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Graph states are a large class of multipartite entangled quantum states that form the basis of schemes
for quantum computation, communication, error correction, metrology, and more. In this work, we consider
verification of graph states generated by an untrusted source and shared between a network of possibly dishonest
parties. This has implications in certifying the application of graph states for various distributed tasks. We present
a protocol which is globally efficient for a large family of useful graph states, including cluster states, GHZ
states, cycle graph states, and more. For general graph states, efficiency with respect to the security parameter is
maintained, though there is a cost increase with the size of the graph state. The protocols are practical, requiring
only multiple copies of the graph state, local measurements, and classical communication.
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The usefulness of graph states extends across the field of
quantum information, with their inherent multipartite entan-
glement leading them to be promising candidates for a variety
of tasks. As quantum states that correspond to mathematical
graphs, where vertices represent qubits and edges preparation
entanglement, graph states may possess varied entanglement
that render them ideal for applications ranging from quantum
computation [1–3] and error correction [4,5] to cryptography
[6,7], metrology [8–10], and more [11–13].

As such, the verification of these resource states is a nat-
ural problem, and has been the topic of much investigation,
under different assumptions of trust and particular questions
of interest [14]. For example, in tomography, one wishes to
find the density matrix of the state, while trusting measuring
devices and that the state is not correlated across preparations,
i.e., that it is independent and identically distributed (i.i.d.)
[15]. With entanglement witnesses, on the other hand, we
have the same trust settings but are interested only in demon-
strating entanglement [16]. In cryptographic settings, one is
often interested in the case where measurement devices are
trusted, but the sources of the states are not, and in fact not
even that they are i.i.d. [17–21]. Going further, in self-testing
and device-independent approaches, one does not trust the
source or the measurement devices [22]. These techniques
have had applications across quantum information for verifi-
cation of delegated quantum computation [17–20], simulation
[23], sampling, and network tasks [17,24].

In all these examples, however, all of the participating par-
ties behave in an honest way; it is the source or their devices
which are not trusted. One may also be interested in a stronger
type of scenario, where a graph state is distributed over a
network of parties each holding a share of the state, but where,
crucially, not all the parties behave in an honest way. This is
an important cryptographic scenario, which has applications,

for example, in the task of secure multiparty quantum com-
putation [25,26], involving a set of possibly dishonest parties
who wish to compute some function of their inputs. The first
efforts to verify states in this scenario were for GHZ states
[27–29]. This has already found application, for example,
in anonymous transmission of quantum messages [7]. The
ubiquity of graph states for quantum information naturally
suggests the interest in generalizing such an approach to all
graph states.

In this work, we present a way of verifying graph states
across a network with untrusted parties. Our protocol is glob-
ally efficient in the number of copies required for families of
graph states, including many graph states of interest. These
include the complete graph state (locally equivalent to the
GHZ state), one- and two-dimensional cluster states, and
cyclic graph states, which are resource states for quantum
metrology [8,10], universal quantum computation [1,30], and
error correction [4,5], respectively. For an arbitrary graph
state, our protocol maintains efficiency with respect to the
security parameter (i.e., how sure we are that the state is
good), but requires a number of copies of the graph state that
grow exponentially with the size of the graph state. This cost
arises since, in general, we lack certain symmetries which
allow for efficiency. For small or fixed-size networks requiring
fixed-size graph states, this cost may not be too burdensome,
as there the security parameter efficiency dominates.

For ease of presentation, we break our work down into two
protocols. The first follows very closely to [20], extending its
use to dishonest networks, but requires an assumption on one
party (the Verifier) to act honestly. Building on this, the second
protocol is more involved, but removes this assumption. In
this way, all parties are equally treated with no assumption of
their honest behavior, and we refer to this as the symmetric
protocol.
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I. COMMUNICATION SCENARIO

Our network consists of n parties, split into sets of honest
and dishonest parties, which we will denote by H and D,
respectively. An untrusted source is asked to produce the n-
qubit graph states requested by the parties, but may provide
any states they wish, including entangled across copies and
with possible registers reserved by the source for later use.
The parties are only required to apply local operations and
measurements, and communicate classically. While the honest
parties follow the protocol, the dishonest parties might not,
and can work together and do anything to their part of the
state, as well as collaborate with the source to disrupt the
protocol. Note that the honest parties do not need to know
the identity of other honest parties, whereas the dishonest
parties are assumed to have all the information about who is
honest and dishonest. Each pair of parties must share a private
classical channel. For the symmetric version of the protocol,
we also require a trusted common random source.

II. PROTOCOL

Before we begin, let us give a brief description of stabiliz-
ers. The n-qubit graph state |G〉 associated to a graph G can
be uniquely specified by its stabilizer group S as follows. To
each qubit i ∈ {1, . . . , n}, we associate a stabilizer generator
Ki = Xi

∏
e∈N (i) Ze, where N (i) is the set of neighboring ver-

tices to i in the graph and Xi and Zi are the Pauli operators
acting on qubit i. The full stabilizer group S is generated by
taking all 2n products of the stabilizer generators. The graph
state |G〉 is the unique +1 eigenstate of every stabilizer Sj ∈ S.

An intuitive way to test a particular graph state is then to
check that all stabilizer measurements give a +1 outcome.
If all parties are honest, this can only happen if the source
has sent them the ideal graph state (since it is the unique
+1 eigenstate). By asking for many copies and randomly
choosing which stabilizer to measure after the source has sent
each copy, the parties can prevent the source from creating
some other state that would pass an individual stabilizer mea-
surement but not the full set. In fact, this is the essential idea
behind many of the verification protocols for graph states,
with details differing depending on trust, security statements,
and efficiency [17–21,31–33]. Here, we extend this approach
to account for any number of dishonest parties, who may work
together and coordinate with the dishonest source.

To achieve this goal, we will use and adapt the verification
protocol from [20]. Our Protocol I is almost identical to that
of [20], although the security proof requires completely new
elements at the state level to deal with dishonest parties. At
this stage, however, the protocol still requires one party, the
Verifier, to behave honestly. We then adapt it to build a new
protocol to deal with the possibility of dishonest Verifiers,
which we call the symmetric scenario (i.e., all parties are
treated equally), in Protocol II.

The presence of dishonest parties affects the efficiency of
the protocol. While the protocol in [20] only requires mea-
suring the stabilizer generators, in order to extend this to any
graph state with any number of dishonest parties, the parties
must measure the full set of stabilizers, which leads to the
requirement of exponentially many copies with graph size.

Protocol 1 VERIFICATION OF GRAPH STATE

Input: The parties choose values of Ntest, Ntotal. Let S be the set of
test measurements, and J = |S|.

1: An untrusted source generates Ntotal copies of the graph state,
and sends the shares to the parties.

2: The parties repeat the following for j = 1, . . . , J:
(a) The Verifier chooses Ntest copies from the remaining
Ntotal − ( j − 1)Ntest copies independently and uniformly at
random.
(b) For each copy, the Verifier instructs each party to perform
the measurement corresponding to their part of the stabilizer
S j .
(c) For each copy, the parties send their measurement outcome
to the Verifier, who calculates the total measurement outcome.
The copy passes the test if the total measurement outcome is
+1. Let Npass, j be the number of copies that pass the stabilizer
test for S j .

3: The Verifier uniformly randomly chooses a single copy from
the remaining N ≡ Ntotal − JNtest copies that were not used for
the tests in the previous steps. The chosen single copy is called
the target copy. The others are discarded.

4: If Npass ≡ ∑J
j=1 Npass, j � JNtest − Ntest

2J , the parties use the target
copy for their application; otherwise, the target copy is
discarded.

This scaling is due to the power of our adversarial model.
We will show afterwards how to reduce this requirement if
we have more information about the dishonest parties, or for
specific families of graph states of interest.

Protocol 2 SYMMETRIC PROTOCOL FOR VERIFICATION OF

GRAPH STATE

Input: The parties choose values of Ntest, Ntotal, λ. Let S be the set of
test measurements, and J = |S|.

1: An untrusted source generates Ntotal copies of the graph state,
and sends the shares to the parties.

2: The parties repeat the following for j = 1, . . . , J:
(a) The CRS chooses λNtest copies from the remaining
Ntotal − ( j − 1)λNtest copies independently and uniformly at
random. These are split into λ sets of Ntest copies, again at
random by the CRS. For each set of Ntest copies, the CRS
chooses a random party to be the Verifier.
(b) For each copy, the corresponding Verifier instructs each
party to perform the measurement corresponding to their part
of the stabilizer S j .
(c) For each copy, the parties send their measurement outcome
to the Verifier, who calculates the total measurement outcome.
The copy passes the test if the total measurement outcome is
+1. Let Npass, j be the number of copies that pass the stabilizer
test for S j .

3: The CRS uniformly randomly chooses a single copy from the
remaining N ≡ Ntotal − λJNtest copies that were not used for the
tests in the previous steps. The chosen single copy is called the
target copy. The others are discarded.

4: If Npass ≡ ∑J
j=1 Npass, j � λJNtest − Ntest

2J , the parties use the
target copy for their application; otherwise, the target copy is
discarded.
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III. SECURITY ANALYSIS

We first consider the case of an arbitrary n-qubit graph
state, denoted by |G〉, and assume an honest Verifier. The
parties perform Protocol I, measuring the full set of J = 2n

stabilizers (i.e., we take the set of test measurements S to
be the full stabilizer group S), to test whether the state they
receive in each round, |�〉, is the ideal graph state |G〉, even in
the presence of dishonest parties.

In a network with dishonest parties who may collaborate
with the source of the state, we may take the state |�〉 to
be pure, as the dishonest parties can purify it by adding a
reference system. Further, in such a network, we can only
make statements on the fidelity up to local operations on the
dishonest part. By Uhlmann’s theorem [34], this refers to the
fidelity between the reduced states of the honest parties.

Let us then take ρ
|G〉
H to be the reduced state of the honest

parties in the ideal case (i.e., when they share |G〉), and ρ
avg
H

to be the reduced state of the honest parties of the averaged
state of the target copy (over all random selections from the
remaining N copies). We prove the security of our protocol in
the following theorem for the case of an honest Verifier.

Theorem 1. Assuming an honest Verifier, if we set Ntotal =
2 × 2nNtest, Ntest = �m24n ln 2n�, and S as the full set of stabi-
lizers, the probability that the fidelity of the averaged state of
the target copy (over all possible choices of the tested copies
and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

2n
− 2 × 2n

(
1 − Npass

2nNtest

)
(1)

is at least 1 − (2n)1− 2cm
3 , where m, c are positive constants

chosen such that 3
2m < c < (2n−1)2

4 .
Proof sketch. Our proof has three main stages. In the first

stage, we show that if all stabilizer tests pass perfectly, the
state in each round of the protocol must be |�〉 = UD |G〉,
where UD is a unitary on the dishonest part of the state. This
is the main part of our proof. To do this, we demonstrate that,
for the Schmidt decomposition of the state corresponding to
the partition (H, D), the Schmidt basis of the honest parties is
the same for the actual and ideal states. We illustrate this by
writing the unknown actual state as

|�〉 =
∑

z

αz |z〉H ⊗ |ψz〉D , (2)

|�〉 =
∑

x

βx |H(x)〉H ⊗ |φx〉D , (3)

where z, x are classical |H |-bit strings, αz, βx are unknown
complex coefficients, and {|z〉}, {|H(x)〉} form complete bases
for the honest side, where |H(x)〉 is the state corresponding to
the honest subgraph with σZ ’s applied on vertices according
to x (that is, σZ applied to the qubit of party i iff xi = 1), and
|ψz〉 , |φx〉 are the corresponding states on the dishonest side.
We identify, purely from the fact that all stabilizer generator
tests pass perfectly, which elements in {|ψz〉} and {|φx〉} are
orthogonal to each other. Passing the full set of stabilizer
tests allows us to see which βx must be zero; this tells us
which terms of |z〉 must correspond to the same αz, |ψz〉.
We then show that each unique αz = ± 1√

2|H | . Substituting this
information in Eq. (2), we see that the honest Schmidt basis

of |�〉 must be equal to the honest Schmidt basis of |G〉. Thus,
the only state |�〉 that can pass every stabilizer test perfectly
is such that ρ

|�〉
H = ρ

|G〉
H (or, equivalently, |�〉 = UD |G〉).

In the second stage, we employ the Serfling bound to find
that, after the 2n test measurements, the fraction of states out
of the remaining untested copies that would pass all tests
perfectly is at least 1 − 2

√
c

2n − 2 × 2n(1 − Npass

2nNtest
), with prob-

ability at least 1 − (2n)1− 2cm
3 . This follows straightforwardly

using the method of [20], but with 2n test measurements
corresponding to the full set of stabilizers.

In the final stage, we translate this statement to the reduced
state of the honest parties of the target copy, which gives our
final result.

The full proof is given in Appendix A. �

IV. EFFICIENT EXAMPLES

For certain graph states or sets of dishonest parties, we can
reduce the resources required for verification; in fact, we see
that simply by measuring the stabilizer generators, the desired
statement can be made about the fidelity of the unknown state.
Then, the parties can instead run Protocol I with a simplified
set of test measurements (where J = n). Such examples are
given in the following theorem, whose graph states are shown
in Fig. 1.

Theorem 2. If |G〉 is either
A. a complete graph state with dishonest parties anywhere

in the network, or
B. a pentagon graph state with either one, three, or four

dishonest parties anywhere in the network, or two dishonest
parties who are adjacent, or

C. a cycle graph state with either one, n − 2, or n − 1 dis-
honest parties anywhere in the network, or any other number
of dishonest parties who are adjacent, or

D. a 1D cluster state with either one or n − 1 dishonest
parties anywhere in the network, or any other number of
adjacent honest or dishonest parties, or

E. a 2D cluster state with either one or n − 1 dishonest
parties anywhere in the network, or any other set of adjacent
dishonest parties that forms a square or rectangle anywhere in
the network,

and we set Ntotal = 2nNtest, Ntest = �mn4 ln n�, and S as the
set of stabilizer generators, assuming an honest Verifier, the
probability that the fidelity of the averaged state of the target
copy (over all possible choices of the tested copies and target
copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(4)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof sketch. First, we see that, for the examples A-E in

Theorem 2, testing the stabiliser generators is sufficient to
identify the terms that are zero in Equation (3). Then, we
follow the remainder of the proof of Theorem 1, but with n
test measurements corresponding to the generator tests, and
extend our results to the target copy in the final step. The full
details are given in Appendix II. �
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FIG. 1. Examples of a (a) complete graph, (b) pentagon graph, (c) cycle graph, (d) 1D cluster state, and (e) 2D cluster state. For quantum
states that correspond to these types of graphs, one can perform efficient verification using Protocol I, possibly with some information regarding
the dishonest parties, as shown in Theorem 2.

Noting that the GHZ state is locally equivalent to the
complete graph state, example A offers an alternative to the
verification protocol in [27].

V. SYMMETRIC PROTOCOL

Up to now, we have assumed that the party acting as the
Verifier is honest. We will now remove this assumption. To
do so, we increase the number of tested copies from Ntest tests
per stabilizer to λNtest, and make use of a trusted common
random source (CRS) that provides the parties with shared
randomness (following [27]). The CRS is used to replace the
Verifier’s choices and to pick which party acts as the Verifier.
In this way, the honest parties are protected against a dishonest
Verifier who may attempt to cheat. While using a CRS is an
additional resource, it is natural that it is also required, as any
protocol able to verify an entangled state can use this state
to generate a CRS (for example, by sharing a GHZ state and
measuring in the computational basis). A CRS can be created,
for example, if a third or more of the network is honest, using
[35].

Such a symmetric protocol is given in Protocol II, with
the following adapted theorem, whose proof is given in Ap-
pendix C.

Theorem 3. If we set Ntotal = (λ + 1)λJNtest and Ntest =
�mJ4 ln J�, the probability that the fidelity of the averaged
state of the target copy (over all possible choices of the tested
copies and target copy) in Protocol II satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
�1 −

(1

λ
− 1

λ2

)

−
(

1 + 1

λ

)[√
c

J
+ λJ − Npass

Ntest

]
(5)

is at least [1 − ∑λ
x=0 (1 − |H |

n )
x
( |H |

n J− 2cm
3 )

λ−x
]
J
, where m, c

are positive constants chosen such that the fidelity and proba-
bility expressions are greater than zero.

Replacing J by J = 2n for a general graph state, and J = n
for the special cases in Theorem 2, we recover symmetric
versions of Theorems 1 and 2. The extra parameter λ allows
the parties to further tailor the protocol to achieve their desired
bounds, while taking into account their experimental limita-
tions.

VI. DISCUSSION

In this work, we have shown how to verify any graph state
shared between a network of parties who may or may not be

trusted. Our protocols are easily implementable: performing
a verified version of some task using graph states simply
requires additional copies of the graph state. Indeed, recent
experiments verifying the GHZ state [28] and secret shar-
ing graph states [24] for trusted parties would need minimal
changes to carry out our protocol, while giving increased
security. The results here naturally extend to qudit graphs, as
in [20].

We briefly consider the robustness and comparative ef-
ficiency of our protocols. In terms of robustness, we are
interested in how the fidelity statements and probability of
accept change when noise is introduced [20,36]. Our protocols
follow the robustness properties of [20], in particular, the
scaling of the accept probability with the number of tests (see
Appendix D). Unsurprisingly, the additional tests required
for the general case diminish robustness, whereas if only the
generators need to be tested, such as for the examples in
Theorem 2, we recover the linear scaling of [20]. Moving to
the symmetric case (Theorem 3) does not greatly affect the
robustness.

With respect to efficiency, we can compare with the case
where all parties are trusted, studied in depth in [21,32,33]. In
particular, these works also give lower bounds on the number
of copies of a graph state needed to certify a given fidelity
with a given probability of accept. Since our scenario is more
paranoid (theirs corresponds to all parties being honest), these
works give lower bounds for our protocols too. For the fami-
lies of interest in Theorem 2, we achieve the same efficiency
as [20]. For general graph states, where we cannot make use of
symmetries, we suffer from an exponential overhead with the
size of the graph state, but for a fixed-size graph we maintain
efficiency with respect to the security (fidelity and probabil-
ity). It is likely that further optimizations can be made for
efficiency, either by adapting the protocol or different proof
techniques [21,32,33,36,37], though it is not clear the same
lower bounds will hold.

The efficient examples from Theorem 2 suggest several
applications. Cluster states are universal for quantum com-
putation [1,30] and can be used in a distributed setting,
meaning their verification can be applied for secure multiparty
computation [25,26]. The complete graph state, or locally
equivalent GHZ state, is the optimal resource for quantum
metrology [8,10], where verification would have applications
for distributed or delegated sensing [38–41] in untrusted
networks. The cycle graph state is both the most efficient
state for error correction and a resource for secret sharing
[42], again, with applications for further security in untrusted
networks [24].
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APPENDIX A: PROOF OF THEOREM 1

Using Protocol I, a network of parties, out of which any
number may be dishonest, can verify any shared graph state.
We now prove the following theorem to illustrate the security
of this protocol, assuming for now that the Verifier is an honest
party.

Theorem 1. Assuming an honest Verifier, if we set Ntotal =
2 × 2nNtest, Ntest = �m24n ln 2n�, and S as the full set of stabi-
lizers, the probability that the fidelity of the averaged state of
the target copy (over all possible choices of the tested copies
and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

2n
− 2 × 2n

(
1 − Npass

2nNtest

)
(A1)

is at least 1 − (2n)1− 2cm
3 , where m, c are positive constants

chosen such that 3
2m < c < (2n−1)2

4 .
Proof. Our proof proceeds in stages. We will start by prov-

ing that if all stabilizer tests pass perfectly, then the state must
be the ideal graph state, up to local unitaries on the dishonest
parts of the state. This means that in order to pass perfectly,
the source must create entanglement between the honest and
dishonest parties. This is given in the following lemma.

Lemma 1. The only state that can pass all stabilizer tests
perfectly in each round is |�〉 = UD |G〉, where UD is a unitary
on the dishonest part of the state.

Proof. Let s be the Schmidt rank of the graph state |G〉 cor-
responding to the partition (H, D) into honest and dishonest
vertices, |H〉 be the state corresponding to the honest sub-
graph, and EH be the set of edges within the honest subgraph.

Let bn(x) be a function that converts a decimal number x
into its binary representation, and let us define classical |H |-
bit strings z, x ∈ {bn(0), . . . , bn(2|H | − 1)}, where |H | is the
number of honest parties in the network. We will use za to
refer to the ath element of z.

We will start by writing the Schmidt decomposition of the
ideal state for the partition (H, D) from [11]. Some terms in
{|z〉} may be grouped together as they have the same dishonest
part, as given by

|G〉 = 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H ⊗

∏
a∈H

( ∏
b∈N (a)

σ
(b)
Z

)za

× |G − H〉D (A2)

= 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H ⊗ |G − H( f (z))〉D , (A3)

where f (z) depends on ⊕
i∈N (d )

zi, ∀ d ∈ D, and G − H is the

dishonest subgraph. Then, |G − H( f (z))〉 is the state corre-
sponding to the dishonest subgraph with σZ ’s applied to some

vertices depending on z. This means that for terms where
⊕

i∈N (d )
zi is the same for all d ∈ D, the corresponding dishonest

part |G − H( f (z))〉 is the same, and so the |z〉s of these are
grouped together.

Let |H(x)〉 be the state corresponding to the honest sub-
graph with σZ ’s applied according to x (for example, |H(001)〉
corresponds to a three-qubit graph with σZ applied to the third
qubit). The set {|H(x)〉} for all x forms a complete basis (the
graph state basis), as does the set {|z〉}. The unknown state in
any round of Protocol I can then be written using the following
decomposition:

honest computational basis: |�〉 =
∑

z

αz |z〉H ⊗ |ψz〉D ,

(A4)

honest subgraph basis: |�〉 =
∑

x

βx |H(x)〉H ⊗ |φx〉D , (A5)

where αz, βx are complex coefficients, and both sets
{|ψz〉}, {|φx〉} are the corresponding states on the dishonest
side. So far, we have assumed nothing about the portion of the
state in control of the dishonest parties since no matter what
the source supplies, the dishonest parties may do anything to
their part to cheat in the protocol.

In Protocol I, the test measurements are the elements
S j∈{1,...,2n} belonging to the full stabilizer group. These mea-
surements are generated by the stabilizer generators Ki∈{1,...,n}
of each qubit i. Thus, the full stabilizer group S is given by

S =
〈{

Ki = Xi

∏
e∈N (i)

Ze

}n

i=1

〉
. (A6)

We want to determine the form of the state given that all the
test measurements pass perfectly. Let us now group the test
measurements into two sets, such that group 1 contains only
1, Z for the honest part, and group 2 contains everything else.

We first consider the measurements in group 1. This set
contains the stabilizer generators corresponding to the dishon-
est qubits, i.e., Ki∈D. For each dishonest qubit, the honest part
of the corresponding stabilizer generator measurement will be
composed of Z measurements on the honest qubits that are
in the neighborhood of the dishonest qubit, and 1 on those
that are not. We can then write the set of stabilizer generators
belonging to group 1 as{

∀ d ∈ D,
[

⊗
i∈N (d )

Zi ⊗
i/∈N (d )

1i

]
H

⊗ (M ′
d )D

}
, (A7)

where (M ′
d )D is the measurement on the dishonest part, the

form of which does not matter here. Let z, z′ be two strings
in the computational basis expansion of |�〉. If ⊕

i∈N (d )
zi 
=

⊕
i∈N (d )

z′
i, then each honest measurement ⊗

i∈N (d )
Zi ⊗

i/∈N (d )
1i will

give different outcomes for z, z′ since the outcome of the Z
measurement on all i ∈ N (d ) depends on the parity of the
string (how many 1’s). So, to pass perfectly, (M ′

d )D must also
give different outcomes. In order to do this, the dishonest
parties must be able to guess the honest parties’ outcome
perfectly, which means that they must be able to perfectly
discriminate between the corresponding |ψz〉 , |ψz′ 〉; this tells
them the outcome they should get in order to pass the test.

052420-5



ANUPAMA UNNIKRISHNAN AND DAMIAN MARKHAM PHYSICAL REVIEW A 105, 052420 (2022)

This means that we must have 〈ψz| |ψz′ 〉 = 0. In general, we
can write this as

∀ z, z′, if ∃ d ∈ D such that ⊕
i∈N (d )

zi 
= ⊕
i∈N (d )

z′
i,

then 〈ψz| |ψz′ 〉 = 0. (A8)

We will now see that if the measurements in group 2 pass
perfectly, we get certain βx = 0, and for all βx 
= 0, the corre-
sponding |φx〉’s will be orthogonal to each other.

To prove orthogonality, note that the set of stabilizer
generators in group 2 contains all the stabilizer measure-
ments with X in the honest part (the stabilizer generator
corresponding to each qubit in the honest set). So, the
honest part of the measurements in the group is of the
form {X1M2M3 . . . Mn, M1X2M3 . . . Mn, M1M2X3 . . . Mn, . . . ,

M1 . . . Xn}, where the honest measurement Mi∈{1,...,n} is either
1 or Z . Since no two states in the |H(x)〉 basis will give the
same outcome for every one of these measurements, in order
to pass perfectly, the dishonest parties must be able to dis-
criminate between all corresponding |φx〉 to perfectly guess
the honest outcome. We can write this as

∀ x 
= x′, 〈φx| |φx′ 〉 = 0. (A9)

To determine which βx = 0, we will use the measurements
with dishonest part M ′

D = (1 . . .1)′. Let A ⊂ H be a set con-
taining vertices in H such that all d ∈ D have an even number
of neighbors in A. (Note that there may be multiple such sets
A.) Now, let Ki be the stabilizer generator of qubit i of |G〉,
and ki be the stabilizer generator of qubit i of |H〉. We can
then write a subset of the group 2 measurements as∏

i∈A

Ki =
∏
i∈A

(ki )H ⊗ 1′
D. (A10)

When the dishonest parties are asked to measure 1, they must
always give outcome +1. So, in order to pass perfectly, the
honest part must also give +1 outcome. In the expansion of

the state in Eq. (A5), if for any set A, we do not have an even
number of σZ ’s on the qubits i ∈ A in the honest subgraph,
then the honest measurement will not give outcome +1. Since
the positions of the σZ ’s are determined by the string x, pass-
ing the group 2 measurements perfectly tells us that

if ∃A s.t. ⊕
i∈A

xi = 1, then βx = 0. (A11)

In this way, we are left with s nonzero βx’s. We can write the
set A as

A =
{

i ∈ H | ∃ z, z′ such that ∀ d ∈ D, ⊕
i∈N (d )

zi = ⊕
i∈N (d )

z′
i,

and zi ⊕ z′
i = 1

}
. (A12)

Writing i ∈ A using Eq. (A12), the condition on βx in
Eq. (A11) can be written as

if ∃ z, z′ such that ∀ d ∈ D, ⊕
i∈N (d )

zi = ⊕
i∈N (d )

z′
i,

then βx = 0 if ⊕
i∈H

(zi ⊕ z′
i ) ∧ xi = 1. (A13)

We will now relate the two expressions we have for the
honest parts of the state. The graph state basis can be ex-
pressed in terms of the computational basis by

|H(x)〉 = 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi |z〉 . (A14)

Substituting in Eq. (A5) and grouping, we get

|�〉 = 1√
2|H |

∑
x

βx

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi |z〉H |φx〉D

=
∑

z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H

1√
2|H |

∑
x

βx(−1)
⊕
i

xi∧zi |φx〉D .

(A15)

Comparing the above expression with Eq. (A4) in terms of the
coefficients of each |z〉,

αz |ψz〉 = (−1)
⊕

(k,l )∈EH
zk∧zl 1√

2|H |

∑
x

βx(−1)
⊕
i

xi∧zi |φx〉 , ∀ z

(−1)
⊕

(k,l )∈EH
zk∧zl

αz |ψz〉 = 1√
2|H |

∑
x

βx(−1)
⊕
i

xi∧zi |φx〉 , ∀ z. (A16)

On the other hand, expressing the computational basis in
terms of the graph state basis gives

|z〉 = 1√
2|H | (−1)

⊕
(k,l )∈EH

zk∧zl ∑
x

(−1)
⊕
i

xi∧zi |H(x)〉 . (A17)

Substituting in Eq. (A4) and grouping, we get

|�〉 = 1√
2|H |

∑
z

αz(−1)
⊕

(k,l )∈EH
zk∧zl ∑

x

(−1)
⊕
i

xi∧zi |H(x)〉H |ψz〉D

=
∑

x

|H(x)〉H

1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi

× αz |ψz〉D . (A18)

Comparing the above expression with Eq. (A5) in terms of the
coefficients of |H(x)〉,

βx |φx〉 = 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz |ψz〉 , ∀ x.

(A19)

Note that for certain x, βx = 0. In Eq. (A16), some terms
will then be zero. In Eq. (A19), the whole left-hand side will
then be zero. If any of the expressions are equal to zero, we
can use them to show that the terms are grouped as in the
Schmidt decomposition of |G〉 in Eq. (A3), which will allow
us to simplify Eqs. (A19) and (A4). If none of the expressions
are equal to zero, we will see that the same simplification
applies. This is encapsulated in Lemma 1.1.
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Lemma 1.1. Equations (A19) and (A4) can be written as

βv |φv〉 =
√

2|H |

s

∑
w

(−1)
⊕
i
vi∧wi

αw |ψw〉 , ∀ v (A20)

|�〉 =
∑

z

(−1)
⊕

(k,l )∈EH
zk∧zl

αw |z〉H ⊗ |ψw〉D , (A21)

where w, v ∈ {bn(0), . . . , bn(s − 1)}.

Proof. We will prove this in a series of steps. First, we show
that the |ψz〉’s are equal for the |z〉 terms that are grouped
together in the Schmidt decomposition of |G〉 in Eq. (A3),
and that their corresponding αz’s are equal up to ±1. For
any strings z, z′ such that ∀ d ∈ D, ⊕

i∈N (d )
zi = ⊕

i∈N (d )
z′

i, we have

using Eq. (A16)

(−1)
⊕

(k,l )∈EH
zk∧zl

αz |ψz〉 − (−1)
⊕

(k,l )∈EH
z′

k∧z′
l
αz′ |ψz′ 〉 = 1√

2|H |

∑
x

βx

[
(−1)

⊕
i

xi∧zi − (−1)
⊕
i

xi∧z′
i
]
|φx〉 . (A22)

From Eq. (A13), we know that for such strings z, z′, if ⊕
i

(zi ⊕ z′
i ) ∧ xi = 1, then βx = 0. Otherwise, for the terms where βx 
= 0,

we have

0 = ⊕
i

(zi ⊕ z′
i ) ∧ xi = ⊕

i
[(xi ∧ zi ) ⊕ (xi ∧ z′

i )] = [⊕
i

(xi ∧ zi )] ⊕ [⊕
i

(xi ∧ z′
i )], (A23)

which gives ⊕
i

xi ∧ zi = ⊕
i

xi ∧ z′
i, and subsequently

(−1)
⊕
i

xi∧zi = (−1)
⊕
i

xi∧z′
i
. (A24)

Substituting in Eq. (A22), we get that ∀ z, z′ such that ∀ d ∈ D, ⊕
i∈N (d )

zi = ⊕
i∈N (d )

z′
i,

(−1)
⊕

(k,l )∈EH
zk∧zl

αz |ψz〉 = (−1)
⊕

(k,l )∈EH
z′

k∧z′
l
αz′ |ψz′ 〉 . (A25)

Next, we will simplify the expression for βx |φx〉 by substituting Eqs. (A25) and (A24) in (A19) to get

βx |φx〉 = 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz |ψz〉 , ∀ x such that βx 
= 0

= 1√
2|H |

[ ∑
z s. t.⊕

i∈N (d1 )
zi=0∧...

∧ ⊕
i∈N (d|D| )

zi=0

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz |ψz〉 + · · · +

∑
z s. t.⊕

i∈N (d1 )
zi=1∧...

∧ ⊕
i∈N (d|D| )

zi=1

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz |ψz〉

]
. (A26)

There are s nonzero expressions for βx |φx〉 since there are s nonzero βx’s. There are also s sum terms on the right-hand side of
the above expression. There are a total of 2|H | terms of αz |ψz〉, grouped together if ∀ d ∈ D, ⊕

i∈N (d )
zi is the same. This means

that, within each of the s sum terms, there are 2|H |
s terms. From Eq. (A25), we know that (−1)

⊕
(k,l )∈EH

zk∧zl

αz |ψz〉 is the same for

each of these terms. Further, we know from Eq. (A24) that (−1)
⊕
i

xi∧zi
is the same for each of these terms (since βx 
= 0). Then,

we can write our expression using s terms (corresponding to each sum term in the above expression).
In this way, we are left with terms depending on s unique variables that can take any value 0 or 1, instead of 2|H | variables

that can only take certain values. Defining new variables w, v ∈ {bn(0), . . . , bn(s − 1)}, we can write the above as

βv |φv〉 = 1√
2|H |

2|H |

s

∑
w

(−1)
⊕
i
vi∧wi

αw |ψw〉 =
√

2|H |

s

∑
w

(−1)
⊕
i
vi∧wi

αw |ψw〉 , ∀ v. (A27)

Note that ∀ w 
= w′, 〈ψw| |ψw′ 〉 = 0, from Eq. (A8) and the fact that any two states with different w have different ⊕
i∈N (d )

zi

for some d ∈ D. As before, ∀ v 
= v′, 〈φv| |φv′ 〉 = 0, from Eq. (A9). This means that now, instead of having 2|H | variables
z, x ∈ {bn(0), . . . , bn(2|H | − 1)}, we have s variables w, v ∈ {bn(0), . . . , bn(s − 1)}.

Finally, we simplify the computational basis expression for |�〉 in Eq. (A4). The terms should now be grouped as in Eq. (A3),
with s terms, as

|�〉 =
∑

z

αz |z〉H ⊗ |ψz〉D =
∑

z

(−1)
⊕

(k,l )∈EH
zk∧zl

αw |z〉H ⊗ |ψw〉D , (A28)

where w = f (z) depends on ⊕
i∈N (d )

zi,∀ d ∈ D. If none of the expressions are equal to zero, we have s = 2|H |, and so we can

simply rename z as w, as they take values from the same set {bn(0), . . . , bn(s − 1)}. �
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Our next aim is to determine the value of αw. From the normalization condition 〈�| |�〉 = 1, we have∑
w

2|H |

s
|αw|2 = 1 ⇒

∑
w

|αw|2 = s

2|H | (A29)

since there are 2|H |
s terms of |z〉 corresponding to each w, as we saw before.

To get the orthogonality conditions, we take the overlap of each nonzero expression for βv |φv〉 with another nonzero
expression for βv′ |φv′ 〉 to get (s − 1) equations for all v 
= v′ given by

β
†
vβv′ 〈φv| |φv′ 〉 = 0 = 2|H |

s2

[∑
w

(−1)
⊕
i
vi∧wi

(−1)
⊕
i
v′

i∧wi |αw|2 〈ψw| |ψw〉
]
, (A30)

which we can write as ∑
w

(−1)
⊕
i

pi∧wi |αw|2 = 0, ∀ p ∈ {bn(1), . . . , bn(s − 1)}. (A31)

(Note that since the overlap is taken with two different expressions, p can never be 0 . . . 0.)
We will now solve the s equations for s variables (from the normalization and orthogonality conditions) using the matrix

method, formulating the system of equations as Au = b. The matrix A is of size s × s, while u, b are of size s × 1. u is a column
vector containing each |αw|2, and b is a column vector giving the normalization and orthogonality conditions. A has 1’s in its
first row and column, and the other elements are ±1. The 1’s on the first row are from the normalization condition. The 1’s on
the first column occur because for w = 0 . . . 0, the exponent of (−1) will always be 0 (since the AND of anything with 0 . . . 0
gives 0 . . . 0), and so the sign of |αw|2 is always +1. We then have

A =

⎡
⎢⎣

1 1 · · · 1
1 ±1 · · · ±1

· · · · · · · · · · · ·
1 ±1 · · · ±1

⎤
⎥⎦, u =

⎡
⎢⎢⎣

|α00...00|2
|α00...01|2

· · ·
|α11...11|2

⎤
⎥⎥⎦, b = s

2|H |

⎡
⎢⎣

1
0
· · ·
0

⎤
⎥⎦. (A32)

The values of |αw|2 are then determined by⎡
⎢⎢⎣

|α00...00|2
|α00...01|2

· · ·
|α11...11|2

⎤
⎥⎥⎦ = A−1 s

2|H |

⎡
⎢⎣

1
0
. . .

0

⎤
⎥⎦ = s

2|H |

⎡
⎢⎢⎣
A−1

1,1
A−1

2,1
. . .

A−1
s,1

⎤
⎥⎥⎦. (A33)

Thus, the solution to the set of equations is equal to s
2|H | times the first column of A−1. Using Eqs. (A29) and (A31), let us now

write more precisely what the elements of A are:

A =

⎡
⎢⎢⎣

(−1)⊕00...00∧00...00 (−1)⊕00...00∧00...01 · · · (−1)⊕00...00∧11...11

(−1)⊕00...01∧00...00 (−1)⊕00...01∧00...01 · · · (−1)⊕00...01∧11...11

· · · · · · · · · · · ·
(−1)⊕11...11∧00...00 (−1)⊕11...11∧00...01 · · · (−1)⊕11...11∧11...11

⎤
⎥⎥⎦, (A34)

where by ⊕a ∧ b we mean computing the AND operation of the strings a, b, and then XORing all the resulting bits (or, in other
words, finding the parity of the AND of the strings a, b).

Let us take pi, w j to be the ith and jth strings in the set {bn(0), . . . , bn(s − 1)}, where i, j ∈ {1, . . . , s}. (For example, if
i = 2, j = 3, we have p2 = 00 . . . 01, w3 = 00 . . . 10.) Then, taking i to denote the row and j to denote the column, A is given
by

A =

⎡
⎢⎢⎣

(−1)⊕p1∧w1 (−1)⊕p1∧w2 . . . (−1)⊕p1∧ws

(−1)⊕p2∧w1 (−1)⊕p2∧w2 · · · (−1)⊕p2∧ws

· · · · · · · · · · · ·
(−1)⊕ps∧w1 (−1)⊕ps∧w2 ... (−1)⊕ps∧ws

⎤
⎥⎥⎦. (A35)

In general, the (i, j)th element of A is given by

Ai, j = (−1)⊕pi∧w j . (A36)

Note that since pi = wi ∀ i, we have Ai, j = (−1)⊕pi∧w j = (−1)⊕wi∧p j = (−1)⊕p j∧wi = A j,i, and so A is symmetric. We will
now show that the inverse of the matrix A is given by A−1 = 1

sA. To prove this, we just have to show that AA−1 = 1. Denoting
AA = M, we have

AA−1 = A1

s
A = 1

s
AA = 1

s
M. (A37)
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The (i, j)th element of M is given by

Mi, j =
s∑

k=1

(−1)⊕pi∧wk (−1)⊕pk∧w j =
s∑

k=1

(−1)⊕pi∧wk (−1)⊕p j∧wk =
s∑

k=1

(−1)⊕(pi⊕p j )∧wk . (A38)

When i = j, we have pi ⊕ p j = 00 . . . 00, and so for every wk , we always have (−1)0. Thus, we have Mi,i = ∑s
k=1 1 = s. When

i 
= j, the AND operation is performed on the same string pi ⊕ p j and wk, ∀ k. In this case, pi ⊕ p j ∈ {bn(1), . . . , bn(s −
1)}, as their sum can only be 00 . . . 00 if i = j. Thus, if we sum over the AND of this string with each possible w ∈
{00 . . . 00, . . . , 11 . . . 11}, we get an equal number of +1’s and −1’s. So, this sum is equal to 0. We can therefore say

Mi, j = δ
j
i s, (A39)

which means M = s1. Substituting in Eq. (A37), we find AA−1 = 1. Thus, A−1 = 1
sA, which we substitute in Eq. (A33) to

get ⎡
⎢⎢⎣

|α0...0|2
|α0...1|2

· · ·
|α1...1|2

⎤
⎥⎥⎦ = s

2|H |

⎡
⎢⎢⎣
A−1

1,1
A−1

2,1
· · ·
A−1

s,1

⎤
⎥⎥⎦ = 1

s
× s

2|H |

⎡
⎢⎣
A1,1

A2,1

· · ·
As,1

⎤
⎥⎦ = 1

s
× s

2|H |

⎡
⎢⎣

1
1

· · ·
1

⎤
⎥⎦ =

⎡
⎢⎢⎣

1
2|H |

1
2|H |
· · ·

1
2|H |

⎤
⎥⎥⎦. (A40)

This gives each αw = ± 1√
2|H | . Let us substitute the value of αw in Eq. (A28). We get

|�〉 = ± 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H ⊗ |ψw〉D = ± 1√

2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H ⊗ |ψ( f (z))〉D . (A41)

Finally, ρ
|�〉
H only depends on the honest Schmidt basis. Comparing the above expression with Eq. (A3) shows that the honest

Schmidt basis of the actual state |�〉 is equal to the honest Schmidt basis of the ideal state |G〉, giving ρ
|�〉
H = ρ

|G〉
H . If |�〉

is a purification of ρ
|�〉
H , and |G〉 is a purification of ρ

|G〉
H , then due to the unitary equivalence of purifications, we must have

|�〉 = UD |G〉 if all the test measurements pass perfectly. This concludes the proof of Lemma 1. �
The above Lemma 1 tells us that only the state UD |G〉 (the ideal state up to local unitaries on the dishonest side), or

equivalently ρ
|G〉
H , always passes the stabilizer test S j in any round j. For simplicity of presentation later on, we now analyze the

case where the number of stabilizers that need to be measured to have the analogous statement of Lemma 1 is J. We fix Ntotal

such that N ≡ Ntotal − JNtest = JNtest is the total number of remaining copies, out of which one is chosen to be the target copy.
Let k be the number of copies out of the remaining N copies that are ρ

|G〉
H . Now, using the Serfling bound, we will find a bound

on k
N in the following lemma, which is an adaptation of the method of Takeuchi et al. [20] to our scenario of verifying general

graph states with any number of dishonest parties.
Lemma 2 (adapted from [20]). The probability that the fraction of states that would pass all stabilizer tests out of the remaining

copies in Protocol I is given by

k
N

� 1 − 2
√

c

J
− 2J

(
1 − Npass

JNtest

)
(A42)

is at least 1 − J1− 2cm
3 .

Proof. Consider a set of binary random variables Y = {Y1, . . . ,YT } where Yt ∈ {0, 1}. Let us set the value of Yt = 0 if the
stabilizer test passes on copy t , and otherwise Yt = 1. Then, by Serfling’s bound [43], where T = L + R, for any 0 < ν < 1,

Pr

[∑
t∈Π

Yt � L
R

∑
t∈Π

Yt + Lν

]
� 1 − exp

[
− 2ν2LR2

(L + R)(R + 1)

]
, (A43)

where Π is a set of R samples chosen independently and uniformly randomly from Y without replacement, and Π is the
complementary set of Π. The expression inside the probability bracket is then an upper bound on the number of copies out
of the remaining that would fail the stabilizer test, given a number of copies that pass.

Now, let us consider the stabilizer measurement S j∈{1,...,J}. We take L = Ntotal − jNtest, and R = Ntest. Let us then set ν =
√

c
J2 ,

which is chosen in this way to maximize both the fidelity and probability in our resulting expression (this implies 0 <
√

c < J2).
Let Π( j) be the set of copies on which each S j was measured, and Π

( j)
be the set of remaining copies after measuring S j . Finally,

we denote the probability expression on the right-hand side of Eq. (A43) for the stabilizer test in round j as qj . Then, after the
stabilizer test for S j is performed, we have

Pr

[ ∑
t∈Π

( j)

Yt � Ntotal − jNtest

Ntest

∑
t∈Π( j)

Yt + (Ntotal − jNtest )ν

]
� q j . (A44)
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In other words, with probability at least q j , the maximum number of copies that would fail the stabilizer test of S j out of the
remaining is given by Ntotal− jNtest

Ntest

∑
t∈Π( j) Yt + (Ntotal − jNtest )ν. Then, the minimum number of copies that would pass the S j test

is given by the total number of remaining copies minus this maximum number of failed copies. Thus, after all stabilizer tests are
performed, we can lower bound the number of remaining copies which would pass all of the stabilizer tests by summing over all
j’s corresponding to all stabilizers S j . Recalling that we denote the number of “good” remaining copies by k, we then have

k � (Ntotal − JNtest ) −
J∑

j=1

[
Ntotal − jNtest

Ntest

∑
t∈Π( j)

Yt + (Ntotal − jNtest )ν

]

= 2JNtest − JNtest − Ntotal

Ntest

J∑
j=1

∑
t∈Π( j)

Yt +
J∑

j=1

j
∑

t∈Π( j)

Yt − νJNtotal +
J∑

j=1

jNtestν

� JNtest − νJNtotal − Ntotal

Ntest

J∑
j=1

∑
t∈Π( j)

Yt

� JNtest − νJNtotal − Ntotal

Ntest
(JNtest − Npass)

= JNtest − νJ × 2 × JNtest − 2JNtest

Ntest
(JNtest − Npass)

=
(

J − 2
√

c − 2J2 + 2J
Npass

Ntest

)
Ntest, (A45)

which gives the fraction of “good” remaining copies k
N as

k
N

�

(
J − 2

√
c − 2J2 + 2J Npass

Ntest

)
Ntest

Ntotal − JNtest

= J − 2
√

c − 2J2 + 2J Npass

Ntest

J

= 1 − 2
√

c

J
− 2J

(
1 − Npass

JNtest

)
. (A46)

From Eq. (A43), we then get for q j , the probability corre-
sponding to the test S j ,

q j = 1 − exp

[
− 2ν2(Ntotal − jNtest )N2

test

(Ntotal − jNtest + Ntest )(Ntest + 1)

]

= 1 − exp

[
−2ν2Ntest

1
Ntotal− jNtest+Ntest

Ntotal− jNtest
× Ntest+1

Ntest

]

= 1 − exp

[
−2ν2Ntest

1

1 + 1
2J− j

1

1 + 1
Ntest

]
. (A47)

Now, let us compute the total probability corresponding to the
full set of J stabilizer tests. Taking Ntest = mJ4 ln J and using
J � 2 ⇒ 1

1+ 1
J

� 2
3 , and Ntest � 1 ⇒ 1

1+ 1
Ntest

� 1
2 , we get the

total probability corresponding to J stabilizer tests as

J∏
j=1

q j � qJ
J =

[
1 − exp

(
− 2ν2Ntest

1

1 + 1
2J−J

1

1 + 1
Ntest

)]J

�
[

1 − exp

(
− 2ν2Ntest

3

)]J

�
[

1 − exp

(
− 2ν2mJ4

3
ln J

)]J

=
[

1 − J− 2cm
3

]J

� 1 − J1− 2cm
3 . (A48)

Thus, the event that the fraction of “good” copies that pass
all the stabilizer tests S j is lower bounded by k

N � 1 − 2
√

c
J −

2J(1 − Npass

JNtest
) occurs with probability greater than or equal to

1 − J1− 2cm
3 . �

In the final step of the protocol, one copy is chosen, out of
the remaining N ≡ Ntotal − JNtest copies, to be the target copy.
Let us now finish the proof by proving Lemma 3, relating the
above analysis to the averaged state of this target copy.

Lemma 3. The probability that the fidelity of the averaged
state of the target copy in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� k

N
(A49)

is at least 1 − J1− 2cm
3 .

Proof. Now, ρ
avg
H is the reduced state of the honest parties

of the averaged state, where the average is taken over all
uniformly random selections of the target copy from the total
number of remaining copies N, and given by

ρ
avg
H = 1

N

N∑
i=1

ρ i
H . (A50)

Here, ρ i
H denotes the reduced state of the honest parties in

each round (for each one of the remaining copies). We now
want to find the fidelity F (ρ|G〉

H , ρ
avg
H ) between this averaged
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state and the ideal state (in terms of the honest reduced states).
From the concavity of fidelity,

F

(
ρ,

∑
i

piσi

)
�

∑
i

piF (ρ, σi ). (A51)

We can use this to get

F
(
ρ

|G〉
H , ρ

avg
H

) = F

(
ρ

|G〉
H ,

1

N

N∑
i=1

ρ i
H

)
� 1

N

N∑
i=1

F
(
ρ

|G〉
H , ρ i

H

)
.

(A52)

Now, we know that for a number k of the remaining states,
we have ρ i

H = ρ
|G〉
H with probability at least 1 − J1− 2cm

3 . As-
suming the worst case scenario that the rest of the states, each
denoted by ρunknown

H , have zero fidelity with the ideal state, we
get

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1

N

[
kF

(
ρ

|G〉
H , ρ

|G〉
H

)+ (N − k)F
(
ρ

|G〉
H , ρunknown

H

)]

� 1

N
[k × 1 + (N − k) × 054]

= k
N

. (A53)

�
Our final result then tells us that, with the appropriate

choice of Ntotal, Ntest, the parties can ensure that with proba-
bility at least 1 − J1− 2cm

3 , the fidelity of the averaged state of
the target copy satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

J
− 2J

(
1 − Npass

JNtest

)
. (A54)

Note that in order to ensure that the probability and fidelity
are greater than zero, the choice of the constants m, c must be
such that 3

2m < c < (J−1)2

4 . Setting J = 2n, this concludes the
proof of Theorem 1. �

APPENDIX B: PROOF OF THEOREM 2

We now give some examples of types of graph states that
are useful for specific purposes, and prove the following the-
orem to show how we can reduce the resources required to
verify them (in the presence of dishonest parties) in each case.

Theorem 2. If |G〉 is either
A. a complete graph state with dishonest parties anywhere

in the network, or
B. a pentagon graph state with either one, three or four

dishonest parties anywhere in the network, or two dishonest
parties who are adjacent, or

C. a cycle graph state with either one, n − 2 or n − 1 dis-
honest parties anywhere in the network, or any other number
of dishonest parties who are adjacent, or

D. a 1D cluster state with either one or n − 1 dishonest
parties anywhere in the network, or any other number of
adjacent honest and dishonest parties, or

E. a 2D cluster state with either one or n − 1 dishonest
parties anywhere in the network, or any other set of adjacent
dishonest parties that forms a square or rectangle anywhere in
the network,

and we set Ntotal = 2nNtest, Ntest = �mn4 ln n�, and S as the
set of stabilizer generators, assuming an honest Verifier, the
probability that the fidelity of the averaged state of the target
copy (over all possible choices of the tested copies and target
copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B1)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
For clarity, we will treat each example separately. To prove

such a statement, we start by inspecting the proof of Theorem
1, to understand how the information about passing the sta-
bilizer tests is used. In Lemma 1, this is first used to identify
which elements of {|ψz〉}, {|φx〉} are orthogonal; however, as
we see in Eqs. (A8) and (A9), this follows from passing purely
the set of stabilizer generator measurements. It then remains
to show that the conditions on which βx’s are zero, given
in Eq. (A11), may also be deduced from only passing the
stabilizer generator tests. [We point out that if the set A is
empty, which can be checked by examining the graph for the
partition (H, D), then from passing the full set of stabilizer
measurements, we cannot set any βx to be zero, and so we can
trivially see that only the stabilizer generator measurements
are required.] If this is true, it is possible for the parties to
protect themselves against dishonest action even by running
Protocol I with this simpler set of test measurements.

Recall that once we know which βx’s must be zero, we
can determine which terms have the same αz, |ψz〉, allowing
us to group the |z〉 terms in Eq. (A4) in the same way as in
the Schmidt decomposition of the ideal graph state, leading to
the conclusion that |�〉 = UD|G〉. Thus, once we have derived
the conditions for βx to be zero, we can simply continue with
the remainder of the proof of Lemma 1. Inserting J = n into
Lemmas 2 and 3, we obtain the desired results.

In the following, we adapt our general proof in this way to
cater to the specificities of complete graphs, cycle graphs, and
cluster states, with particular characteristics of the dishonest
set of parties. Armed with this information, we will show that
our parties can verify each graph state in an efficient way.

1. Complete graph states

Complete graph states, where every vertex is connected to
every other vertex, are locally equivalent to GHZ states. As
we have seen, such states are central to schemes for quantum
anonymous transmission [7,44], as well as secret sharing [45],
metrology [8], and many other applications. A verification test
for GHZ states was already proposed and analyzed in [27];
however, we now approach this goal using the Serfling bound
method. This section also serves to provide a comprehensive
example of how our protocol and analysis work for this par-
ticular graph state, and so we will go through all steps of the
proof.

Due to the symmetry of complete graphs (Fig. 2), we will
see that we can protect against any number of dishonest parties
anywhere in the network by only measuring the stabilizer
generators. Recall that we denote the stabilizer generator cor-
responding to the ith qubit as Ki. Let the parties now run
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FIG. 2. Five- and six-qubit complete graph states.

Protocol I with S as the set of generators; our result is given
in the following theorem.

Theorem 2A. If |G〉 is a complete graph state, and we
set Ntotal = 2nNtest, Ntest = �mn4 ln n�, and S as the set of
stabilizer generators, the probability that the fidelity of the

averaged state of the target copy (over all possible choices of
the tested copies and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B2)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof. As before, we prove this in stages, now for the

specific case of complete graph states.
Lemma 4. The only state that can pass all stabilizer gener-

ator tests perfectly in each round is |�〉 = UD|G〉, where UD

is a unitary on the dishonest part of the state.
Proof. Complete graph states are of Schmidt rank 2, i.e.,

there are always exactly two terms in their Schmidt decompo-
sition. The Schmidt decomposition of a complete graph state
with respect to any partition (H, D) is

|G〉 = 1√
2|H |

∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl |z〉H ⊗

∏
a∈H

( ∏
b∈N (a)

σ
(b)
Z

)za

|G − H〉D

= 1√
2|H |

[( ∑
�(z)=0(mod 4)

|z〉 −
∑

�(z)=2(mod 4)

|z〉
)

H

⊗ |G − H(00...00)〉D

+
( ∑

�(z)=1(mod 4)

|z〉 −
∑

�(z)=3(mod 4)

|z〉
)

H

⊗ |G − H(11...11)〉D

]
, (B3)

where |G − H(00...00)〉 is the dishonest subgraph with no σZ ’s on any vertices, and |G − H(11...11)〉 is the dishonest subgraph with
σZs on all vertices. Thus, the reduced state of the honest parties of this ideal state is given by

ρ
|G〉
H = 1

2|H |

[( ∑
�(z)=0(mod 4)

|z〉 −
∑

�(z)=2(mod 4)

|z〉
)( ∑

�(z)=0(mod 4)

〈z| −
∑

�(z)=2(mod 4)

〈z|
)

+
( ∑

�(z)=1(mod 4)

|z〉 −
∑

�(z)=3(mod 4)

|z〉
)( ∑

�(z)=1(mod 4)

〈z| −
∑

�(z)=3(mod 4)

〈z|
)]

. (B4)

From Eqs. (A4) and (A5), we know that our state can be
written in general as |�〉 = ∑

z αz|z〉H ⊗ |ψz〉D and |�〉 =∑
x βx|H(x)〉H ⊗ |φx〉D. Let us now write the test measure-

ments, which are the stabilizer generators here. Since, for the
complete graph, each vertex shares an edge with every other
vertex, the stabilizer generators are given by

Ki = Xi

∏
e∈V

Ze, (B5)

where V is the set of vertices in the graph. We will again group
the test measurements into group 1, where the honest mea-
surement only consists of Z’s, and group 2, which contains
the remaining measurements. In order to pass perfectly, the
overall outcome of each measurement must be +1.

Let us first consider the group 1 measurements. Any |z〉
that has an even number of 1’s (parity of z is 0) will give
outcome +1 for the honest measurement Z . . . Z , and so
the dishonest measurement must give outcome +1 in order
to pass the test. Any |z〉 that has an odd number of 1’s

(parity of z is 1) will give outcome −1 for Z . . . Z , and so
the dishonest measurement must give outcome −1. So, in
order to pass perfectly, the dishonest parties must be able
to discriminate perfectly between the states |ψ�(z)=0(mod 2)〉
and |ψ�(z)=1(mod 2)〉, where �(z) is the Hamming weight of z
(number of 1’s in the string). This means that for all z, we have
〈ψ�(z)=0(mod 2)||ψ�(z)=1(mod 2)〉 = 0. (Note that this can be seen
from the general proof, which tells us in this case that ∀ z, z′

such that ⊕
i

zi 
= ⊕
i

z′
i, we have 〈ψz||ψz′ 〉 = 0.)

Now, let us see what happens if the group 2 measure-
ments pass perfectly. This group will have all measurements
XZ . . . Z, ZXZ . . . Z, . . . , Z . . . ZX in the honest part, and the
dishonest part of each will be (Z . . . Z )′ (so the same dishonest
part for each). To pass perfectly, the dishonest parties must be
able to always give the correct outcome; however, they only
know that the measurement they must do is (Z . . . Z )′, and this
does not tell them whether the honest parties are measuring
XZ . . . Z, ZXZ . . . Z, . . . , Z . . . ZX . In order for the dishonest
parties to always output the correct outcome for all of these
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measurements (to make the overall outcome +1), the only
terms that can appear in Eq. (A5) are the honest subgraph
(|H(00...00)〉), and the honest subgraph with σZ ’s on all the
vertices (|H(11...11)〉). So, passing the group 2 measurements
tells us that βx = 0 for x /∈ {00 . . . 00, 11 . . . 11}. (Note that
this is the same conclusion that can be derived from measuring
the full set of stabilizers in the general proof. Every pair
of honest vertices forms a possible set A here, and we have
βx = 0 if ∃A such that ⊕

i∈A
xi = 1. The only remaining strings

are then those x that have all elements equal to one another.)

We can then write the state in Eq. (A5) as

|�〉 = β00...00|H(00...00)〉H |φ00...00〉D

+ β11...11|H(11...11)〉H |φ11...11〉D. (B6)

Since measuring (Z . . . Z )′ on |φ00...00〉 must give outcome +1,
and on |φ11...11〉 it must give outcome −1 (in order to always
get the total outcome to be +1), the dishonest parties must be
able to perfectly discriminate between these two states, and so
we must have 〈φ00...00||φ11...11〉 = 0. Then, following the steps
in the general proof, we get

βx|φx〉 = 1√
2|H |

[∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz|ψz〉D

]
, ∀ x such that βx 
= 0 (B7)

0 = 1√
2|H |

[∑
z

(−1)
⊕

(k,l )∈EH
zk∧zl

(−1)
⊕
i

xi∧zi
αz|ψz〉D

]
, ∀ x such that βx = 0. (B8)

The solution of Eq. (B8), as adapted for complete graphs from the general proof, is ∀ z, z′ such that �(z) mod 2 = �(z′) mod 2,
we have

(−1)
⊕

(k,l )∈EH
zk∧zl

αz|ψz〉 = (−1)
⊕

(k,l )∈EH
z′

k∧z′
l
αz′ |ψz′ 〉. (B9)

Recall that for complete graphs, all the honest vertices are connected to each other. Using this, we can simplify the exponent
⊕

(k,l )∈EH

zk ∧ zl . Each (zk ∧ zl ) will give 1 only if both zk, zl are 1. So, we can rephrase this using the Hamming weight �(z), which

tells us how many 1’s are in the string z. Then, finding how many pairs (zk ∧ zl ) give 1 is equivalent to calculating �(z)C2.

Let us first take z, z′ such that �(z),�(z′) = 0 (mod 2). We see that (−1)
�(z)C2 = (−1)

�(z′ )C2 for �(z) mod 4 = �(z′) mod 4.
Similarly, if we take z, z′ such that �(z),�(z′) = 1 (mod 2), we again find that (−1)

�(z)C2 = (−1)
�(z′ )C2 for �(z) mod 4 = �(z′)

mod 4. Thus, we have

∀ z, z′ such that �(z) = 0(mod 4), �(z′) = 2(mod 4), αz|ψz〉 = −αz′ |ψz′ 〉,
∀ z, z′ such that �(z) = 1(mod 4), �(z′) = 3(mod 4), αz|ψz〉 = −αz′ |ψz′ 〉. (B10)

We can now write our state as

|�〉 =
∑

z

αz|z〉H ⊗ |ψz〉D

= αz,�(z)=0(mod 2)

[ ∑
�(z)=0(mod 4)

|z〉 −
∑

�(z)=2(mod 4)

|z〉
]

H

⊗ |ψz,�(z)=0(mod 2)〉D

+ αz,�(z)=1(mod 2)

[ ∑
�(z)=1(mod 4)

|z〉 −
∑

�(z)=3(mod 4)

|z〉
]

H

⊗ |ψz,�(z)=1(mod 2)〉D. (B11)

Then, our expressions for βx|φx〉 can be written using Eq. (A27) as

β00...00|φ00...00〉 =
√

2|H |

2
[αz,�(z)=0(mod 2)|ψz,�(z)=0(mod 2)〉 + αz,�(z)=1(mod 2)|ψz,�(z)=1(mod 2)〉],

β11...11|φ11...11〉 =
√

2|H |

2
[αz,�(z)=0(mod 2)|ψz,�(z)=0(mod 2)〉 − αz,�(z)=1(mod 2)|ψz,�(z)=1(mod 2)〉]. (B12)

Now, recall that 〈φ00...00||φ11...11〉 = 0, and 〈ψ�(z)=0(mod 2)||ψ�(z)=1(mod 2)〉 = 0. Using these orthogonality conditions and taking
the inner product of the two expressions above, we get

|αz,�(z)=0(mod 2)|2 − |αz,�(z)=1(mod 2)|2 = 0. (B13)
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By normalization, we have

|αz,�(z)=0(mod 2)|2 + |αz,�(z)=1(mod 2)|2 = 2

2|H | . (B14)

Solving these, we find that αz,�(z)=0(mod 2), αz,�(z)=1(mod 2) = ± 1√
2|H | . Substituting this in Eq. (B11) gives the state as

|�〉 = ± 1√
2|H |

[( ∑
�(z)=0(mod 4)

|z〉 −
∑

�(z)=2(mod 4)

|z〉
)

H

⊗ |ψz,�(z)=0(mod 2)〉D

±
( ∑

�(z)=1(mod 4)

|z〉 −
∑

�(z)=3(mod 4)

|z〉
)

H

⊗ |ψz,�(z)=1(mod 2)〉D

]
, (B15)

which gives

ρ
|�〉
H = 1

2|H |

[( ∑
�(z)=0(mod 4)

|z〉 −
∑

�(z)=2(mod 4)

|z〉
)( ∑

�(z)=0(mod 4)

〈z| −
∑

�(z)=2(mod 4)

〈z|
)

+
( ∑

�(z)=1(mod 4)

|z〉 −
∑

�(z)=3(mod 4)

|z〉
)( ∑

�(z)=1(mod 4)

〈z| −
∑

�(z)=3(mod 4)

〈z|
)]

= ρ
|G〉
H . (B16)

Thus, |�〉 = UD|G〉.
Inserting J = n into Lemmas 2 and 3 concludes the

proof. �

2. Pentagon graph state

The five-qubit cycle graph state, in the shape of a pentagon,
is known to be useful for secret sharing [6], as well as being
the smallest quantum error-correcting code that tolerates an
arbitrary error on a single qubit [46]. Let us now consider all
possible sets of dishonest parties sharing such a graph (Fig. 3),
and see how we can reduce the resources required. We will

FIG. 3. Sets of honest (H ) and dishonest (D) parties for the
pentagon graph state considered in Theorem 2B.

show that in certain cases, by purely measuring the stabilizer
generators, we can determine that if all tests pass perfectly,
the state |�〉 = UD|G〉; this means that the parties can run the
simpler version of Protocol I (with S as the set of generators).
We summarize the result in Theorem 2B.

Theorem 2B. If |G〉 is a pentagon graph state with either
one, three, or four dishonest parties anywhere in the network,
or two dishonest parties who are adjacent, and we set Ntotal =
2nNtest, Ntest = �mn4 ln n�, and S as the set of stabilizer gen-
erators, the probability that the fidelity of the averaged state of
the target copy (over all possible choices of the tested copies
and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B17)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof. We will tackle this proof taking all possible sets of

dishonest parties separately. For the sets of dishonest parties
specified in the statement of Theorem 2B, we will show cer-
tain steps in proving that by passing all stabilizer generator
tests, our state must be |�〉 = UD|G〉. Then, as long as the
honest parties know that the set of dishonest parties belongs
to this “allowed set,” they may simply measure the stabilizer
generators instead of the full stabilizer group.

a. One dishonest party

We will start with a scenario where one party in the net-
work is dishonest. Without loss of generality, let us assume
party 5 is dishonest, as shown in Fig. 3(a). Then, we can write
the Schmidt decomposition of the ideal state |G〉 with respect
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to the partition (H, D) as

|G〉 = 1√
24

∑
z

(−1)(z1∧z2 )⊕(z2∧z3 )⊕(z3∧z4 )|z〉H ⊗ (
σ

(5)
Z

)z1
(
σ

(5)
Z

)z4 |G − H〉D

= 1

4
[(|0000〉 + |1001〉 + |0010〉 − |1011〉 + |0100〉 − |1101〉 − |0110〉 − |1111〉)H ⊗ |G − H(0)〉D

+ (|0001〉 + |1000〉 − |0011〉 + |1010〉 + |0101〉 − |1100〉 + |0111〉 + |1110〉)H ⊗ |G − H(1)〉D]. (B18)

(Note that, as expected, the dishonest part of the state |G − H〉 is the same for honest parts with the same value of ⊕
i∈N (d )

zi =
z1 ⊕ z4.)

As usual, we start by writing our state in the honest computational and subgraph bases as in Eqs. (A4) and (A5). Now, the
test measurements, or the stabilizer generators in this case, are given by {XZ11Z ′, ZXZ11′, 1ZXZ1′, 11ZXZ ′, Z11ZX ′}. We
group them into group 1 measurements {Z11ZX ′} and group 2 measurements {XZ11Z ′, ZXZ11′,1ZXZ1′,11ZXZ ′}. From
the group 1 measurement passing perfectly, we see that ∀ z, z′ such that z1 ⊕ z4 
= z′

1 ⊕ z′
4, we must have 〈ψz||ψz′ 〉 = 0. [Note

that this matches Eq. (A8).] From the group 2 measurements passing perfectly, we know that ∀ x, x′, we have 〈φx||φx′ 〉 = 0.
We will now see how to set certain βx = 0 from just the stabilizer generators alone. The measurements ZXZ11′,1ZXZ1′

must give outcome +1 to pass the test. Since the dishonest party asked to measure 1′ will always output +1, the honest
measurements ZXZ1,1ZXZ must also give outcome +1. Further, the measurements XZ11Z ′,11ZXZ ′ give outcome +1.
Since the dishonest party asked to measure Z ′ does not know whether the honest parties are measuring XZ11 or 11ZX ,
yet still manages to make the test pass perfectly, this means that the honest part of the state must give the same outcome
for these two measurements. With these conditions, we have βx = 0 ∀ x /∈ {0000, 1001}. (Note that we get the same result
from the full stabilizer group: the possible sets A are {1, 4}, {2}, {3}, {2, 3}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4} and so βx = 0 if
x1 ⊕ x4 = 1, x2 = 1, or x3 = 1.)

Following the remaining steps of the general proof, we then get

|�〉 = ± 1√
24

[(|0000〉 + |1001〉 + |0010〉 − |1011〉 + |0100〉 − |1101〉 − |0110〉 − |1111〉)H ⊗ |φ0000〉D

± (|0001〉 + |1000〉 − |0011〉 + |1010〉 + |0101〉 − |1100〉 + |0111〉 + |1110〉)H ⊗ |φ1001〉D], (B19)

which gives |�〉 = UD|G〉.

b. Two dishonest parties

Let us start by considering parties 1, 2, and 3 as honest and parties 4 and 5 as dishonest, pictured in Fig. 3(b). We will vary
the dishonest parties later and see how this affects the results, but for now let us consider the two dishonest parties to be adjacent
to one another. The Schmidt decomposition of the ideal graph state for this partition is given by

|G〉 = 1√
23

∑
z

(−1)(z1∧z2 )⊕(z2∧z3 )|z〉H ⊗ (σ (5)
Z )z1 (σ (4)

Z )z3 |G − H〉D

= 1

2
√

2
[(|000〉 + |010〉)H ⊗ |G − H(00)〉D + (|001〉 − |011〉)H ⊗ |G − H(10)〉D

+ (|100〉 − |110〉)H ⊗ |G − H(01)〉D + (|101〉 + |111〉)H ⊗ |G − H(11)〉D]. (B20)

(It is easy to see that for states with the same ⊕
i∈N (d )

zi,

∀ d ∈ D, which here refers to states with the same value of
z1 and z3, the corresponding dishonest part |G − H〉 is the
same.)

Let us now see whether we can make the desired
statement by purely considering the stabilizer generators
{XZ1(1Z )′, ZXZ (11)′,1ZX (Z1)′,11Z (XZ )′, Z11(ZX )′}.
We group them, as usual, into group 1 given by
{11Z (XZ )′, Z11(ZX )′}, and group 2 given by
{XZ1(1Z )′, ZXZ (11)′,1ZX (Z1)′}. By the measurements
in group 1 passing perfectly, we see that ∀ z, z′ such that
z1 
= z′

1 or z3 
= z′
3, we have 〈ψz||ψz′ 〉 = 0, which can also be

seen from Eq. (A8). By the measurements in group 2 passing
perfectly, we have ∀ x, x′, 〈φx||φx′ 〉 = 0.

Now, group 2 contains the measurement ZXZ (11)′. In
order to get outcome +1 here, the only terms of the honest
subgraph that can appear in Eq. (A5) are those that give +1
when measuring ZXZ . Thus, the group 2 measurements pass-
ing perfectly tells us that βx = 0 ∀ x /∈ {000, 001, 100, 101}.
(Note that by using the full set of stabilizer measurements, we
do not get more information than this, as the only possible
set A = {2} and so we know that if x2 = 1, then βx = 0.)
Continuing with the steps of the general proof, we obtain
|�〉 = UD|G〉.

By inspecting the stabilizer generators, we see that such an
analysis holds whenever the two dishonest parties are adja-
cent, as there will always be a measurement (11)′ that forces
the corresponding honest outcome to be +1. Thus, in this
case, it suffices to measure the stabilizer generators. If the two
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dishonest parties are not adjacent, however, there will not be
such a measurement (11)′, and so the parties must measure
the full set of stabilizers.

c. Three dishonest parties

Let us now assume parties 1 and 2 are honest, while parties
3, 4, and 5 are dishonest, as in Fig. 3(c), to start with. The
Schmidt decomposition is given by

|G〉 = 1√
22

∑
z

(−1)z1∧z2 |z〉H ⊗ (σ (5)
Z )z1 (σ (3)

Z )z2 |G − H〉D

= 1

2
[|00〉H ⊗ |G − H(000)〉D + |01〉H ⊗ |G − H(100)〉D

+ |10〉H ⊗ |G − H(001)〉D − |11〉H ⊗ |G − H(101)〉D].

(B21)

(Here, as in the general proof, we see that both z1 and z2 must
be the same in order for the corresponding |G − H〉 to be the
same.)

As we see here, there is no grouping of |z〉 terms, and so
there will be no βx = 0. The group 1 measurements are then
{1Z (XZ1)′,11(ZXZ )′, Z1(1ZX )′}, and the group 2 mea-
surements are {XZ (11Z )′, ZX (Z11)′}. We see that if z1 
= z′

1
or z2 
= z′

2, the respective states are orthogonal. This implies
that 〈ψz||ψz′ 〉 = 0 ∀ z, z′. We also have ∀ x, x′, 〈φx||φx′ 〉 = 0.
From passing the group 2 measurements, we cannot set any
βx = 0 (using the full stabilizer set, we see that A is the empty
set). Then, we simply follow the steps of the general proof
to get |�〉 = UD|G〉. This reasoning holds for any two parties
being dishonest, no matter whether they are adjacent, and so,
for this case, the parties only need to measure the stabilizer
generators.

d. Four dishonest parties

In this scenario where only one party is honest, the analysis
is again simple. Without loss of generality, let us assume only
party 1 is honest, as shown in Fig. 3(d). First, let us write the
Schmidt decomposition for this partition (H, D) as

|G〉 = 1√
21

∑
z

|z〉H ⊗ (σ (2)
Z σ

(5)
Z )z1 |G − H〉D

= 1√
2

[|0〉H⊗ |G − H(0000)〉D+ |1〉H ⊗ |G −H(1001)〉D].

(B22)

(Note that, as in the general proof, if ⊕
i∈N (d )

zi = z1 is the same,

the corresponding |G − H〉 is the same.)
Now, the set of measurements is given by the stabilizer

generators again, which we will separate into group 1 con-
taining {Z (XZ11)′,1(ZXZ1)′,1(1ZXZ )′, Z (11ZX )′}, and
group 2 containing {X (Z11Z )′}. Group 1 passing perfectly
gives 〈ψ0||ψ1〉 = 0 since |0〉H , |1〉H will give different out-
comes for Z , and so the dishonest parties must be able to
perfectly discriminate between their corresponding parts of
the state in order to pass perfectly [we reach the same con-
clusion using Eq. (A8)]. Similarly, group 2 passing perfectly
gives 〈φ0||φ1〉 = 0 since |+〉H , |−〉H give different outcomes

FIG. 4. Three-, four-, and six-qubit cycle (ring) graph states.

for X . When there is only one honest party, we cannot set any
βx = 0 from passing perfectly (the set A is the empty set, so
this gives the same result as measuring the full stabilizer set).
We then proceed with the proof to get |�〉 = UD|G〉.

Thus, for any number of adjacent dishonest parties, passing
the stabilizer generator tests of Protocol I allows us to con-
clude that the state in each round is |�〉 = UD|G〉. Inserting
J = n into Lemmas 2 and 3 concludes the proof. �

3. Cycle graph states

With the example of the pentagon graph state in the
previous subsection, we notice some features which can be ex-
tended to general n-qubit cycle (or ring) graph states (Fig. 4),
used in various applications such as quantum error correction
[4] and quantum walks [47]. In Theorem 2C, we give some
cases for the cycle graph state where it suffices to measure
only stabilizer generators in Protocol I. We will outline the
reasoning behind this, although it can be seen explicitly in the
pentagon graph state example.

Theorem 2C. If |G〉 is a cycle graph state with either one,
n − 2, or n − 1 dishonest parties anywhere in the network,
or any other number of dishonest parties who are adjacent,
and we set Ntotal = 2nNtest, Ntest = �mn4 ln n�, and S as the set
of stabilizer generators, the probability that the fidelity of the
averaged state of the target copy (over all possible choices of
the tested copies and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B23)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof sketch. Whenever there are n − 1 or n − 2 dishonest

parties in the network, the Schmidt decomposition is given by

|G〉 = 1√
2|H |

∑
z

|z〉H ⊗ |G − H(z)〉D, (B24)

where each |z〉 corresponds to a different dishonest part
|G − H〉. This means that there is no grouping of |z〉 terms,
and so the group 2 measurements do not tell us that any
βx = 0, as we saw in the previous example. Thus, in this case
the parties can simply measure the stabilizer generators (the
full stabilizer group would give no additional information, as
the set A is empty).

Let us now consider the case of one dishonest party. The
dishonest measurements of 1′, corresponding to the genera-
tors of qubits i /∈ N (d ), ensure that if xi/∈N (d ) = 1, then βx = 0.
Further, the two dishonest measurements of Z ′, corresponding
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FIG. 5. Five-qubit path graph state, or 1D cluster state.

to the generators of the two qubits i ∈ N (d ), ensure that if
xi∈N (d ) are not the same (in order to give the same honest
outcome), then βx = 0. This means that the only terms in the
honest subgraph are |H(00...00)〉 and |H(10...01)〉, which allows
us to arrive at our result from just the stabilizer generators.
[Note that using the full stabilizer group, Eq. (A11) would
imply that if ⊕

i∈N (d )
xi = 1, or xi/∈N (d ) = 1, then βx = 0, which

gives the same result.]
Finally, for any other number of honest or dishonest par-

ties, if the dishonest parties are adjacent then there will be
measurements (1 . . .1)′ in the set of stabilizer generators,
corresponding to the generators of honest vertices that are
not connected to any of the dishonest vertices [for qubits
i /∈ N (D)]. Since the dishonest part must give outcome +1 for
this measurement, the honest part must also give outcome +1
in order to pass perfectly, any terms where xi/∈N (D) = 1 must
have βx = 0. (Note that using the full stabilizer group, the
possible sets A are all combinations of honest vertices that are
not connected to any dishonest vertex, which gives the same
result.) Thus, we can conclude that |�〉 = UD|G〉 from only
measuring the stabilizer generators.

Inserting J = n into Lemmas 2 and 3 concludes the
proof. �

In fact, there are additional examples that do not fall into
these categories, but where it suffices to measure the stabilizer
generators only. For example, consider the six-qubit cycle
graph state with D = {2, 3, 6}, the seven-qubit cycle graph
state with D = {2, 3, 4, 7}, or the eight-qubit cycle graph state
with D = {2, 3, 6, 7}. There are no βx = 0 in the Schmidt
decomposition for these cases, which means that by passing
the stabilizer generator measurements in Protocol I perfectly,
we can determine that |�〉 = UD|G〉.

4. Cluster states

Cluster states correspond to lattices of dimension D, and
have been shown to be a central resource in MBQC [1,30].
For verification of such states in an untrusted network, we will
now give some examples of scenarios where we can reduce the
number of test measurements to purely the stabilizer genera-
tors (thus allowing the parties to run the simpler verification
scheme in Protocol I) with a smaller set of test measurements.
Again, these are not the only possible sets of dishonest parties
in a cluster state network that allow such a simplification;
there may be many more examples.

Linear, or one-dimensional, cluster states (also known as
path graph states) correspond to qubits connected in a line
(Fig. 5). In Theorem 2D, we give some cases where it is
sufficient to measure the stabilizer generators.

Theorem 2D. If |G〉 is a 1D cluster state with either one
or n − 1 dishonest parties anywhere in the network, or any
other number of adjacent honest or dishonest parties, and
we set Ntotal = 2nNtest, Ntest = �mn4 ln n�, and S is the set of
stabilizer generators, the probability that the fidelity of the
averaged state of the target copy (over all possible choices of

the tested copies and target copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B25)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof. The stabilizer generators of an n-qubit 1D cluster

state are given by {XZ1 . . .1, ZXZ1 . . .1, . . . ,1 . . .1ZX }.
As we noted for cycle graphs, if there are n − 1 dishonest
parties in the network, it suffices to measure only stabilizer
generators, as passing the group 2 measurements perfectly
does not tell us to set any βx = 0.

If there is one dishonest party at either end of the line,
we see that to get overall outcome +1, the honest part of
the stabilizer generator measurements corresponding to every
honest vertex i /∈ N (d ) must give outcome +1. This means
that if xi/∈N (d ) = 1, we must have βx = 0. [Note that from the
full stabilizer group, we see that all possible sets A contain
only honest vertices i /∈ N (d ), and so we come to the same
conclusion.] If the dishonest party is not at the end of the line,
but at a vertex connected to two other (honest) vertices, we
again must have that if xi/∈N (d ) = 1 then βx = 0 and, further,
the honest part of the stabiliser generators for i ∈ N (d ) must
give the same outcome (as they have the same dishonest part).
This means that if xi does not have the same value for both
i ∈ N (d ), then βx = 0. [Note that this gives the same result
as using the full stabilizer group, as the set A may consist of
any combination of honest vertices i /∈ N (d ) as well as both
honest vertices i ∈ N (d ).]

Further, for any other number of dishonest parties, if it is
known that the honest parties are all adjacent to each other,
or the dishonest parties are all adjacent to each other, then the
parties could measure only the stabilizer generators. In such a
setting, there will be (1 . . .1)′ measurements in the stabilizer
generators [corresponding to i /∈ N (D)] that allow us to set
βx = 0 if xi/∈N (D) = 1. [Note that from the full stabilizer group,
all possible sets A will consist of i /∈ N (D), and so this gives
the same result.] This corresponds to the first |H | qubits of
the line belonging to the honest parties, and the remaining |D|
qubits belonging to the dishonest parties (or vice versa).

Inserting J = n into Lemmas 2 and 3 concludes the
proof. �

Additional examples of path graph states where it is suffi-
cient to measure only the stabilizer generators include, for the
five-qubit path graph, the sets D = {1, 2, 5}, or D = {1, 3, 5},
where there are no βx = 0 in the Schmidt decomposition, and
so measuring the stabilizer generators suffices.

Two-dimensional cluster states have the underlying struc-
ture of a t × t square grid, where the total number of qubits in
the lattice is n = t × t . In Theorem 2E, we give certain sets of
dishonest parties for which it is possible to verify such states
with the resource-efficient Protocol I requiring only generator
tests. This is a useful result for verification in the MBQC
paradigm.

Theorem 2E. If |G〉 is a 2D cluster state with either one
or n − 1 dishonest parties anywhere in the network, or any
other set of adjacent dishonest parties that forms a square or
rectangle anywhere in the network, and we set Ntotal = 2nNtest,
Ntest = �mn4 ln n�, and S as the set of stabilizer generators, the
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FIG. 6. Sets of honest (H) and dishonest (D) parties for the 4 × 4
cluster state considered in Theorem 2E.

probability that the fidelity of the averaged state of the target
copy (over all possible choices of the tested copies and target
copy) in Protocol I satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 − 2

√
c

n
− 2n

(
1 − Npass

nNtest

)
(B26)

is at least 1 − n1− 2cm
3 , where m, c are positive constants chosen

such that 3
2m < c < (n−1)2

4 .
Proof. Similarly to what we have seen in previous exam-

ples, if there is one honest party, or one dishonest party, it
is enough to measure only the stabilizer generators. We will
now show that, for any number of dishonest parties in a 2D
cluster state, if they form a square or rectangle in the lattice, it
is possible to do the verification using only the generators.

Consider the example of a 4 × 4 (or 16-qubit) cluster state,
with example sets of honest and dishonest parties as shown in
Fig. 6. Let us start with the parties 1, 2, and 3 being dishonest,
while the remaining are honest, as in Fig. 6(a). If we write
the set of stabilizer generators, we find that the generators
corresponding to qubits 5, 6, 7, 8, 9, 10, 11, 15, and 16 will
have dishonest part (111)′, as they are not connected to the
dishonest set. This means that the corresponding honest mea-
surements on the state |�〉 must give outcome +1. Recall that
the generator of qubit i contains the measurement Xi, which
tells us that if xi = 1 for i ∈ {5, 6, 7, 8, 9, 10, 11, 15, 16} (or,
equivalently, if xi/∈N (D) = 1), then βx = 0. Further, the dishon-
est part of the measurement will be the same for generators of
qubits 4 and 14 (since they are both connected to dishonest
qubit 3). This means that in order to pass these test mea-
surements, the corresponding honest part of the measurements
must give the same outcome, and so we must have that if x4 
=
x14, then βx = 0. [Note that from the full stabilizer group, we
have all possible sets A containing i /∈ N (D) as well as both
i = 4, 14 which are evenly connected to all d ∈ D. This gives
the same conclusions as previously, and so it is clear that only
measuring the generators is necessary.]

Now, consider the example shown in Fig. 6(b), where
parties 2, 13, 16, and 9 are dishonest, while the remaining

are honest. Again, writing the set of stabilizer generators, we
find that the generators corresponding to qubits 4, 5, 6 and 7
have dishonest part (1111)′, which tells us that if xi = 1 for
i ∈ {4, 5, 6, 7}, then βx = 0. Further, the generators of qubits
1 and 3, 12 and 14, 11 and 15, and 8 and 10 have the same dis-
honest part, and so we must have that if either x1 
= x3, x12 
=
x14, x11 
= x15, or x8 
= x10, then βx = 0. [Note that from the
full stabilizer group, the set A consists of all combinations
of i /∈ N (D), as well as combinations of the pairs of vertices
(1, 3), (12, 14), (11, 15), (8, 10) which are evenly connected
to all d ∈ D, leading to the same result.]

Let us now move on to the example shown in Fig. 6(c),
where parties 13, 14, 15, and 16 are dishonest, and the re-
maining are honest. The generators of qubits 1, 4, 7, and
10 have dishonest part (1111)′, which means that if xi = 1
for i ∈ {1, 4, 7, 10}, then βx = 0. Further, the generators of
qubits 1 and 12, 9 and 11, 3 and 5, and 6 and 8 have the
same dishonest part, which means that, additionally, if either
x1 
= x12, x9 
= x11, x3 
= x5, or x6 
= x8, then βx = 0. [Note
that from the full stabilizer group, we come to the same con-
clusions, as the set A contains all combinations of i /∈ N (D) as
well as the pairs (1, 12), (9, 11), (3, 5), (6, 8).]

As another example, consider the dishonest set to comprise
of parties 8, 9, 10, 11, 15, and 16, as shown in Fig. 6(d). From
the generators whose dishonest part is (1 . . .1)′, we must have
that if xi = 1 for i ∈ {1, 2, 3, 4, 5}, then βx = 0. Further, from
the generators whose dishonest part is the same, we have that
if x6 
= x14, then βx = 0. [Note that from the full stabilizer
group, we see that the set A can contain all combinations of
i /∈ N (D) along with the pair (6, 14).]

Such an analysis easily extends to all cases where the dis-
honest parties lie in a square or rectangular section of the lat-
tice; for example, where D = {8, 9, 10, 11, 12, 13, 14, 15, 16}
or D = {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.

We finish the proof by invoking Lemmas 2 and 3, taking
J = n. �

Note that there are many other sets of dishonest parties
for the 2D cluster state for which passing only the stabilizer
generator measurements perfectly implies |�〉 = UD|G〉; as
before, here we are only giving some examples of cases where
such a simplification is allowed.

APPENDIX C: PROOF OF THEOREM 3

In Protocol II, we outlined a symmetric protocol for ver-
ification of any graph state with a randomly chosen party
playing the role of the Verifier. We will now prove its security
in the following theorem.

Theorem 3. If we set Ntotal = (λ + 1)λJNtest and Ntest =
�mJ4 ln J�, the probability that the fidelity of the averaged
state of the target copy (over all possible choices of the tested
copies and target copy) in Protocol II satisfies

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 −

(1

λ
− 1

λ2

)

−
(

1 + 1

λ

)[√
c

J
+ λJ − Npass

Ntest

]
(C1)
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is at least [1 − ∑λ
x=0 (1 − |H |

n )
x
( |H |

n J− 2cm
3 )

λ−x
]
J
, where m, c

are positive constants chosen such that the fidelity and proba-
bility expressions are greater than zero.

Proof. Recall that by Serfling’s bound, we have

Pr

[∑
t∈Π

Yt � L
R

∑
t∈Π

Yt + Lν

]

� 1 − exp

[
− 2ν2LR2

(L + R)(R + 1)

]
. (C2)

In step 2 of Protocol II, each S j is tested in λ sets of Ntest

copies, with a Verifier chosen at random for each set of Ntest

copies. Now consider the case where we measure the lth set
of Ntest copies for the stabilizer S j . This corresponds to taking
L = Ntotal − [( j − 1)λ + l]Ntest and R = Ntest. Let Π( j,l ) be
the lth set of copies on which each S j is measured, and Π

( j,l )

be the set of remaining copies after measuring. Applying
Serfling’s bound and assuming an honest Verifier, we get

Pr

[ ∑
t∈Π

( j,l )

Yt � Ntotal − [( j − 1)λ + l]Ntest

Ntest

∑
t∈Π( j,l )

Yt + {
Ntotal − [( j − 1)λ + l]Ntest

}
ν

]
� ql

j . (C3)

The number of remaining copies after all tests is N = Ntotal − λJNtest = λ2JNtest. To bound k, which is the number of “good”
copies in the remaining, we must determine the number of “bad” copies for each stabilizer measurement S j . Recall that for each
λNtest copies that we test with stabilizer S j , the CRS randomly chooses a different Verifier to test each set of Ntest copies.

Let us now assume that for each stabilizer test S j , at least one Verifier (out of λ) is honest, meaning that λ − 1 Verifiers are
dishonest. For the (λ − 1)Ntest copies tested by a dishonest Verifier, we cannot conclude anything from our test since the Verifier
can let any state could pass the test. So, for all S j copies, we have a total of (λ − 1)JNtest copies that we will have to assume are
bad. This means that we can lower bound k by

k � (Ntotal − λJNtest ) − (λ − 1)JNtest −
J∑

j=1

[
Ntotal − [( j − 1)λ]Ntest

Ntest

∑
t∈Π( j,l )

Yt + {
Ntotal − [( j − 1)λ]Ntest

}
ν

]

= Ntotal − (2λ − 1)JNtest −
J∑

j=1

[
Ntotal − [( j − 1)λ]Ntest

Ntest

∑
t∈Π( j,l )

Yt + {
Ntotal − [( j − 1)λ]Ntest

}
ν

]

= [(λ2 + λ) − (2λ − 1)]JNtest −
J∑

j=1

Ntotal

Ntest

∑
t∈Π( j,l )

Yt +
J∑

j=1

[( j − 1)λ]Ntest

Ntest

∑
t∈Π( j,l )

Yt −
J∑

j=1

Ntotalν +
J∑

j=1

[( j − 1)λ]Ntestν

� (λ2 − λ + 1)JNtest − Ntotal

Ntest

J∑
j=1

∑
t∈Π( j,l )

Yt −
J∑

j=1

Ntotalν

= (λ2 − λ + 1)JNtest − Ntotal

Ntest

(
λJNtest − Npass

) − JNtotalν

= (λ2 − λ + 1)JNtest − (λ2 + λ)J(λJNtest − Npass) − (λ2 + λ)J2νNtest

=
[

(λ2 − λ + 1)J − (λ2 + λ)λJ2 + (λ2 + λ)J
Npass

Ntest
− (λ2 + λ)J2ν

]
Ntest, (C4)

which gives the fraction of “good” remaining copies as

k
N

�

[
(λ2 − λ + 1)J − (λ2 + λ)λJ2 + (λ2 + λ)J Npass

Ntest
− (λ2 + λ)J2ν

]
Ntest

λ2JNtest

= 1 −
(1

λ
− 1

λ2

)
−

(λ3 + λ2

λ2

)
J +

(
1 + 1

λ

)Npass

Ntest
−

(
1 + 1

λ

)
Jν

= 1 −
(1

λ
− 1

λ2

)
−

(
1 + 1

λ

)[√
c

J
+ λJ − Npass

Ntest

]
. (C5)

Recall that the fidelity F (ρ|G〉
H , ρ

avg
H ) � k

N , and so we have

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 −

(1

λ
− 1

λ2

)
−

(
1 + 1

λ

)[√
c

J
+ λJ − Npass

Ntest

]
. (C6)
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Let us now calculate ql
j . We get

ql
j = 1 − exp

[
− 2ν2LR2

(L + R)(R + 1)

]

= 1 − exp

[
− 2ν2 {Ntotal − [( j − 1)λ + l]Ntest}N2

test

{Ntotal − [( j − 1)λ + l]Ntest + Ntest}(Ntest + 1)

]

= 1 − exp

[
− 2ν2Ntest

1
Ntotal−[( j−1)λ+l]Ntest+Ntest

Ntotal−[( j−1)λ+l]Ntest

1
Ntest+1

Ntest

]

= 1 − exp

[
− 2ν2Ntest

1

1 + Ntest
Ntotal−[( j−1)λ+l]Ntest

1

1 + 1
Ntest

]

= 1 − exp

[
− 2ν2Ntest

1

1 + 1
λ2J+λJ−λ j+λ−l

1

1 + 1
Ntest

]
. (C7)

Setting j = J, l = λ, we get

qJ = 1 − exp

[
− 2ν2Ntest

1

1 + 1
λ2J

1

1 + 1
Ntest

]
. (C8)

Noting that λ � 1, J � 2, Ntest � 1, we get the probability
that there are k good copies out of the remaining to be at least

qJ � 1 − exp

[
− 2

3
ν2Ntest

]
= 1 − J− 2cm

3 . (C9)

We now calculate the probability that the above occurs, i.e.,
that for each stabilizer test S j , one or more of the Verifiers are
honest, and that when they are, the condition on the left-hand
side of Eq. (C3) holds, leading to Eq. (C6). For a given S j ,
this probability is given by

1 −
λ∑

x=0

(
1 − |H |

n

)x( |H |
n

)λ−x(
1 − qlmax

j

)λ−x
, (C10)

where qlmax
j is the maximum of ql

j over all l . From Eq. (C7), we
see that ql

j � qJ. Taking this for all S j , we get the probability
that Eq. (C6) holds to be

J∏
j=1

[
1 −

λ∑
x=0

(
1 − |H |

n

)x( |H |
n

)λ−x(
1 − qlmax

j

)λ−x

]

�
[

1 −
λ∑

x=0

(
1 − |H |

n

)x( |H |
n

)λ−x

(1 − qJ)λ−x

]J

�
[

1 −
λ∑

x=0

(
1 − |H |

n

)x( |H |
n

J− 2cm
3

)λ−x
]J

. (C11)

�

APPENDIX D: ROBUSTNESS

When considering the robustness of our protocols, one
is interested in how the security and probability of accept
depend on the noise that is introduced (e.g., as in [20,36]).

For example, if we satisfy the condition in step 4 of Protocols
I and II, i.e., we have

Npass ≡
J∑

j=1

Npass, j � λJNtest − Ntest

2J
, (D1)

then Theorems 1, 2, and 3 give fidelity

F
(
ρ

|G〉
H , ρ

avg
H

)
� 1 −

(1

λ
− 1

λ2

)
−

(
1 + 1

λ

)[2
√

c + 1

2J

]
, (D2)

where we take λ = 1 for the cases in Theorems 1 and 2, J =
2n for the general case (Theorems 1 and 3), and J = n when
generator tests are enough (Theorems 2 and 3).

Following [20], let us take the example of the following
noisy state being provided by the source

ρ = σ⊗Ntotal, (D3)

where σ = (1 − ε)|G〉〈G| + εη, for some noise state η and
noise parameter ε. Then, the probability of the state being
used for an application (step 4) is bounded by

papp �
Ntest/2J∑

k=1

(
λJNtest

k

)
(1 − ε)λJNtest−kεk, (D4)

which goes to one with n when ε < O( 1
λJNtest

). This has the
same dependency on the number of tests as [20] when λ = 1.
The cost of the symmetric version scales only linearly with λ;
however, the cost with the number of parties for the general
graph state is exponentially higher once more. Thus, for the
general case the scheme loses out on robustness, but this is
recovered for cases such as those in Theorem 2 where the
generator tests suffice.
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