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We quantitatively analyze and evaluate the control power in a high-dimensional noisy quantum channel for
transmitting classical information. We calculate the control power of the controlled dense coding scheme in a
four-dimensional extended Greenberger-Horne-Zeilinger (GHZ) class state channel. Different from controlled
teleportation, there is no tradeoff between the control power and the classical capacity of the optimal four-
dimensional GHZ state quantum channel. Only when the channel is noisy and the sender is allowed to gain
some control authority can the tradeoff between the control power and the classical capacity be activated,
and the overall control power for transmitting classical information will be enhanced by reducing the classical
capacity of the high-dimensional quantum channel. This noise induced characteristic is very different from that
of transmitting quantum information, and it may provide new ideas and methods to develop the resource theory
of quantum channels.
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I. INTRODUCTION

Quantum networks [1–5] are critical to the realization
of quantum communication [6–15]. By means of sharing
entangled states [16] over the nodes of the network, quan-
tum networks could enable large-scale secure communication,
remote quantum control [17–20], and distributed quantum
computing and simulation [21,22]. Controlled quantum com-
munication [23–25] is an important branch of quantum
networks. Controlled quantum communication adds a con-
troller to the original two-party quantum communication, and
the controller can be an independent third party or the sender
of the information. Without the cooperation of the controller,
the receiver will not be able to ensure that all information of
the sender is vouchsafed. Therefore, controlled quantum com-
munication can allow the client to permit or restrict successful
quantum state transfer in the network to ensure the security of
the client’s secret information.

Quantum networks with controlled third parties were first
discussed for controlled quantum teleportation (CQT) [23],
which was proposed by Karlsson and Bourennane in 1998.
CQT is useful in various contexts in quantum communi-
cation, including in quantum networks and cryptographic
conferences [26–29]. In 2004, Yonezawa et al. experimentally
demonstrated controlled quantum teleportation by using con-
tinuous variable optics [30], and the fidelity reached 64%. In
2019, Barasiński et al. experimentally demonstrated CQT on
linear optics of discrete variables [31], and the fidelity was
as high as 83%, which far exceeds the classical limitation.
Recently, many works have been devoted to the analysis of
controller authority in CQT schemes and return the control
power (CP) P [32–37]. The CP is a quantity to define the
authority of the controller, and it is estimated as the difference
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in conditioned and nonconditioned fidelity of the CQT [33].
Conditioned and nonconditioned fidelity are two quantities
of the fidelity of teleportation of a quantum state with and
without the permission of the controller, respectively. In CQT
schemes, the controller’s authority, as well as the fidelity of
the final state of teleportation, should be ensured.

Different from quantum teleportation, which transmits
quantum information, quantum dense coding [10,15,38] pro-
vides an absolutely secure technique that transmits private
classical information between legitimate parties. If a maxi-
mally entangled state is initially shared by the sender and
receiver, quantum dense coding allows one to transmit 2 bits
of classical information by sending only one qubit. It has
been studied theoretically [39–43] and experimentally [44].
Controlled dense coding (CDC) was first proposed by Hao
et al. in 2001 [38]. Subsequently, many CDC schemes for
different states have been proposed [45–48]. In 2017 [49],
Oh et al. quantitatively analyzed the minimal control power
for CDC using three-qubit entangled-state channels, and the
control power was defined by the channel capacity. Thus far,
the control power of CDC has been mainly investigated in
two-dimensional multiparticle entangled quantum channels;
however, the control power for transmitting classical infor-
mation by using high-dimensional quantum channels has not
been discussed in detail.

In this paper, we calculate the control power of the CDC
scheme in a four-dimensional extended Greenberger-Horne-
Zeilinger (GHZ) class state channel. Different from controlled
teleportation, there is no tradeoff between the control power
and the classical capacity of the optimal four-dimensional
GHZ state quantum channel. In the optimal channel, even
if the classical capacity is intentionally reduced, the control
power will not change for controlled transmission of classical
information as the subspace of a perfect channel is symmetric.
When the channel is noisy and allows the sender to gain
some control authority, because noise destroys the symmetry
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of the channel, the tradeoff between the control power and the
classical capacity can be activated. The overall control power
for transmitting classical information will be enhanced by
reducing the classical capacity of a high-dimensional quantum
channel. Specifically, when using standard Bell-state basis
measurement for decoding, the maximum control power can
be increased by 0.866 bits, and when the control power is cal-
culated by the channel capacity the maximum control power
can be increased by 0.544 16 bit. This noise-induced charac-
teristic has not been discussed in previous studies and it is
very different from that of transmitting quantum information.
Therefore, our paper provides a feasible approach for obtain-
ing higher control power, and may provide new ideas and
methods to develop the resource theory of quantum channels.

II. CP OF OPTIMAL CHANNELS

We first construct a high-dimensional controlled dense
coding scenario. The sender Alice, the receiver Bob, and the
controller Charlie initially share a standard four-dimensional
GHZ state |�0〉ABC = 1

2 (|000〉 + |111〉 + |222〉 + |333〉)ABC ,
and the four-dimensional qudits A, B, and C belong to Al-
ice, Bob, and Charlie, respectively. Alice encodes classical
information by performing a four-dimensional local operation
on her qudit and then sends it to Bob. At the same time,
Charlie measures his qudit on an optimal basis and broadcasts
the measurement outcome to Alice and Bob. After receiving
Alice’s qudit, Bob performs a two-qudit measurement, such as
a four-dimensional Bell-state analysis (BSA) measurement, so
that he can recover the classical information that Alice wants
to transmit with Charlie’s measurement result. If Charlie does
not disclose his measurement results to Alice and Bob, Bob
cannot recover all the classical information sent by Alice, and
the classical capacity that Alice and Bob achieve will be de-
creased. Therefore, one can define Charlie’s control power as
the difference between the classical capacity of the quantum
channel with and without Charlie’s participation [49]. That is,

P = CC p − CCnp (1)

where CC p is the capacity of the channel when Charlie coop-
erates with Bob, and CCnp is the capacity of the channel when
Charlie does not cooperate with Bob. In the optimal channel,
CC p = 2log2d bits in the d-dimensional dense coding scheme,
and CCnp is the number of correct bits transmitted by the
quantum channel without Charlie’s participation. Therefore,
the control power P is the number of error bits obtained by
Bob without cooperation of Charlie.

A. CP for the original CDC scheme

In this four-dimensional controlled dense coding scenario,
let us calculate the control power for transmitting 4 bits of
classical information in an optimal quantum channel. A four-
dimensional qudit Q can be denoted as a system composed of
two qubits Q1 and Q2. The state is correspondingly given by

|00〉Q1Q2 → |0〉Q, |01〉Q1Q2
→ |1〉Q,

|10〉Q1Q2
→ |2〉Q, |11〉Q1Q2

→ |3〉Q. (2)

One can construct a standard four-dimensional GHZ state
channel by two parallel two-dimensional quantum channels

TABLE I. The corresponding relationship between Alice’s oper-
ations Un1n2n3n4 and the 4 bits (n1n2n3n4) of classical information she
wants to transmit. Here, Iz = |0〉〈0| + |1〉〈1| is the identity matrix.
σ A1(A2 )

z = |0〉A1(A2 )〈0| − |1〉A1(A2 )〈1| is the phase operation performed

on a qubit A1 (A2). σx =
3∑

i=0
|i + 1〉〈i| (mod 4) is the qudit-flip oper-

ation performed on the four-dimensional qudit A which is composed
of two qubits A1 and A2. The superscript 1, 2, or 3 of the operator σx

represents the number of times that the operator σx acts on qudit A.

Un1n2n3n4 n1n2n3n4 Un1n2n3n4 n1n2n3n4

IA1 IA2 0000 σ 2
x 1000

σ A1
z IA2 0101 σ A1

z σ 2
x 1101

IA1σ
A2
z 1010 σ A2

z σ 2
x 0010

σ A1
z σ A2

z 1111 σ A1
z σ A2

z σ 2
x 0111

σ 1
x 0100 σ 3

x 1100
σ A1

z σ 1
x 0001 σ A1

z σ 3
x 1001

σ A2
z σ 1

x 1110 σ A2
z σ 3

x 0110
σ A1

z σ A2
z σ 1

x 1011 σ A1
z σ A2

z σ 3
x 0011

with two standard GHZ states. The quantum channel |�0〉ABC

can be rewritten in the following form:

|�0〉ABC = |ψ0〉A1B1C1
⊗ |ψ0〉A2B2C2

= 1
2 (|000〉 + |111〉)A1B1C1

⊗ (|000〉 + |111〉)A2B2C2

= 1
2 (| + +〉C1C2 |φ+〉A1B1 ⊗ |φ+〉A2B2

+ | − +〉C1C2 |φ−〉A1B1 ⊗ |φ+〉A2B2

+ | + −〉C1C2 |φ+〉A1B1 ⊗ |φ−〉A2B2

+ | − −〉C1C2 |φ−〉A1B1 ⊗ |φ−〉A2B2 ) (3)

where |±〉 = 1√
2
(|0〉 ± |1〉) and |φ±〉 = 1√

2
(|00〉 ± |11〉). Al-

ice encodes 4 bits n1n2n3n4 of classical information by
performing a four-dimensional local operation Un1n2n3n4 on her
qudit and then sends it to Bob. The corresponding relationship
between Alice’s operations and n1n2n3n4 she wants to trans-
mit and the corresponding Bell states |�〉n1n2n3n4 Bob receives
is shown in Table I. In addition, the corresponding Bell states
Bob receives are |�〉n1n2n3n4 = Un1n2n3n4 |�0〉ABC .

If qubits C1 and C2 are both measured on the |±〉 basis, the
state of the whole system becomes

|�0〉ABC = 1
2 [|�〉0000|++〉C1C2

+ |�〉0101|−+〉C1C2

+ |�〉1010|+−〉C1C2
+ |�〉1111|−−〉C1C2

]. (4)

Alice uses |�0〉ABC to transfer the 4-bit information group
n1n2n3n4. After Alice performs the local operations, the state
|�0〉ABC becomes

1
2 (|�n1n2n3n4〉AB|++〉C + |�n1n2n3n4〉AB|−+〉C

+ |�n1n2n3n4〉AB|+−〉C + |�n1n2n3n4〉AB|−−〉C ) (5)

where ni = 1 − ni.
If Charlie cooperates with Bob, the last three terms in

Eq. (5) can be amended to the first term, and Bob can cor-
rectly infer the 4 bits of information transmitted by Alice. In
this case, CC p = 4 bits, which represents the capacity of the
channel when Charlie cooperates with Bob.
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TABLE II. The corresponding relationship between Alice’s DROs and the DUOs Bob performed.

Alice’s DROs Bob’s DUOs

|3〉 → |0〉 |03〉 → |33〉, |02〉 → |32〉, |13〉 → |03〉, |01〉 → |31〉, |12〉 → |02〉, |23〉 → |13〉
|3〉 → |1〉 |13〉 → |33〉, |02〉 → |32〉, |23〉 → |03〉, |01〉 → |31〉, |12〉 → |02〉, |03〉 → |13〉
|3〉 → |2〉 |23〉 → |33〉, |02〉 → |32〉, |01〉 → |31〉, |12〉 → |02〉

If Charlie does not cooperate with Bob, there are always
some items in Eq. (5) that will be wrong. Bob only has a 25%
probability of obtaining 4 bits of correct information, he has
a 50% probability of obtaining only 2 bits of correct infor-
mation, and then Bob will not be able to obtain any correct
information with 25% probability. The effective number of
correct bits that Bob can obtain in this case is

CCnp = 4 bits × 25% + 2 bits × 50% = 2 bits (6)

and, as the total number of the bits transmitted is 4 bits, the
average number of error bits obtained by Bob is 2 bits. The
corresponding control power, defined as the difference be-
tween the capacity of Charlie with and without participation,
is P = CC p − CCnp = 2 bits. Therefore, the control power P
is equal to the number of error bits obtained by Bob without
cooperation of Charlie.

B. CP for the decentralized CDC scheme

Alice can reduce the bit number of classical information
transmitted by reducing the dimensionality of the qudit be-
longing to her. For example, Alice performs phase encoding
first and then reduces the dimensionality of the particles in
her hand. She can perform one of the following dimension-
ality reduction operations (DROs) on the qudit A: |3〉 →
|0〉, |3〉 → |1〉, or |3〉 → |2〉; she then performs a three-
dimensional bit flip operation for encoding on the qudit. At
the same time, Charlie measures his qudit on an optimal basis

and broadcasts the measurement outcome to Alice and Bob.
After receiving Alice’s qudit, Bob performs an appropriate
dimensionality upgrading operation (DUO) according to Al-
ice’s dimensionality reduction operation and then performs a
four-dimensional BSA measurement so that he can recover
the classical information that Alice wants to transmit with
Charlie’s measurement result. The corresponding relationship
between Alice’s dimensionality reduction operations and the
dimensionality upgrading operations Bob performed is shown
in Table II.

When both Alice and Charlie cooperate with Bob, Bob
can obtain the log212 bits of classic information delivered by
Alice. If Alice and Charlie do not disclose their information to
Bob, Bob cannot recover all the classical information sent by
Alice; that is, Alice is assigned a part of the control authority.
We call this scheme as a decentralized CDC scheme.

In this case, Bob only has a probability of 1/3 on aver-
age to perform the right dimensionality upgrading operation
on his qudit, and the whole state of the three-qudit channel
system becomes the form described in Eq. (5). The average
number of error bits obtained by Bob is 2 bits. Otherwise,
Bob has a probability of 2/3 on average to perform the
incorrect dimensionality upgrading operation, and the aver-
age number of error bits obtained by Bob is also 2 bits.
For example, when Alice wants to transmit 0000 to Bob, if
Bob performs the incorrect dimensionality upgrading oper-
ation, the complete state of the three-qudit channel system
becomes

1
2 (|000〉 + |111〉 + |222〉 + |133〉)ABC

= 1
8 [|++〉C (3|�0000〉AB + |�0101〉AB + |�1010〉AB − |�1111〉AB + |�1000〉AB − |�1101〉AB − |�0010〉AB + |�0111〉AB)

+ |+−〉C (|�0000〉AB + 3|�0101〉AB − |�1010〉AB + |�1111〉AB − |�1000〉AB + |�1101〉AB + |�0010〉AB − |�0111〉AB)

+ |−+〉C (|�0000〉AB − |�0101〉AB + 3|�1010〉AB + |�1111〉AB − |�1000〉AB + |�1101〉AB + |�0010〉AB − |�0111〉AB)

+|−−〉C (−|�0000〉AB + |�0101〉AB + |�1010〉AB + 3|�1111〉AB+|�1000〉AB − |�1101〉AB − |�0010〉AB + |�0111〉AB)]

or (7)

1
2 (|000〉 + |111〉 + |222〉 + |033〉)ABC

= 1
8 [|++〉C (3|�0000〉AB + |�0101〉AB + |�1010〉AB − |�1111〉AB + |�0100〉AB − |�0001〉AB − |�1110〉AB + |�1011〉AB)

+ |+−〉C (|�0000〉AB + 3|�0101〉AB − |�1010〉AB + |�1111〉AB − |�0100〉AB + |�0001〉AB + |�1110〉AB − |�1011〉AB)

+ |−+〉C (|�0000〉AB − |�0101〉AB + 3|�1010〉AB + |�1111〉AB − |�0100〉AB + |�0001〉AB + |�1110〉AB − |�1011〉AB)

+|−−〉C (−|�0000〉AB + |�0101〉AB + |�1010〉AB + 3|�1111〉AB+|�0100〉AB − |�0001〉AB − |�1110〉AB + |�1011〉AB)]. (8)

In either case, the average number of error bits Bob obtains
is 2 bits. Combining the above three situations, the control
power for transmitting log212 bits of classical information
is the same as that for transmitting 4 bits of classical infor-

mation. One can see that in the perfect channel, even if the
classical capacity is intentionally reduced by the sender, the
control power will not be improved due to the symmetry of
control. The manifestation of Charlie’s control power leads
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FIG. 1. Control power of four-dimensional channels as a function of the channel parameters to λ1 and λ2. (a) PB is the control power for
the original CDC scheme in the case of λ2 = λ4. (b) P′

B is the control power for the decentralized CDC scheme in the case of λ2 = λ4. (c) The
change �PB = P′

B − PB in the case of λ2 = λ4.

to uncertainty of the subspace in the subsystem shared by
Alice and Bob, and Alice’s control power leads to uncertainty
of measurement basis in the subspace. These uncertainties
will lead to errors in decoding. The subspace of a perfect
channel is symmetric, and the error caused by the uncertainty
of the measurement basis is the same in each subspace and
will not induce a higher average number of error bits. If this
symmetry is broken, the control power may be improved.
Therefore, there is no tradeoff between the control power and
the classical capacity of the four-dimensional standard GHZ
state quantum channel.

III. CP OF NOISY CHANNELS

In a noisy channel, maximally entangled states usu-
ally become partially entangled states. The standard two-
dimensional GHZ state may become an extended GHZ-class
state channel, which is defined as |ψe−GHZ〉ABC = λ1|000〉 +
λ2|110〉 + λ3|111〉 + λ4|001〉. The coefficient satisfies λi � 0
and

∑
i λ

2
i = 1, {i = 1, 2, 3, 4}. The form of the state of two

parallel extended GHZ-class state channels is shown as

|ψ4−eGHZ〉ABC

= λ2
1|000〉 + λ1λ2|110〉 + λ1λ3|111〉 + λ1λ4|001〉

+ λ1λ2|220〉 + λ2
2|330〉 + λ2λ3|331〉 + λ2λ4|221〉

+ λ1λ3|222〉 + λ2λ3|332〉 + λ2
3|333〉 + λ3λ4|223〉

+ λ1λ4|002〉+ λ2λ4|112〉+ λ3λ4|113〉+ λ2
4|003〉 (9)

where the symmetry of the channel is broken, and the control
power of this state will be improved by using a decentralized
CDC scheme.

In the original CDC scheme, with the channel in
the form of Eq. (9) and Charlie’s assistance, by using
the standard four-dimensional BSA measurement, the
average number of error bits obtained by Bob is E0 =
2(λ2

1 + λ2
2 − 2λ1λ3 + λ2

3 − 2λ2λ4 + λ2
4). Without Charlie’s

assistance, the average number of error bits obtained by Bob is
E1 = 2(λ1 − λ2)2 + 2(λ3 − λ4)2. The corresponding control
power of Charlie is PB = E1 − E0. In the decentralized CDC
scheme, with the same channel state as Eq. (9) but without Al-
ice’s and Charlie’s assistance, the average number of error bits

obtained by Bob is E ′
1 = 2/3[3λ4

1 − 6λ3
1λ2 + 3λ4

2 + 3λ4
3 −

2λ3
3λ4 + 6λ2

3λ
2
4 − 6λ3λ

3
4 + 3λ4

4 + 6λ2
1(λ2

2 + λ2
3 − λ3λ4 +

λ2
4) − 2λ1λ2(λ2

2 + λ2
3 + 3λ2

4) + λ2
2(6λ2

3 − 2λ3λ4 + 6λ2
4)].

Therefore, the corresponding control power of Charlie for the
decentralized CDC scheme is P′

B = E ′
1 − E0.

To clearly illustrate the performance of CP in noisy chan-
nels, we numerically calculated PB and P′

B in the case of λ2 =
λ4. The results are shown in Figs. 1(a) and 1(b). The maximum
values of PB and P′

B occur at the same two points, (1) λ1 = 1√
2
,

λ2 = 0 and (2) λ1 = 0, λ2 = 1√
2
, which also correspond to the

cases of the optimal states. That is, under the action of noise,
the control power of the channel is decreasing. However, only
when the channel is noisy can the tradeoff between the control
power and the classical capacity be activated.

To present this noise induced characteristic, we also give
the change �PB = P′

B − PB in control power as a function of
the parameters λ1 and λ2, as shown in Fig. 1(c). For the opti-
mal state cases, or the nonoptimal state case of λ2 = λ4 = 0,
the corresponding �PB = 0, otherwise �PB > 0. That is, the
control power can be enhanced by reducing the dimension of
the classical information in a suitably noisy quantum channel.
The maximum value �Pmax

B = √
3/2 = 0.866 bit occurs at

the point λ1 = 1/4 and λ2 = √
3/4.

We notice that the control power has negative values
in some areas of Fig. 1. This is an unreasonable result
caused by Bob’s inappropriate decoding operation. For
example, when λ1 = 0, λ2 = λ4 = 0.3, and λ3 = 0.906, the
channel state collapses to [|+〉C1 (1.206|00〉 + 0.3|11〉)A1B1 −
|−〉C1 (0.606|00〉 + 0.3|11〉)A1B1 ] (non-normalized). Ob-
viously, by using this state as a channel, the decoding
strategy with Charlie’s assistance (described in Sec. II)
will cause more errors; conversely, decoding the classical
information directly according to Bob’s measurement results
without Charlie’s assistance will lead to a lower error
rate. Therefore, PB and P′

B are smaller than zero. To avoid
this unreasonable situation, we calculate the CP using the
quantum mutual information theorem [50,51] in which
the entanglement-assisted classical capacity is defined as the
maximum asymptotic rate of reliable bit transmission with the
help of unlimited prior entanglement between the sender and
receiver.
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FIG. 2. Control power of four-dimensional channels as a function of the channel parameters to λ1 and λ2. (a) P is the control power for
the original CDC scheme in the case of λ2 = λ4. (b) P′ is the control power for the decentralized CDC scheme in the case of λ2 = λ4. (c) The
change �P = P − P′ in the case of λ2 = λ4.

By using the quantum mutual information, the dense cod-
ing channel capacity without Charlie’s assistance is given
by [50,51]

C(ρAB) = log2dA + S(ρB) − S(ρAB) (10)

where ρABC is the density matrix of the channel’s state, re-
duced density matrix ρAB = TrC (ρABC ), and ρB = TrA(ρAB).
dA is the dimension of the qudit belonging to sender Alice, and
in the original CDC scheme dA = 4. S(ρ) = −Tr(ρlog2ρ) is
the von Neumann entropy.

To maximize the channel capacity between Alice and Bob,
Charlie measures his qubits on the best basis of maximizing
the average channel capacity. With Charlie’s assistance, the
classical channel capacity that Alice and Bob can achieve
using CDC is [49]

C(ρABC ) = max
U

N∑

i=0

〈i|UρCU †|i〉C(
ρC=i

AB

)
(11)

where C(ρC=i
AB ) represents the channel capacity between Al-

ice and Bob when the result of Charlie’s measurement is i.
The matrix U is the measurement basis selected by Charlie.
Through the weighted summation of the different measure-
ment results of Charlie, it is found that when U is a Hadamard
operation the channel capacity can be maximized. In the noisy
channels, the control power can be achieved by

P = C(ρABC ) − C(ρAB). (12)

In the decentralized CDC scheme, since Alice participates
in the control of the channel, the expression of the control
power needs to be redefined as

P′ = C′(ρABC ) − C′(ρAB) (13)

where C′(ρABC ) indicates the channel capacity with Alice’s
and Charlie’s assistance and dA = 3. C′(ρAB) represents the
channel capacity without Alice’s and Charlie’s assistance, and

C′(ρAB) = 1

3

2∑

j=0

[log23 + S(TrA(| j〉A〈3|ρAB|3〉A〈 j|)

− S(| j〉A〈3|ρAB|3〉A〈 j|)]. (14)

For comparison, we numerically calculated P and P′ in
the case of λ2 = λ4. The results are shown in Fig. 2, and we
notice that the control power has no negative value in Fig. 2.
The maximum values of P = 2 bits and P′ = 2 bits also occur
at the same optimal-state points: (1) λ1 = 1√

2
, λ2 = 0 and

(2) λ1 = 0, λ2 = 1√
2
. We also give the change �P = P′ − P

in control power as a function of the parameters λ1 and
λ2, as shown in Fig. 2(c). One can see that �P � 0. When
P′ = P = 2 bits or λ2 = λ4 = 0, the equal sign in this formula
holds. That is, the control power can be enhanced by reducing
the dimension of the classical information in a suitably noisy
quantum channel. The maximum value �Pmax = 0.544 16 bit
< �Pmax

B occurs at λ1 = 0.365 33 and λ2 = λ4 = 0.488 77.
Even if the calculation method of CP is changed, the amplifi-
cation effect caused by noise still exists.

The increase of control power shown here is due to de-
centralization operation. In the decentralized CDC scheme,
Alice’s dimensionality reduction operations will not change
the fidelity of the quantum channel and will not induce
the superior noise resistance [52,53] of subspace coding in
high-dimensional systems. However, noise will destroy the
symmetry of the channel, and the error caused by the uncer-
tainty of the measurement basis is different in each subspace
and it induces a nontrivial performance in the promotion of
control power.

IV. COMPARISON BETWEEN CT AND CDC

Through the above analysis, we can see that the control
power can be enhanced by reducing the dimension of the
classical information in a suitably high-dimensional quantum
channel. However, this tradeoff between the control power
and the classical capacity is very different from that between
the control power and the quantum capacity, especially in
optimal-state channels. To illustrate this difference, we take
the controlled teleportation scheme as an example and com-
pare it with the controlled dense coding scheme.

In the controlled teleportation scheme for the optimal-
state channel [37], CP is defined as Pq = 1 − fNC , in which
fNC is the unconditioned teleportation fidelity without the
controller’s permission. By using the standard d-dimensional
GHZ state to controlled teleport a d-dimensional qudit, the
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control power is Pq1 = 1 − 2
d+1 . If using a 2N -dimensional

GHZ state to transmit d-dimensional quantum information
(2N > d > 2N−1), the control power can be improved to Pq2 =
1 − d

2N
2

d+1 with local operations [37].
For comparison purposes, one can define the CP of

the CDC scheme as the controlled error rate, which is
the error rate at Bob’s side in the case without controller
assistance in optimal-state channels. By using a standard
d-dimensional GHZ state to control the transmission
of 2log2d bits of classical information, Pc1 = 0.5 when
d = 2N , which corresponds to a random guess for complete
classical information units; otherwise, Pc1 < 0.5, which
corresponds to a random guess for incomplete classical
information units. For example, by using a three-dimensional
GHZ state ( 1√

3
(|000〉 + |111〉 + |222〉)ABC = ( 1

3 [(|00〉 +
|11〉 + |22〉)|0〉 + (|00〉 + ei 2π

3 |11〉 + ei 4π
3 |22〉)|1〉 + (|00〉 +

ei 4π
3 |11〉 + ei 2π

3 |22〉)|2〉]ABC , Alice and Charlie can control
transmit 00, 01, or 10 through relative-phase information
of the quantum channel to Bob. Without the controller’s
assistance, when Alice transmits 00 to Bob, Bob has a
probability of 1/3 to obtain 2 bits of correct information,
and the probability of 2/3 can only obtain 1 bit of correct
information; when Alice transmits 01 or 10 to Bob, there
is a 1/3 probability that Bob can obtain 2 bits of correct
information, a 1/3 probability that Bob only obtains 1 bit of
correct information, and a 1/3 probability that Bob cannot
obtain correct information at all. Hence, the average error
rate is 4/9. By using bit information of this quantum channel,
Alice can control transmit 00, 01, or 10 to Bob without
giving a determined coding basis, independently. On the
premise of not changing the channel capacity, Alice can
encode the classical information 00 in three different ways:

1√
3
(|10〉 + |01〉 + |22〉)ABC , 1√

3
(|20〉 + |11〉 + |02〉)ABC , or

1√
3
(|00〉 + |21〉 + |12〉)ABC with local operations. With the aid

of three-dimensional qudit-flip operation σ ′
x = ∑2

i=0 |i + 1〉〈i|
(mod 3) or σ ′2

x , 01 or 10 can be encoded on qudit A in the
above different coding bases by Alice. Hence, without Alice’s
assistance, the average error rate is also 4/9 for Bob. When
d is equal to other values, we can use the same calculation
method to deduce the corresponding controlled error rate by
analog.

If using a 2N -dimensional GHZ state to transmit d-
dimensional classical information (2N > d > 2N−1), the con-
trol power Pc can be improved to 0.5 by exploiting the
decentralized CDC scheme. For example, as described in
Sec. II, by using the decentralized CDC scheme and decreas-
ing the dimension of bit information from 4 to 3, the control
power is 2 bits, and the corresponding controlled error rate
is 0.5. To clearly illustrate the different performances of CPs,
we numerically calculated Pq and Pc of optimal-state channels
as a function of the dimension parameter d (16 � d � 2).
The results are shown in Fig. 3. One can see that there is an
improvement for Pq2 by reducing the dimension of the tele-
ported information. However in the CDC scheme, even if the
classical capacity is intentionally reduced, the controlled error
rate can only be increased to 0.5 for controlled transmission
of classical information, and it will not be greater than when
the channel capacity is not consumed. Therefore, it does not
make sense to consume capacity in the optimal-state channel.
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FIG. 3. Control power vs dimensional parameter d (16 � d � 2)
in optimal-state channels. (a) The CP for the controlled teleportation
scheme (CP here is defined according to fidelity and dimensionless).
Pq1 (black line with square) is the CP for controlled teleporting
a d-dimensional qudit by using the standard d-dimensional GHZ
state. Pq2 (red line with circle) is the CP for controlled teleporting a
d-dimensional qudit by using the standard 2N -dimensional GHZ state
(2N > d > 2N−1). (b) The controlled error rate for the controlled
CDC scheme. Pc1 (black line with square) is the CP for controlled
transmitting 2log2d bits of classical information by using the stan-
dard d-dimensional GHZ state. Pc2 (red line with circle) is the CP for
controlled transmitting 2log2d bits of classical information by using
the standard 2N -dimensional GHZ state (2N > d > 2N−1).

V. CONCLUSION AND SUMMARY

To summarize, we have proposed a decentralized CDC
scheme to improve the control power of the quantum channel
by decoding the classical information in a suitable lower-
dimensional basis. By calculating the control power of the
decentralized CDC scheme in a four-dimensional extended
GHZ-class state channel, we found that there is no tradeoff
between the control power and the classical capacity of the
four-dimensional standard GHZ state quantum channel. Only
when the channel is noisy can the decentralized CDC scheme
activate the tradeoff between the control power and the classi-
cal capacity. This noise-induced characteristic is very different
from that of transmitting quantum information.

For the antinoise strategy proposed in this paper, we
calculate it under different noise channel conditions and the
results are different. For three-qubit GHZ-like state channels
|ψGHZ-like〉ABC = λ1|000〉 + λ2|011〉 + λ3|101〉 + λ4|110〉,
where λi � 0 and

∑
i λ

2
i = 1, {i = 1, 2, 3, 4}, the two

schemes have no different effect on the control power
of the channel. For the channel Eq. (9) mentioned in
this paper, if it is simplified to the form |ψ ′

e−GHZ〉ABC =
λ1|000〉 + λ2|110〉 + λ3|111〉, where λi � 0 and

∑
i λ

2
i = 1,

{i = 1, 2, 3}, we can get the conclusion that the control
power is improved for the decentralized scheme, but the
improvement effect is not as good as the channel Eq. (9).
From the above conclusion, we can see that the classical
control authority gained by Alice, as the compensation for
quantum control power, is a new component of control power.
When the quantum control power determined by the control
qubit C is reduced by the noise, the classical control power
performed by Alice can well compensate the loss of quantum
control power, and the antinoise strategy proposed in this
paper will work.

On the other hand, in the so-called degree-mismatch
problem [54], the information carrier and the channel have
different dimensions, and the control power of an asymmet-
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rical scheme will not follow the rules of low-dimensional
channels. Using a quantum channel to transmit classical in-
formation is a very effective secure transmission method for
the future, which has a very wide range of applications. The
application scenario of controlled quantum communication
is the secure access of ordinary users to quantum networks.
An ordinary user is not only the sender of information, but
also the controller of information. She/he has the authority
to control the effective release of information. Our scheme
is to study the antinoise effect of the control power in this
situation.. Our scheme also has good application prospects in
quantum secure text transmission scenarios such as controlled
quantum secure direct communication [27,28,55,56]. If Bob
can perform a complete 3 × 4 dimensional BSA measure-
ment, it is not necessary to DUOs. He can directly use the
3 × 4 dimensional BSA measurement to decode directly, and
the calculated results of the control power are the same as
those with DUOs. A similar asymmetric 3 × 4 dimensional
BSA has been constructed in our previous work [57]. With the
help of similar physical systems, one can carry out the BSA
required in this paper.

Our scheme may provide new ideas for improving control
power by transforming the redundant dimension of quantum
channels into the control authority of the sender to maximize
the utilization of channel resources. Our scheme can also
provide more personalized choices for users in the networks.
Finally, our framework of nonlocal controlled classical infor-
mation transmission in high dimensions provides a feasible
method and directions of exploration for the future construc-
tion of quantum networks. Furthermore, it may provide new
ideas and methods to develop the resource theory of quantum
channels.

ACKNOWLEDGMENTS

This work is supported in part by the National Natural
Science Foundation of China under Grant No. 62071064, in
part by the Fundamental Research Funds for the Central Uni-
versities of China under Grant No. 2019XD-A02, and in part
by the Fund of State Key Laboratory of Information Photonics
and Optical Communications, Beijing University of Posts and
Telecommunications, China.

[1] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Quantum Re-
peaters: The Role of Imperfect Local Operations in Quantum
Communication, Phys. Rev. Lett. 81, 5932 (1998).

[2] L. Xi-Han, Z. Ping, L. Yu-Jie, L. Chun-Yan, Z. Hong-Yu, and D.
Fu-Guo, Quantum secure direct communication network with
two-step protocol, Chin. Phys. Lett. 23, 1080 (2006).

[3] D. Fu-Guo, L. Xiao-Shu, M. Ying-Jun, X. Li, and L. Gui-Lu, A
theoretical scheme for multi-user quantum key distribution with
n Einstein-Podolsky-Rosen pairs on a passive optical network,
Chin. Phys. Lett. 19, 893 (2002).

[4] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger,
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