

k ), where gk is the coupling constant be-
tween the spin variable and the kth mode of the bath, such that
in the continuum limit,

∑
k |gk|2 goes to

∫
f (ω)δ(ωk − ω) dω,

f (ω) being the spectral function of the bath. Assuming that
each spin interacts with its own bath only and is immune to the
effects of the remaining baths, and considering thermal initial
state of the bath, the time-local quantum master equation that
governs the dynamics of the system is given by [99–103]

ρ̇ = − i

h̄
[H, ρ] + γ (t )

N∑
i=1

(
σ z

i ρσ z
i − ρ

)
. (11)

Here H is the system Hamiltonian HK [Eq. (2)] or HC

[Eq. (7)], depending on the choice of the system, and ρ is the
N-qubit state of the system. The time-dependent dephasing
rate γ (t ) is the same for all qubits, and is given by [103]

γ (t ) = ωc[1 + (ωct )2]−
s
2 sin[s tan−1(ωct )]
(s), (12)

where 
(s) = ∫ ∞
0 xs−1e−xdx is the Euler Gamma function,

ωc is the cutoff frequency of the bath, and s is the Ohmic-
ity parameter whose value determines whether the bath is
sub-Ohmic (s < 1), Ohmic (s = 1), or super-Ohmic (s > 1)
[see Fig. 2 for the typical shapes of γ (t )]. At the zero temper-
ature limit of the bath, the value of s � 2 ensures Markovian
spin-bath interaction, while non-Markovianity emerges for

s > 2 [102,103]. The critical value sc = 2 for the Markovian
to non-Markovian transition on the Ohmicity parameter in-
creases with increasing temperature of the bath. In this paper,
we focus on the zero temperature limit of the bath, and un-
less otherwise stated, we fix the bath cutoff frequency to be
ωc = 1.

Solving Eq. (11), the state of the system ρ(t ), as a function
of t , can be obtained, and the relevant quantities can subse-
quently be calculated. In the rest of the paper, we will employ
the dimensionless system parameter g = h

J , dimensionless
time t → Jt

h̄ and dimensionless temperature T → kBT
J for de-

scribing the system and its dynamics.

C. Localizable entanglement

Localizable entanglement (LE) [84–87] over a selected
subset of qubits in the system is defined as the maximum
average entanglement localized over the selected set of qubits
via local projection measurements on all the other qubits, and
is expressed as

EL
� = max

{M�}

∑
k

pkE
(
ρk

�

)
. (13)

Here {M�} is the complete set of single-qubit projection mea-
surements performed over all the qubits in the set �, � is the
set of selected qubits over which the localizable entanglement
is to be computed such that � ∪ � represents the entire sys-
tem, � ∩ � = ∅, and ρk

� = Tr�[ρk], with

ρk = 1

pk
[(M� ⊗ I�)ρ(M� ⊗ I�)] (14)

being the postmeasured state of the system, I� is the identity
operator in the Hilbert space of the qubits in �, and

pk = Tr[(M� ⊗ I�)ρ(M� ⊗ I�)] (15)

is the probability of obtaining the measurement outcome k
over the qubits in �. The definition of localizable entangle-
ment depends on the existence of an entanglement measure
E , referred to as the seed measure (cf. [88]), which can be
computed for the postmeasured state ρk

� over the subsystem
�. Depending on the situation, E can either be a bipar-
tite [69,70,84–87] or a multipartite entanglement measure
[88,104]. Unless otherwise stated, in this paper, we focus on
computing the bipartite localizable entanglement over a subset
� of qubits forming a nontrivial loop [10–14] of length |�|,
and we choose negativity [105–111] as the seed measure in all
our calculations (see Appendix A for a definition).

It is generally difficult to compute localizable entangle-
ment when the single-qubit measurements are to be performed
over a large number |�| of qubits, and analytical determi-
nation of the optimal measurement basis is possible only in
few cases, e.g., GHZ [88,112] and W states [88,113,114],
Dicke states [88,115,116], stabilizer states [69,70,91,117],
and a number of lattice spin models with certain symmetries
[84–87,118]. In the cases of large quantum states ρ where
the optimization of localizable entanglement cannot be de-
termined analytically, one can define a restricted localizable
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entanglement (RLE) [69,70,89,119], given by

ERL
� = max{Mσ

�
}
∑

k

pkE (ρk
�), (16)

by confining the measurement basis for each qubit in � to the
eigenvectors of one of the three Pauli matrices σ x, σ y, and σ z,
where {Mσ

�
} is the complete set of all possible Pauli measure-

ment configurations on all the qubits in �. The definitions of
LE and RLE suggests that

EL
� � ERL

� , (17)

where the same seed measure is chosen for computing both
the LE and the RLE. While the equality in Eq. (17) occurs
only in a few cases [69,70,84–89,119], there exists quantum
states where |EL

� − ERL
� | is so small that the LE can be well

approximated using the RLE [89,119], and analytical expres-
sions for the RLE can also be determined.

Note that the optimization in RLE requires consideration
of 3|�| possible configurations of Pauli measurement setups,
which can be difficult in situations where |�| is a large num-
ber. However, one can choose a specific Pauli measurement
setup from the complete set of 3|�| configurations, where the
choice depends on the structure of the quantum state (cf.
[69,70,91,117]), or the symmetry of the system (cf. [118]).
While such a choice does not guarantee the optimized value
of the RLE for all possible values of the varying parameters in
the system, a judicious choice would provide a lower bound,
E ′

�, of the RLE, such that the hierarchy in Eq. (17) becomes

EL
� � ERL

� � E ′
�, (18)

where the bound

E ′
� =

2|�|−1∑
k=0

pkE
(
ρk

�

)
(19)

can be analytically computed in some cases (cf. [69,70]).
Although the existence of a Pauli measurement setup over
the qubits in � corresponding to small value of |ERL

� − E ′
�|

is not guaranteed, in the occasions where it exists, there are
situations where the variations of E ′

� as functions of the rele-
vant parameters are qualitatively same as the variations of the
RLE with the same parameters [69,70,89,119]. We shall see
specific advantages of this in investigating the topological to
nontopological QPT in Sec. III A.

The computation of LE and its lower bound is feasible
in experiments via using appropriate entanglement witness
operators [44,57,96–98,120,121] for the postmeasured states
on the subsystem �. An entanglement witness operator W
indicate the entanglement status of a quantum state ρ via its
expectation value w = Tr[ρW ] in the state. If w < 0, the state
ρ is an entangled state. Given a specific entanglement measure
E , a lower bound of the entanglement content in the state ρ

can also be obtained as a solution of the optimization problem
[94,95,122]

Emin(w) = inf E (ρ) (20)

subject to w = Tr[ρW ], ρ > 0, and Tr[ρ] = 1. Assuming that
a witness operator W exists such that its expectation value
wk = Tr[ρk

�W ] in the postmeasures state ρk
� corresponding to

the measurement outcome k provides a lower bound Emin(wk )
of E (ρk

�), Eq. (19) leads to

E ′
� �

2|�|−1∑
k=0

pkEmin(wk ) = Ew
� , (21)

such that

EL
� � ERL

� � E ′
� � Ew

� . (22)

We point out here that identifying appropriate entanglement
witness for states of a quantum system with varying system
parameters is a challenging problem, as the state of the system
may change with the value of the system parameter. Moreover,
the calculation of Ew

� still requires a measurement on the
qubits in � according to a chosen Pauli measurement setup,
and in turn, determination the expectation value of the chosen
W in a total of 2|�| postmeasured states of the subsystem �.
Possible solutions to these challenges have been proposed in
[69,70,98] in the specific case of topological quantum codes.
We discuss this in detail in Sec. III B.

Unless otherwise mentioned, we focus on E ′
� and Ew

� for
the topological quantum codes considered in this paper. More
specifically, for larger systems, we compute an approximation
of E ′

�, which we introduce in Sec. III A 1.

III. ON THE OPTIMAL BASIS FOR
LOCALIZABLE ENTANGLEMENT

We now investigate the behavior of LE over a nontriv-
ial loop in a topological quantum code when the strength
of the parallel magnetic field is varied across a topological
to nontopological QPT point, and discuss the corresponding
finite-size scaling for LE. Here and in the rest of the paper,
unless otherwise stated, we compute the entanglement, as
quantified by the negativity, over the postmeasured states on
� in the 1:rest partition, i.e., a bipartition of a single qubit,
and the rest of the qubits in �. The symmetry of the system
ensured that the entanglement is invariant with respect to the
choice of the single qubit in �. Also, for the purpose of
demonstration, we always localize entanglement over a sub-
system � of qubits forming a nontrivial loop corresponding
to the logical operator Lα

h , α = x, z.
Let us first consider the Kitaev model in a parallel field

[Eq. (2)] on a square lattice with four plaquettes in 2 × 2
architecture, where the nontrivial loop in the g → 0 limit of
the Hamiltonian (2) is constituted of two qubits construct-
ing the region � (see also Table I). We diagonalize HK to
obtain the ground state of the system, and numerically deter-
mine EL

� and ERL
� as functions of the magnetic field strength

g. Our data suggest that for all values of g over a considerably
wide range [0,2.0] across the QPT point, the optimization of
the LE takes place in the Pauli basis, which is indicated by
the vanishing |EL

� − ERL
� | (see Sec. II C) for all g. This is

demonstrated by the coincidence of the graphs for EL
� and ERL

�

in Figs. 3(a) and 3(b), for both types of the nontrivial loops, Lx
h

and Lz
h. However, the computation of RLE quickly becomes

intractable due to the exponential increase in the number of
possible Pauli measurement setup, thereby making it diffi-
cult to probe the topological to nontopological QPT via LE
and RLE.
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TABLE I. List of stabilizer operators used to construct W� [Eq. (25)] in the case of the Kitaev code on rectangular and square lattices,
when � is chosen to be a nontrivial loop (represented by thick black lines) representing Lx

h and Lz
h. Periodic boundary conditions are assumed

along both the horizontal and the vertical directions of all the lattices. The plaquettes are labeled with boxed numbers, while numbers alone
denote the vertices. For ease of notation, we have represented the vertex operators Sv with Vv , the plaquette operators Sp with Pp, and p and v

respectively representing the plaquette and the vertex indices. See Eq. (1) for the definitions of Sp and Sv . See also Fig. 7.

A. Canonical measurement setup

In view of the above discussion, we now investigate the
performance of E ′

� as a lower bound of RLE (see Sec. II C),
for which a specific Pauli measurement setup needs to be
chosen. To make this choice, we note that the ground state
of HK is equivalent to a graph state [91] via a set of local
Clifford unitary operations [69,70,92,93] (see Appendix B for
a detailed discussion). With an appropriate choice of the set
of qubits on which these Clifford unitaries are applied, it can
be ensured that the local unitary equivalent graph state has
a connected star graph over the chosen region � represent-
ing a nontrivial loop on the Kitaev code [92,93]. Since the
bipartite entanglement in a graph state over all 1:rest bipar-
titions is maximum as long as the graph state corresponds
to a connected graph [91,93,117,123], a Pauli measurement
setup that leaves the connected star graph unchanged over
� after measurement can lead to E ′

� = ERL
� . There may ex-

ist more than one such Pauli measurement setups, and any
such Pauli measurement setup for the graph state, via the
Clifford unitary transformations that connect the graph state
with the ground state of HK , can provide a potential canonical
measurement setup for the topological code (see Appendix B
for a detailed discussion with examples). For the purpose of
demonstration in this paper, we choose the setup where the
measurement basis corresponding to it on different qubits in
� can be characterized only by the relative positions of the
qubits with respect to the nontrivial loop operator of the type
Lα

h , α = x, z, and the plaquette or the vertex operators through

which it passes, using a simple set of rules. These rules are the
following (see Fig. 4):

(a) To determine the localizable entanglement over a non-
trivial loop representing the logical operator Lx

h (Lz
h), a qubit

which is not on Lx
h (Lz

h) but is situated on the plaquette op-
erators (vertex operators) through which Lx

h (Lz
h) passes, is

measured in the σ z (σ x) basis.
(b) All other qubits are measured in the σ x (σ z) basis.
Note that rules similar to Lx

h (Lz
h) apply for the mea-

surement setup corresponding to the nontrivial loop �

representing Lx
v (Lz

v ). See Appendix B for details. It is also
important to mention here that the fact that the canonical mea-
surement setup keeps the connected star graph over the region
� unchanged after measurement is crucial for using the same
measurement setup to develop and compute a witness-based
lower bound. See Sec. III B and Appendix C for a discussion.

It is now logical to ask how this canonical measurement
setup performs once the system is perturbed with the parallel
magnetic field (i.e., g > 0), which can be investigated by
computing |ERL

� − E ′
�| as a function of g. We observe that

a dichotomy between the behaviors of E ′
� over � ≡ Lx

h and
� ≡ Lz

h exists in the case of the four-plaquette toric code.
While |ERL

� − E ′
�| = 0 corresponding to � ≡ Lx

h for all values
of g ∈ [0, 2], in the case of � ≡ Lz

h, |ERL
� − E ′

�| = 0 only at
g = 0. With increasing g, E ′

� < ERL
� . This implies that the

canonical measurement setup is suboptimal in the case of
g > 0 for Lz

h, while it remains optimal for Lx
h even when g

increases. However, it is clear from the qualitative behavior of
E ′

� depicted in Figs. 3(a) and 3(b) that for both the cases of
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FIG. 3. Bounds of localizable entanglement in Kitaev code. (a, b) Variations of EL
�, ERL

� , E ′
�, E ′′

�, and Ew
� (vertical axes) as functions of the

parallel magnetic field strength g (horizontal axes) in the cases of a Kitaev code of NP = 4 plaquettes, where entanglement is localized over a
nontrivial loop corresponding to (a) Lx

h and (b) Lz
h. The labels “T” and “NT” represent the “topological” and the “nontopological” phases on the

g axis, and the dashed vertical line indicates the topological to nontopological QPT point gc = 0.328474(3). (c) The dependence of E ′′
� and Ew

�

(vertical axis) on g (horizontal axis) is shown for a Kitaev code with NP = 9 plaquettes, corresponding to the nontrivial loops representing Lx
h

and Lz
h. (d) The variation of the difference between the two lower bounds, |E ′′

� − Ew
� | (vertical axis), as a function of g (horizontal axis) in the

case of a Kitaev code of nine plaquettes, for nontrivial loops representing Lx
h and Lz

h. Both the horizontal and the vertical axes in all figures are
dimensionless.

� ≡ Lx
h and � ≡ Lz

h, E ′
� reliably mimics the behavior of the

RLE as a function of g across the QPT point gc at least for the
case of NP = 4. With relation to the inequivalence between
the entanglement localized over a nontrivial loops of Lx

h and
Lz

h type, we also point out that the applied magnetic field is
taken to be in the z direction only.

Note that the computation of E ′
� still involves computation

of an entanglement measure over 2|�|-dimensional density
matrices corresponding to each of 2|�| measurement out-
comes. Since the number of qubits in the system increases
rapidly with increasing the lattice size, the numbers 2|�|
and 2|�| also grow fast with the lattice. Therefore the de-
termination of E ′

� becomes computationally demanding with
increasing system size. Since we aim to investigate the QPT
via LE, we propose the following approximation to reduce the
computational resource required to calculate E ′

�, so that it can
be computed for higher system sizes.

1. Approximating the lower bound for larger systems

To reduce the computational complexity of E ′
�, we note

from our numerical analysis that among the full set of 2|�|
measurement outcomes, not all have considerable probability

of occurrence. Depending on this observation, we approxi-
mate E ′

� as

E ′′
� =

∑
k∈K

pkE (ρk
�) s.t. pk > pc ∀k ∈ K, (23)

where only a preferred set K of measurement outcomes oc-
curring with a probability greater than a threshold value pc

are considered. Note here that E ′′
� is, by definition, a lower

bound of E ′
�, i.e., E ′′

� � E ′
�. Note also that the value of E ′′

� is
specific to the canonical measurement setup E ′

�. The motiva-
tion behind such an approximation may be justified looking
into the effect of the Pauli measurements on a graph state, and
the connection between the stabilizer states with graph states
[93,124,125].

Here we would like to point out that in the present problem,
the nature of the ground state of HK is qualitatively differ-
ent in the cases of g = 0 (degenerate entangled ground state
manifold of the topological code) and g > 0 (nondegenerate
entangled ground state). Therefore, it is reasonable to expect
that the preferred set K corresponding to the set of proba-
bilities {pk} such that pk > pc ∀k ∈ K is different for g = 0
and g > 0. In order to take into account both situations, we
consider the preferred set for the entire range of g to be K =
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FIG. 4. Canonical measurement setup for Kitaev code. If the
nontrivial loop represents a Lx

h (Lz
h) operator, then the qubits that are

not on Lx
h (Lz

h), but are on the plaquette operators (vertex operators)
through which Lx

h (Lz
h) passes, are measured in σ z (σ x) basis. The

rest of the qubits that are not on these plaquette (vertex) operators
are measured in the σ x (σ z) basis. This is demonstrated for (a) Lx

h

(qubits 7, 8, 9, 13, 14, 15 are measured in σ z basis, and the rest in
σ x basis) and (b) Lz

h (qubits 10, 11, 12, 16, 17, 18 are measured in σ x

basis, and the rest in σ z basis) in the figures. The gray (black) color
of the qubits signifies σ z (σ x) measurement, while the unmeasured
qubits are represented by white circles.

K0 ∪ K1 ∪ K2 ∪ · · · ∪ Kn, where K0 (Ki ) is the preferred set
of outcomes corresponding to g = 0 (g = gi > 0, where we
choose n nonzero positive values of g). The number n and
the value of pc can be judiciously chosen depending on the
situation, such that the error |E ′

� − E ′′
�| can be minimized

depending on the available numerical resource.
To quantitatively estimate the performance of the approx-

imation, let us assume that the set K contains K elements.
Since 0 � E (ρk

�) � 1, it is easy to see that under the approx-
imation in Eq. (23), the terms in E ′′

� having value pkE (ρk
�) <

pc are discarded. Therefore the absolute error ε = |E ′
� −

E ′′
�| < εm, where εm = (2|�| − K )pc corresponds to each of

2|�| − K discarded terms in E ′
� having the value pc. We

choose pc = 10−10 and set n = 1 with g1 = 2 × 10−1 for
all our calculations. This choice ensures εm < 10−6 for all
the results presented in this paper even when g has a high
value, implying that E ′

� = E ′′
� can be assumed in all practical

purposes. Figure 5 provides the variation of εm as a function
of N in the case of nontrivial loops corresponding to Lx

h and
Lz

h. Among all instances of the Kitaev code considered in
this paper, the maximum value of εm occurs for the case of
Lz

h loop in the case of N = 18. Note that even with the use
of the approximation introduced above, computation of the
entanglement measure E over a 2|�| × 2|�| density matrix ρk

�

is difficult. In the case of large systems, we use sparse matrix
calculations to overcome this hurdle. More specifically, we set
density matrix elements to be zero if its magnitude is <10−8.

2. Across the quantum phase transition

To check whether E ′′
� can signal the topological to non-

topological QPT, for each system of size N , we focus on
|dE ′′

�/dg| as a function of g (cf. [89] for an investigation
of multiparty features of LE), which exhibits a maximum at
g = gm(N ) in the vicinity of the QPT point (see Fig. 6) for
both cases of entanglement localized over � ≡ Lx

h and Lz
h.

Note that the value of gm(N ) is specific to the system size N .

FIG. 5. Estimated maximum error for E ′′
�. Variation of εm as a

function of N for Kitaev code, where localizable entanglement is
computed over � ≡ Lx

h and Lz
h. The maximum error occurs in the

case of nine-plaquette toric code, although all values of εm ∼ 10−6

or lower. Both the horizontal and the vertical axes are dimensionless.

With increasing system size, the maximum sharpens and the
value gm(N ) corresponding to the maximum shifts closer to
the QPT point gc, which corresponds to the thermodynamic
limit (N → ∞). To check how the system approaches the
thermodynamic limit, we perform a scaling analysis and in-
vestigate the variation of ln |gm(N ) − gc(∞)| as a function of
ln N . We find that the position gm(N ) of the QPT approaches
the QPT at thermodynamic limit as (see Fig. 6)

gm(N ) = gc(∞) + αN−ν, (24)

in the case of � ≡ Lx
h, where α is a dimensionless constant,

and ν is the finite-size scaling exponent. For the examples
demonstrated in Fig. 6, fitting of numerical data provides α =
0.38(6), ν = 0.58(8) for � ≡ Lx

h. However, similar analysis
with � ≡ Lz

h reveals that while the behavior of dE ′′/dg as a
function of g remains the same as in the case of � ≡ Lx

h, the
finite-size effect is stronger in the former case [see Fig. 6(b)].
A finite-size scaling analysis using Eq. (24) demonstrates a
very slow approach of gm(N ) to gc with increasing N , with
α = 0.10(2), ν = 0.16(0) for � ≡ Lz

v . In order to perform a
better scaling analysis, one needs to go beyond the system size
of 20 qubit, which, with our available computational resource,
remains intractable. Note that to perform the scaling analysis,
we have considered rectangular lattices [N = 12 (3 × 2), N =
16 (4 × 2), and N = 20 (5 × 2)] along with the square lattices
[N = 8 (2 × 2) and N = 18 (3 × 3)], although the topological
quantum error corrections are typically performed over Kitaev
codes on square lattices [10,11].

B. QPT from the witness-based lower bound

In order to show how the topological to nontopolog-
ical QPT can be accessed experimentally, we adapt the
witness-based approach to compute a lower bound of LE. Fol-
lowing the methodology introduced in [97,98], a local witness
operator W� can be designed such that it’s expectation value
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FIG. 6. QPT using lower bound of localizable entanglement in Kitaev code. Variations of | dE ′′
�

dg | as a function of g across the QPT point
of a Kitaev code under parallel magnetic field for different system sizes N , when � is chosen to be a nontrivial loop representing (a) Lx

h and
(b) Lz

h. The Kitaev code is considered over a lattice of Nh
P × Nv

P architecture (see Sec. II A 1) with Nh,v
P being the number of plaquettes in

the horizontal and vertical directions, where the system size N takes the values 8 (2 × 2), 12 (2 × 3), 16 (2 × 4), 18 (3 × 3), and 20 (2 × 5).
(Insets of a and b) The variation of ln |gm(N ) − gc(∞)| as a function of ln N . The dotted line represents the fitted curve according to Eq. (24),
with (a) α = 0.38(6), ν = 0.58(8) for � ≡ Lx

h and (b) α = 0.10(2), ν = 0.16(0) for � ≡ Lz
h. Both the horizontal and the vertical axes in all

figures are dimensionless.

ω = Tr[W�ρ] in the full state ρ of the system can provide
information about the entanglement present in �. For topo-
logical quantum codes, W� can be designed exploiting the
stabilizers corresponding to the topological codes as [69,70]

W� = I

2
−

∏
s j∈{s j }

I + s j

2
, (25)

where the set {s j} is a subset of S representing the full set of
stabilizers of the topological code under investigation. Each
of the elements s j of the set {s j} can be decomposed as
s j = s�

j ⊗ s�
j according to whether the supports of the Pauli

matrices constructing s j belong to � or �. For s j to contribute
in W�, (a) the Pauli matrices constructing s j must commute
outside �, and (b) the set {s�

j } obtained from {s j} must be
a complete set of stabilizer generators corresponding to a
state |ψ�〉 over � having genuine multiparty entanglement.
Decomposing the witness operators into projection operators
over � and local witness operators corresponding to the pro-
jectors on �, w can be related to wk [see Eq. (22)] as [70]

w =
2|�|−1∑

k=0

pkwk . (26)

Using Eq. (26) and choosing negativity as the bipartite en-
tanglement measure over all 1:rest bipartitions of �, Ew

�

[Eq. (21)] can be shown to be given by [70] (see also
Appendix C)

Ew
� =

{−2w, for w < 0,

0, for w � 0.
(27)

Therefore, by computing ω, it is possible to estimate a lower
bound of the LE from experiments. Note, however, that the
performance of the lower bound depends on the performance
of the witness operator. In situations where w � 0, Ew

� pro-
duces the trivial lower bound for LE.

In the case of Kitaev code on rectangular or square lat-
tice, construction of W� corresponding to � ≡ Lx

h (� ≡ Lz
h)

involves a subset of the plaquette (vertex) stabilizers through
which Lx

h (Lz
h) passes, and a subset of the vertex (plaquette)

stabilizers that share a single qubit with Lx
h (Lz

h) (see Fig. 7 for
a demonstration). The specific forms of the witness operators
W� used for determining Ew

� in the case of � ≡ Lx
h and � ≡

Lz
h are shown in Table I. Typical variations of Ew

� obtained
from the local witness operators W� designed for nontrivial
loops of Kitaev codes representing Lx

h and Lz
h as functions of

g are shown in Fig. 3.
It is worth pointing out here that the local witness operators

are designed for the ground states of the topological quantum
codes at g = 0. In the case of g > 0, the nature of the ground
state of the model changes, and the witness operators W� may
not be able to detect entanglement over �, and consequently
may fail to reliable provide a lower bound of the LE. Among

FIG. 7. Constructing the local witness operators in Kitaev code.
The plaquette and the vertex stabilizer operators, a subset of which
can potentially contribute in building a local witness operators cor-
responding to a nontrivial loop representing (a) Lx

h and (b) Lz
h, are

shown for a nine-plaquette Kitaev code. The qubits denoted by the
white circles are the ones on which the witness operators may have
support. The labels of the plaquettes are denoted by boxed numbers,
while numbers alone denote the vertices. See Eqs. (1) for the descrip-
tions of the plaquette and the vertex stabilizer operators.
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FIG. 8. QPT using witness-based lower bound in Kitaev code. Variations of | dEw
�

dg | as a function of g across the QPT point of a toric code
under parallel magnetic field for different system sizes N , when � is chosen to be a nontrivial loop representing (a) Lx

h and (b) Lz
h. The toric

code is considered over a lattice of Nh
P × Nv

P architecture (see Sec. II A 1), and the system sizes are taken to be same as in Fig. 6. (Insets of
a and b) The variation of ln |gm(N ) − gc(∞)| as a function of ln N . The dotted line represents the fitted curve according to Eq. (28), with (a)
β = 0.44(8), δ = 0.65(5) for � ≡ Lx

h, and (b) β = 0.29(7), δ = 0.43(5) for � ≡ Lz
h. Note that in (b), dEw

� /dg data are plotted only until the
value of g beyond which Ew

� = 0 (see Fig. 3). Both the horizontal and the vertical axes in all figures are dimensionless.

the witness operators W� constructed by us for toric codes
of different sizes, those designed for the nontrivial loops rep-
resenting Lx

h successfully provide a lower bound of LE for
g > 0, even when g is large. While E ′′

� ≈ Ew
� for lower system

sizes [see Figs. 3(a) and 3(b)], the difference between these
two bounds increases with increasing N [see Fig. 3(c)]. On
the other hand, in the case of Lz

h, expectation value of W� is
found to be positive for higher values of g, thereby failing
to provide the lower bound once the parallel field is past a
critical strength. However, similar to E ′′

�, dEw
� /dg signals the

topological to nontopological QPT in both cases of � ≡ Lx
h

and � ≡ Lz
h, with a finite-size scaling given by

gm(N ) = gc(∞) + βN−δ. (28)

Here the dimensionless constant β and the finite-size scaling
exponent δ have similar significance as α and ν respectively,
which can be determined in a similar fashion as in the case of
E ′′

�. For example, in the case of a nontrivial loop representing
to Lx

h (see Fig. 8), β = 0.44(8) and δ = 0.65(5), while for a
nontrivial loop representing Lz

h, β = 0.29(7) and δ = 0.43(5).
Note here that although Ew

� = 0 past a certain strength of g for
each N > 8 in the case of � ≡ Lz

h, the approach of the QPT
point to gc as demonstrated by dEw

� /dg is faster compared to
that for dE ′′

�/dg, as clearly shown by the values of δ compared
to the values of ν [see Fig. 6(b)].

Note on the color code. We also test the approximated lower
bound E ′′

� of LE for the color code in a parallel magnetic
field [Eq. (7)] on a hexagonal lattice. Note that compared
to the Kitaev code, the number of qubits in the color code
grows faster with the growth of the lattice, thereby making
the computation of LE and its bounds more computationally
demanding. For demonstration, we focus on the nontrivial
loop representing Lx

h,r on a six-plaquette (12 qubits) color code
(see Fig. 1). We consider a canonical measurement setup such
that

(a) All qubits connected directly to the nontrivial loop
with a lattice edge are measured in the σ x basis and

(b) The rest of the qubits in � are measured in the σ z basis,

which is an extension of the rules for choosing the canon-
ical measurement setup for the Kitaev code. Figure 9 depicts
the variations of EL

�, ERL
� , E ′

�, and E ′′
� as functions of g, when

the entanglement is localized over a partition of 1:rest and
2:rest of the qubits in �. The variations of LE and its lower
bounds are qualitatively similar to that demonstrated in the
case of the Kitaev code. Note, however, that in the case of the
color code, equality between EL

� and ERL
� is sustained with an

increase in the external field strength only when entanglement
is localized over 1:rest partitions of the nontrivial loop. When
entanglement is localized over 2:rest partitions, this equality
cease to exist at high field value. For computing E ′′

�, we
set values of n, gi, and pc similar to the case of the Kitaev
model. Our data indicate that similar to the Kitaev code, E ′′

�

provides a good approximation of E ′
� in the case of the color

code also, throughout the range [0,2.0] of g. Note that in the
case of entanglement localized over 2:rest partition of �, the
optimization of LE is not covered by the Pauli measurement
setup when g is large, as indicated from the deviation of the
ERL

� curve from the same of EL
�.

IV. LOCALIZABLE ENTANGLEMENT
UNDER DEPHASING NOISE

In this section, we discuss the effect of single qubit de-
phasing noise on the bipartite localizable entanglement over a
nontrivial loop of the topological code in the presence of par-
allel magnetic field. We also demonstrate how the dynamics of
localizable entanglement can be used to differentiate between
the topological and nontopological phases of the models. We
determine the time-dependent state ρ of the system by numer-
ically solving the quantum master equation [Eq. (11)] using
the Runge-Kutta fourth-order method with the ground state of
the system as the initial state (t = 0) ρ0, and then compute the
localizable entanglement and its lower bounds as a function of
t on a set � of qubits forming a nontrivial loop. In the case of
large systems, we use sparse matrix calculations to determine
ρ as a function of t , setting density matrix elements to be zero
if its magnitude is <10−8, as in the case of noiseless situation.
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FIG. 9. Lower bounds of localizable entanglement in color codes. Variations of EL
�, ERL

� , E ′
�, and E ′′

� (vertical axes) as functions of the
parallel magnetic field strength g (horizontal axes) in the case of a color code of six plaquettes, where entanglement is localized over a nontrivial
loop corresponding to Lx

h,r in the bipartition (a) 1:rest and (b) 2:rest. In the case of localizable entanglement computed over 2:rest partition of
the nontrivial loop, we have used normalized negativity as the seed measure for ease of comparison between (a) and (b). Both the horizontal
and the vertical axes in all figures are dimensionless.

To demonstrate the results, we use the Kitaev model in
a parallel magnetic field under the Markovian (s < 2) and
non-Markovian (s > 2) dephasing noise, where we choose the
initial state ρ0 to be the ground state of the system in the topo-
logical phase (g < gc), denoted by ρ0(g < gc), and the same
in the nontopological phase (g > gc), denoted by ρ0(g > gc).
We point out that the canonical measurement setup and the
local witness operators are designed at the g = 0 limit of
the system Hamiltonian HK , and are demonstrated to work
reasonably well (see Sec. III) in the presence of the external
magnetic field g. However, it is not at all straightforward to
have an intuition on how the lower bounds of localizable
entanglement devised based on these constructions would per-
form in the noisy scenarios. To investigate this, we test the
hierarchy of the lower bounds of LE in systems of small sizes
(N = 8, 12) to find, similar to the noiseless scenario,

EL
� = ERL

� � E ′
� (29)

for full ranges of t considered in this study, for both cases
of ρ0(g < gc) and ρ0(g > gc). However, as in the case of the
noiseless scenario, computation of even E ′

� quickly becomes
difficult with increasing lattice size. We further compute E ′′

�

by setting the values of n, g1, and pc to be the same as in
the case of g = 0 (see Sec. III A 1) to find that for N = 8, 12,
E ′

� = E ′′
� for all the instances of ρ0 across the QPT point in the

case of both Markovian and non-Markovian dephasing noise,
and for the full range of t . From here onward, we investigate
the dynamics of localizable entanglement using E ′′

�, and the
witness-based lower bound Ew

� , which remains computable
for a larger system size, and hence can provide an insight
into the dynamics of entanglement in large Kitaev codes under
parallel magnetic field.

Typical dynamical behavior of E ′′
� and Ew

� as functions
of t are demonstrated in Fig. 10 in the case of Markovian
and non-Markovian dephasing noise, with initial states chosen
from the topological and nontopological phases. In the cases
of both initial states ρ0(g < gc) [Fig. 10(a)] and ρ0(g > gc)
[Fig. 10(c)], E ′′

� and Ew
� decay with time when the noise is

Markovian (s = 1), and vanishes at large t . Also, no revival of

either of E ′′
� and Ew

� is observed at large t , which is consis-
tent with the findings on the behavior of entanglement under
Markovian noise reported in literature [79]. However, under
non-Markovian noise (s = 3), E ′′

� decays monotonically at
first, and then start oscillating with time, the amplitude of
oscillation being much larger in the case of an initial state
chosen from the nontopological phase compared to the same
for a topological phase [Figs. 10(b) and 10(d)]. On the other
hand, with initial states chosen from the topological phase,
Ew

� monotonically decreases with t , goes to zero, and does not
revive even at large t . In contrast, with initial state chosen from
the nontopological phase, Ew

� exhibits large-amplitude oscil-
lations similar to E ′′

�, the amplitude increasing with increasing
s. For a high value of the Ohmicity parameter, the dynamical
feature of Ew

� resembles repetitive collapses followed by re-
vivals as t increases, where Ew

� achieves a considerably high
value during the revivals.

Entanglement collapse time. It is clear from Fig. 10 that in
the case of the non-Marokovian noise, the LE and its lower
bounds decreases monotonically to a nonzero value Es

c at
first, and then starts oscillating. Here the superscript in Es

c
indicates the value of the Ohmicity parameter, s, implying that
this value may change with a change in s. The entanglement
collapse time (ECT), for a fixed value of s > 2, is defined
as the time t = τ s

nm at which the value of E ′′
� collapses to its

respective Es
c value for the first time, such that the landscape

of E ′′
� has its first trough at t = τ s

nm. For a fixed value of s, the
value of τ s

nm can be obtained as the solution of

E ′′
�(t ) = Es

c . (30)

Similar equations can be written for the LE and all of its lower
bounds. In situations where the value of E ′′

� remains at Es
c for

a finite interval of time, τ s
nm is defined as the first time instant

when E ′′
�(t ) = Es

c .
In contrast, in the case of the Markovian noise, E ′′

� de-
creases monotonically with time, and eventually vanishes. In
order to compare the collapse of E ′′

� with the case of non-
Markovian noise denoted by a fixed value of s > 2, in the
case of Markovian noise denoted by an Ohmicity s′ < 2, we
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FIG. 10. Markovian and non-Markovian dynamics of localizable entanglement in Kitaev code. Variations of E ′′
� and Ew

� as functions of
t in the case of Markovian (s = 1) and non-Markovian (s = 3) dephasing noise, when the initial states of the dynamics are taken from the
topological (a and b, g = 10−1) and nontopological (c and d, g = 8 × 10−1) phases of the Kitaev code in the presence of parallel magnetic
field. The Kitaev model is defined on a four- (NP = 4, 2 × 2) and eight-plaquette (NP = 8, 4 × 2) lattice, and E ′′

� and Ew
� are computed over a

nontrivial loop representing Lx
h. Both the horizontal and the vertical axes in all figures are dimensionless.

determine the ECT, τ s′,s
m , as the time at which the value of

E ′′
�, for the first time, collapses to Es

c corresponding to the
non-Markovian noise characterised by s. Therefore, τ s′,s

m can
be obtained as the solution of E ′′

�(t ) = Es
c , where E ′′

�(t ) corre-
sponds to the case of the Markovian noise with Ohmicity s′. In
Fig. 11 we plot the variations of τ s

nm and τ s′,s
m as functions of g,

where Es
c is chosen depending on the dynamics of E ′′

�, in the
case of NP = 4, 9 for the Kitaev code. It is interesting to note
that τ s

nm varies slowly with g across the QPT point, with an
overall decreasing trend with increasing g. In contrast, in the
case of Markovian noise, τ s′,s

nm remains almost constant in the
topological phase, and increases with g in the nontopological
phase. Note, however, that by definition, τ s′,s

m corresponding
to the Markovian noise depends on the choice of Es

C for the
non-Markovian noise, which, in turn, depends on the system
size as well as the partition over which the localizable entan-
glement is computed.

These results indicate that knowledge about the phases of
the Kitaev model in a parallel magnetic field can be used to
distinguish between the Markovian and non-Markovian type
of the dephasing noise using the dynamics of E ′′

� and Ew
� .

Starting from a ground state of the model in the nontopolog-
ical phase as the initial state, at t = t ′, if a highly oscillating
behavior with high amplitude of E ′′

� is found, then the noise
is expected to be non-Markovian. Experimental determination

of the type of the noise is also possible via determining Ew
� ,

where non-Markovianity of the dephasing noise is indicated
by a repeated revival and collapse of Ew

� over time, when the
initial state of the system is chosen from the nontopological
phase. Such a distinction can be useful in situations where the
single qubit noise is known to be dephasing, but the Marko-
vianity of the noise is not decided.

A. Distinguishing phases from the dynamics

It is clear from Figs. 10 and the discussion above that in the
case of the non-Markovian dephasing noise with high Ohmic-
ity parameter, the magnitudes of oscillations corresponding to
E ′′

� are considerably higher, and Ew
� exhibits repeated revivals

to high value and then collapses, when the initial state of the
dynamics is chosen from the nontopological phase, compared
to the same when the initial state of the system is taken from
the topological phase. This pattern remains unchanged for
considerably wide range of g around the QPT point g = gc,
and at large t [see Figs. 12(a) and 12(b)]. Since the initial
state (t = 0) of the dynamics is characteristic to the phases of
the system, these features can be used to distinguish between
the phases of the Kitaev code in the presence of parallel
magnetic field. Such a distinction is useful in situations where
single-qubit dephasing noise is present in the system, and
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FIG. 11. Entanglement collapse time. The variations of ECTs,
τ 3

nm and τ 1,3
m , as functions of g across the QPT point of the Kitaev

model in a parallel magnetic field on 2 × 2 and 3 × 3 square lattices,
with � ≡ Lz

h. The value of E 3
c for computing the ECTs for the

Markovian and the non-Markovian dephasing noise is E 3
c = 0.14 for

the 2 × 2 square lattice, and E 3
c = 0.11 for the 3 × 3 square lattice.

Both axes are dimensionless.

one is forced to investigate the phases after a considerably
amount of time has elapsed. The important points of the phase
discrimination in this method are as follows:

(a) Let us choose a large time t = t ′, at which E ′′
�(t ′) and

Ew
� is computed. The crossover from the topological to the

nontopological phase of the system at g = gc is distinguished
by (1) the onset of oscillations of large amplitudes of E ′′

�,
and (2) by the appearance of repeated revivals and collapses
of Ew

� , as depicted in Figs. 12(c) and 12(d) in the case of a
four-plaquette system. As the value of the Ohmicity increases,
the amplitude of oscillations for E ′′

� and the maximum value
attained by Ew

� during a revival become larger.
(b) The large time t ′ can be chosen according to the situa-

tion in hand. In Figs. 12(c) and 12(d), we have demonstrated
E ′′

�(t ′) vs g variations for t ′ = 50, such that in the nontopo-
logical phase, t ′ � τ s

nm. Our numerical analysis suggests that
the oscillations are larger for moderately low values of g in
the nontopological phase of the system, while the oscillation
gradually dies out as the initial state approaches towards a
product state by increasing the value of g. Our numerical anal-
ysis of the nine-plaquette system indicates that the qualitative
trend of E ′′

� and Ew
� vs g and t remains the same as one goes

higher in the system size.
From the above observations, it is clear that the behavior

of E ′′
� and Ew

� under non-Markovian dephasing noise can
be utilized to distinguish between the topological and the
nontopological phase. Note that while a sharp determination
of the QPT point is not possible from these features, the
phase can be recognized as a topological, or a nontopological
one, particularly in experimental scenarios using the witness
operators.

Note on the dynamics of color code. In order to examine
whether the features reported above are model-specific, we
also test these findings in the case of the color code in a

parallel magnetic field on a hexagonal lattice of 6 plaque-
ttes under periodic boundary condition. We demonstrate the
dynamics of E ′′

� in Fig. 13 under the Markovian (s = 1)
and non-Markovian (s = 3) dephasing noise when the initial
state is chosen from the topological and the nontopological
phases of the model. We compute E ′′

� using the canonical
measurement setup for the color code (see Sec. III), setting
the values of n, g1, and pc similar to that reported in Sec. III.
The qualitative behaviors of E ′′

� vs t remains the same as the
Kitaev model under parallel magnetic field, as is evident from
Figs. 10 and 13, implying that the topological and the non-
topological phases in also the color code under parallel field
can be distinguished using the dynamics of E ′′

�. We point out
here that the computation of E ′′

� becomes increasingly difficult
in the case of the color code subjected to noise as the system
size increases, and therefore a full numerical investigation of
the phases of the system via its dynamics is not possible with
the available numerical resources.

V. CONCLUSION AND OUTLOOK

Topological quantum codes, such as the Kitaev code and
the color code, have attracted significant attention due to
their immense potential in performing quantum computation
tasks. In the presence of external perturbations like local
magnetic field, these models exhibit topological order at the
zero field limit, which is robust against small perturbations.
However, with the increase of the perturbation strength, the
model undergoes a topological to nontopological quantum
phase transition, and the ground state becomes fully polar-
ized when the field strength is infinite. Such quantum phase
transitions are beyond the Landau description of quantum
phase transitions, and cannot be probed using the local order
parameters and spontaneous symmetry breaking. In this pa-
per, we investigate the topological to nontopological quantum
phase transition occurring in a topological quantum code in
the presence of a parallel magnetic field in terms of the entan-
glement localized over a nontrivial loop via local projection
measurements on spins outside the loop. To overcome the
barrier due to the quantity being computationally demanding,
we compute lower bounds of the quantity in terms of a chosen
canonical measurement setup and an appropriately designed
witness operator. We also discuss how the phases of the sys-
tem can be distinguished by observing the dynamical features
of these lower bounds when single-qubit dephasing noise is
present in the system.

We conclude with a discussion on possible avenues for fu-
ture research. Note that within the scope of models discussed
in this paper, one may also consider external perturbations
other than a parallel magnetic field, such as spin-spin in-
teractions [29,37], increasing the strength of which takes
the system through a topological to nontopological quantum
phase transition. Moreover, beyond the topological quantum
error correcting codes, it would be interesting to see whether
localizable entanglement can be used to probe the topological
orders in other lattice models, for example, quantum dimer
models [126–129], chiral spin states [130,131], and spin liq-
uid states [132,133]. Also, in order to be able to quantitatively
distinguish the phases of topological quantum error correcting
codes under external perturbations in the presence of noise
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FIG. 12. Distinguishing topological phase from the nontopological phase via dynamics. Variation of (a) E ′′
� and Ew

� as functions of g and
t . The behaviors of E ′′

� and Ew
� as functions of g across the QPT point, for fixed values of t , are demonstrated in (c) and (d), respectively. All

the axes in all figures are dimensionless.

other than the dephasing noise, analysis of the dynamical
features of localizable entanglement can be performed in the
case of the depolarizing and the amplitude-damping noise
[134], which are among the commonly occurring noises in
experiments [135,136].
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APPENDIX A: NEGATIVITY AS A BIPARTITE
ENTANGLEMENT MEASURE

Negativity for a bipartite quantum state ρAB is defined as

N (ρAB) = ∣∣∣∣ρTA
AB

∣∣∣∣ − 1, (A1)

with ||�|| = Tr
√

�†� being the trace norm of the density oper-
ator �, and ρ

TA
AB is obtained by performing partial transposition

of ρAB w.r.t. the party A [105–110]. The normalized negativity
is given by N (ρAB) = [||ρTA

AB|| − 1]/(d − 1) [111], d being

the minimum of the dimensions of the Hilbert spaces of the
subsystems A and B, such that 0 � N � 1. Unless otherwise
stated, we always use Eq. (A1) to compute negativity.

APPENDIX B: CANONICAL MEASUREMENT SETUP
FOR TOPOLOGICAL QUANTUM CODES

Here we discuss the canonical measurement setup for com-
puting the localizable entanglement over the group of qubits
constituting a nontrivial loop in a topological quantum code.

A graph state [91,117] is a genuinely multiparty entangled
quantum state defined over a simple, connected, and undi-
rected graph G(V, L) made of a collection of nodes, V , and
links, L, as

|ψG〉 = [⊗(i, j)∈LCz
i j

] |+〉⊗N , (B1)

with

Cz
i j = 1

2

[(
Ii + σ z

i

)
I j + (

Ii − σ z
i

)
σ z

j

]
(B2)

being an entangling controlled phase gate. Here |+〉 = (|0〉 +
|1〉)/

√
2 is the eigenstate of σ x corresponding to the eigen-

value +1, (i, j) ∈ L denotes a link in the graph, and i =
1, 2, . . . , N labels the nodes in V , each holding a qubit. Each
ground state |ψg〉 of HK or HC at g = 0 is a stabilizer state
|ψS〉, which can be transformed to a graph state |ψG〉 via local
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FIG. 13. Markovian and non-Markovian dynamics of localizable
entanglement in color code. Variation of E ′′

� as functions of t in the
case of a color code on a hexagonal lattice of six plaquettes in parallel
magnetic field, where the initial states of the dynamics are chosen
from the topological and the nontopological phases. Both axes are
dimensionless.

Clifford unitary operators as [70,92]

|ψG〉 = U |ψS〉 , U = ⊗N
i=1Ui. (B3)

Let us now assume that the optimal measurement over � that
results in the maximum value of EL

� over a subset of qubits �

in |ψG〉 is given by M�, and the corresponding postmeasured
states and probability of outcomes are given by

ρk = 1

pk
[(M� ⊗ I�)ρG(M� ⊗ I�)] (B4)

and

pk = Tr[(M� ⊗ I�)ρG(M� ⊗ I�)] (B5)

respectively, with ρG = |ψG〉 〈ψG|. Since ρG = UρSU † with
ρS = |ψS〉 〈ψS|, ρG and ρS have identical entanglement prop-
erties due to their local unitary connection, the optimal value
of EL

� in ρG corresponds to the same value of EL
� in ρS , but

corresponding to a different optimal measurement given by
M ′

�
= U�M�U †

�
, where U� = ⊗i∈�Ui, and U = U� ⊗ U�.

This can be easily seen as

ρk = 1

pk
[U (M ′

�
⊗ I�)ρS (M ′

�
⊗ I�)U †]. (B6)

Single-qubit Pauli measurements on the qubits in � of a
graph state can be translated to a set of local graph operations
[91], leading to a graph state on the unmeasured qubits. In
the case of two-qubit subsystem �, prescription involving
single-qubit Pauli measurements on the qubits in � exists
[91,117], which leads to a connected qubit pair over �. This
is equivalent to a Bell state up to local unitary operations,
thereby ensuring maximum bipartite entanglement. Since U
belongs to the class of single-qubit Clifford operations, it
follows straightforwardly that the optimal measurement setup

for EL
� in ρS for the two-qubit subsystem � is also consti-

tuted of single-qubit Pauli measurements over the qubits in
�. The situation is more complex if � contains more than
two qubits, since for bipartite entanglement measures, maxi-
mum entanglement over all possible bipartitions of � in the
postmeasured state ρk is not guaranteed by single-qubit Pauli
measurements on the qubits in � [91]. However, in situations
where a Pauli measurement setup results in a connected sub-
graph over �, maximum bipartite entanglement is guaranteed
in a bipartition of � as long as one of the partitions is a qubit
alone, due to the maximally mixed single-qubit density matrix
ensured by a connected graph [91,123]. Therefore, in an ap-
proach similar to the two-qubit subsystem, one can determine
an optimal measurement setup for ρS in terms of local Pauli
measurements on the qubits in �, when the entanglement is
localized over a 1:rest bipartition.

In this paper, we focus on localizing entanglement over
1:rest partitions of �, which allows us to exploit the connec-
tion between the graph states and stabilizer states discussed
above in determining a canonical measurement setup. We
describe this using the Kitaev code. The Clifford operators
connecting a stabilizer ground state of the code to graph states
are Hadamard operators given by

H = 1√
2

(|0〉 〈0| + |0〉 〈1| + |1〉 〈0| − |1〉 〈1|) (B7)

on selected control qubits on the code, resulting in the trans-

formation σ x H←→ σ z, with {|0〉 , |1〉} being the single-qubit
computational basis. For a specific set Sc of such control
qubits, the corresponding graph state |ψG〉 = ⊗i∈Sc Hi can be
determined. Any Pauli measurement setup on the qubits in
� leading to a connected graph over � can potentially be
a canonical measurement setup. However, the set Sc can be
chosen in such a way that the subgraph G� over � in G is
already connected [92,93], taking the form of a star graph. In
a star graph, one node, referred to as the hub, is connected
to all other nodes in � via a link, and no other nodes are
connected to each other. Note that there may exist multiple
possibilities for Sc leading to a star graph on �, and any Pauli
measurement over the qubits in � that (a) either does not
disturb the subgraph G�, or (b) results in another connected
subgraph G�, can be chosen as a canonical measurement
setup. We choose the former, where the measurement over the
qubits in � can be described via simple rules using the relative
positions of the qubits with respect to the loop operator, and
the plaquette and the vertex stabilizer operators through which
the loop passes, as discussed in Sec. III A. These rules are as
follows:

(a) To determine the localizable entanglement over a non-
trivial loop representing the logical operator Lx

h,v (Lz
h,v

), a
qubit which is not on Lx

h,v (Lz
h,v

) but is situated on the plaquette
operators (vertex operators) through which Lx

h,v (Lz
h,v

) passes,
is measured in the σ z (σ x) basis.

(b) All other qubits are measured in the σ x (σ z) basis.
See Fig. 14 for a demonstration on Kitaev code with �

corresponding to a nontrivial loop representing Lz
v .

Note that a measurement setup obtained following these
rules works only in the case of g = 0, and may fail to provide
the optimal ERL

� over � in the presence of perturbations in the
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FIG. 14. Examples of canonical measurement setups for Kitaev code. In the case of the four-plaquette Kitaev code, the local unitary
equivalent graph state |ψG〉 can be obtained by application of the Hadamard operator on a set of control qubits. The corresponding graph G
has a connected subgraph G� over �, made of qubits 4 and 8 (i.e., the subsystem � ≡ Lz

v) connected by a link. An optimal measurement
setup that does not disturb G� during the measurement corresponds to σ x measurements on qubits 1,7, and σ z measurements on the rest.
This is equivalent to σ z measurements on qubits 3,7, and σ x measurements on the rest in the ground state |ψg〉 of the Kitaev code, thereby
constructing the canonical measurement setup described in Sec. III A (see also Fig. 4). The same for a nine-plaquette Kitaev code has also been
demonstrated, leading to a connected subgraph on qubits 6, 12, and 18 (constructing Lz

v) after measurement. Note that in G� corresponding
to the nine-plaquette Kitaev code, qubit 18 serves as the hub. Once measurements are made on the graph state, the postmeasure states of the
system is |ψG�

〉 ⊗i∈� |+i〉 up to local unitary operations, where |ψG�
〉 is the state corresponding to the star graph on �.

form of either external field or environmental noise. Examples
of such scenarios are reported in Secs. III and IV.

APPENDIX C: LOWER BOUND
FROM WITNESS OPERATORS

Here we discuss the computation of the witness-based
lower bound for localizable entanglement in topological quan-
tum code. Noticing that s j = s�

j ⊗ s�
j (see Sec. III B), local

witness operator W� [Eq. (25)] can be decomposed as [70]

W� =
2|�|−1∑

k=0

P�
k,α ⊗ W k

�. (C1)

Here

W k
� = I

2
−

∏
s j∈S

I� + η js�
j

2
(C2)

with η j = ±1 and I being the identity operator in the Hilbert
space of �, and

P�
k,α = 1

2|�| ⊗i∈� [Ii + (−1)kiσαi ], (C3)

where ki = 0, 1, and αi = x, y, z. Without loss of any gener-
ality, one may label the qubits in � as 1, 2, . . . , |�| − 1, |�|,
such that the indices k = k1k2 · · · k|�| and α ≡ α1α2 · · ·α|�|
can be identified as multi-indices, and each sequence α

represents a specific Pauli-measurement setup over �, with
P�

k,α representing the projection operator corresponding to the
measurement outcome k for the Pauli measurement sequence
specified by α. Therefore, the expectation value of W� in
the stabilizer state ρS = |ψS〉 〈ψS| of the topological quantum
code is given by [70]

w = Tr[W�ρS] =
2|�|−1∑

k=0

pkTr
[
W k

�ρk
�

] =
2|�|−1∑

k=0

pkwk . (C4)

Note that given an entanglement measure E , we would like to
determine Emin(w) [see Eq. (21)]. The relation between w and
wk in Eq. (C4) suggests that Emin(w) provides a lower bound
of the LE as long as Emin(w) is linear in w, where E is the
chosen entanglement measure.

In order to determine Emin(w), we again exploit the con-
nection between the graph states and the stabilizer states (see
Appendix B), and note that [70]

w = Tr[W�ρS] = Tr[UW�U †ρG] = Tr[W ′
�ρG], (C5)

where the local unitary transformed witness operators W ′
� =

UW�U † involve stabilizers s′
j = UsjU †, which are graph state

generators. These graph state generators can also be written as
s′

j = s′�
j ⊗ s′�

j , where s′�
j represent the graph state generators

corresponding to the subgraph G� corresponding to the sub-
system �. Witness operators W̃ ′

� can further be constructed
for the state ρG�

corresponding to the subsystem � using the
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graph state generators s′�
j , such that [96,98]

w = Tr[W ′
�ρG] = Tr[W̃ ′

�ρG�
]. (C6)

Note that W̃ ′
� is an witness operator that is global to the

state ρG�
.

For a specific stabilizer state ρS corresponding to a topo-
logical code transformed to a graph state ρG via a specific
set of unitary operators U , and consequently for a specific
W ′

� resulting in a specific W̃ ′
�, the optimization problem be-

comes Emin(w) = inf E (ρ) subject to w = Tr[W̃ ′
�ρ], ρ > 0,

and Tr[ρ] = 1. We choose negativity as the bipartite measure
E of entanglement over a bipartition A:B of �. Using the
definition (see Appendix A), determination of Ew

� reduces to
the optimization problem [69,94]

Ew
� = inf ||(ρAB)TA ||1 − 1 (C7)

over all possible bipartite state ρAB such that Tr[W̃ ′
�ρAB] = w,

Tr[ρAB] = 1, and ρAB > 0. Following the procedure described
in described in [94], this turns out to be

Ew
� = inf Tr[(DρAB)TA ] − 1, (C8)

with D being an operator satisfying ||D||∞ = 1. Following
[94] and assuming

D = − f (W̃ ′
�)TA + hI (C9)

with the factors f , h suitably chosen to meet the condition
||D||∞ = 1, one obtains

Ew
� = max

f ,h
(− f w + h − 1). (C10)

We now apply more restrictions specific to our problem in
order to compute (W̃ ′

�)TA , and write

(W̃ ′
�)TA = 1

2 I − ρ
TA
AB, (C11)

where ρAB, in general, is a graph state ρG�
. The partially trans-

posed graph state is diagonal in the graph-state basis [91,117],
and its form can be derived depending on the structure of the
graph G�. As per the discussion in Sec. III A and Appendix B,
we focus on transformations ρS → ρG with the restriction of
obtaining a connected star graph G� over �. Moreover, we
fix a Pauli measurement setup in the form of the canonical

measurement setup that does not disturb G�. Therefore, it is
sufficient to focus on star graphs ρG�

for the optimization
in Eq. (C10). Such a graph state can be partially transposed
considering the hub to be the partition A and the rest of the
nodes to be partition B, as [91,117]

ρ
TA
AB = 1

2
(Z0ρABZ0 + Z2|�|−1ρABZ2|�|−1 + Z2|�|−1−1ρABZ2|�|−1−1

− Z2|�|−1ρABZ2|�|−1), (C12)

where Zl = ⊗i∈�(σ z
i )li , l = 0, 1, . . . , 2|�| − 1, li = 0, 1, l ≡

l1l2 · · · l|�| is a multi-index having the decimal values of the bi-
nary string l1l2 · · · l|�|. For example, in the case of a subgraph
G� constituted of three qubits (|�| = 3), such as the graph
obtained from the nine-plaquette Kitaev code (see Fig. 14),
ρ

TA
AB is given by

ρ
TA
AB = 1

2 (Z0ρABZ0 + Z4ρABZ4 + Z3ρABZ3 − Z7ρABZ7).

(C13)
Note that Eq. (C12) works only when the subsystem A is
taken to be the hub, and therefore is not invariant under qubit
permutations within G�. Note also that via local graph trans-
formations that results in local unitary transformations over
the graph state ρG�

, the graph G� can be transformed to star
graphs with different qubits as hubs. Using Eqs. (C9), (C11),
and (C12), one obtains

D =
(

h − f

2

)
I − f

2
(Z0ρABZ0 + Z2|�|−1ρABZ2|�|−1

+ Z2|�|−1−1ρABZ2|�|−1−1 − Z2|�|−1ρABZ2|�|−1), (C14)

with singular values given by {|h|, |h − f |, |h − f
2 |}.

Since |h − f | > |h − f /2|, satisfaction of ||D||∞ = 1 re-
quires max{|h|, |h − f |} = 1. Under this condition, the opti-
mum values of h and f that maximizes Eq. (C10) are (a)
h = 1, f = 2 for w < 0, and (b) h = 1, f = 0 for w � 0.
Substituting for h and f in Eq. (C10), we obtain

Ew
� =

{−2w, for w < 0,

0, for w � 0.
(C15)
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