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Finite-resolution ancilla-assisted measurements of quantum work distributions
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Work is an observable quantity associated with a process; however, there is no Hermitian operator associated
with its measurement. We consider an ancilla-assisted protocol measuring the work done on a quantum system
driven by a time-dependent Hamiltonian via two von Neumann measurements of the system’s energy carried out
by a measuring apparatus modeled as a free particle of finite localization and interaction time with the system. We
consider system Hamiltonians which both commute and do not commute at different times, finding corrections
to fluctuation relations like the Jarzynski equality and the Crooks relation. This measurement model allows us to
quantify the effect that measuring has on the estimated work distribution and associated average work done on
the system and average heat exchanged with the measuring apparatus.
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I. INTRODUCTION

Central to thermodynamics is the notion of work, which is
defined classically as a line integral over a definite trajectory
through the configuration space associated with the system of
interest. However, no such trajectory exists for a quantum sys-
tem. Work is not a state function and instead depends on the
process under which a system evolves, and it is for this reason
that work is not represented by a Hermitian operator [1-3]
(however, see Ref. [4] for such a proposal). For a closed
system, which does not exchange heat with its environment, it
follows from the first law that the work done on the system
is equal to the change in its energy. This suggests that we
measure the energy of the system twice, once at the beginning
and once at the end of a process, and attribute the difference
in the outcomes of these measurements to the average work
done on the system.

It was initially thought that these two energy measure-
ments must be performed via two projective measurements
of the system directly [1,2]. However, Roncaglia er al. [5]
later realized that work may be measured via a von Neumann
measurement model that involves a measuring apparatus that
interacts with the system twice, after which a single projective
measurement of the apparatus is made and the outcome is
associated with the work done on the system. In contrast
to performing two projective energy measurements, the lat-
ter approach has the advantage of not destroying coherence
among energy eigenstates of the system, thus allowing for
the investigation of quantum coherence in thermodynamic
processes [6—8]. In addition, because only one projective mea-
surement needs to be made to obtain a value of work, the
experimental implementation of this method for measuring
work may be easier [9].
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Any realistic measurement scheme will be of finite du-
ration, and the free evolution of the measuring apparatus
may affect the measured work distribution due to the non-
ideality of the measurements [10]. While weak measurements
may be used to model these finite-resolution effects [11],
we are interested in situations where the measurement pro-
cess can significantly affect the behavior of the system on
account of short-timescale measurement interactions. It is
the purpose of this article to explore the consequences of
such realistic measurements for the scheme proposed by
Roncaglia et al. [5].

We begin in Sec. II by describing a measurement model
for the work done by a time-dependent Hamiltonian that takes
into account the finite duration of the interactions between
the system of interest and measuring apparatus and the free
evolution of the measuring apparatus during the process that
is performing work; related measurement models have been
examined in the past [3,12]. In Sec. II C we establish a method
to estimate the effect of the nonideality of the measurement
model on thermodynamic quantities like the average work and
heat. In Secs. III and IV, this measurement model is applied
to processes described by time-dependent Hamiltonians that
respectively do and do not self-commute at different times.
In doing so, we derive modifications to the Crooks relation
and Jarzynski equality [13,14] stemming from the finite dura-
tion of these measurements and give a physical interpretation
of the modifications in terms of heat exchange between the
measuring apparatus and system. We also consider estimates
of the average heat flow between the system and measur-
ing apparatus, and show that such heat flow vanishes in the
self-commuting case while in the non-self-commuting case
it is generically non-zero. Moreover, in Sec. IV we ana-
lyze how the parameters defining the measurement model
affect sampled work distributions. We summarize our results
in Sec. V.

Throughout we will work with i = 1. Further, S(#) and
E(H) will denote, respectively, the space of the density
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operators and the space of the effect operators acting on the
Hilbert space #.'

II. MEASURING WORK

Consider a closed system that does not interact with its
surroundings, so that no heat can be added to the system,
described by the Hilbert space Hs. In accordance with the
first law, the work done on the system by a time-dependent
Hamiltonian H(¢) between an initial time ¢ = ¢; and final time
t =ty is equal to the change in its internal energy

W= En(tf) - Em(ti)’ (1)

where E,(t) is an eigenvalue of the system Hamiltonian
associated with the eigenvector |E,(z)) at time ¢, that is,
Hg(t) |E,(t)) = E,(t) |E,(¢)). For simplicity, we have as-
sumed that the spectrum of Hg(f) is nondegenerate and
discrete (labeled by the index n); however, the results that
follow are expected to generalize straightforwardly.

A. Two-point measurement scheme

One of the most common operational definitions of work
is the so-called two-point measurement scheme [1,2]. Sup-
pose the system is prepared in the state ps(t;) € S(Hs). A
projective measurement of the system’s energy is made at
t = t;, yielding the outcome E,,(f;). The system then evolves
from #; to t; as described by the unitary Us(zy) generated by
Hg(t). Then, the system energy is measured again, yielding
the outcome E,(fy). From the outcomes of these two mea-
surements the work performed in this particular realization of
the protocol is given by Eq. (1). The outcomes of these energy
measurements are probabilistic, and thus, so too is the amount
of work W done on the system. The probability associated
with an amount of work W is

PW) =Y PuPundlW — [En(ty) — En(t)]},  (2)
where &6 is the Dirac delta function, 7P, =
(En(@)|ps(t)|En(t;)) is the probability of outcome m in
the first measurement, and P, := | (E,(t/)|Us(t)|E,,(t;)) 2
is the probability of outcome n in the second measurement
conditioned on outcome m in the first measurement; see
Ref. [15] for a recent discussion.

B. Ancilla-assisted protocol

Alternative to the two-point measurement scheme, one can
consider an explicit measurement model that describes an
apparatus which couples to the system at times #; and #; in
such a manner that a subsequent projective measurement of
the apparatus yields the amount of work performed on the
system between #; and 7.

Let the measuring apparatus be modeled as a free particle
on the real line whose associated Hilbert space is H4 ~ L?>(R)

ISH):={peT(H) | p>=0andtrp =1}, where T(H) is the
space of the trace class operators acting on H. E(H):={E €
B(H) | 0<E <ITandE = E'}, where B(H) is the space of
bounded operators acting on H.

and whose free evolution is governed by the Hamiltonian
H, = P?/2m, where m is a mass parameter that governs the
dispersion of the measuring apparatus in position space. Sup-
pose that the system and apparatus are prepared at time ¢, < f;
in the separable state ps(f,) ® pa(t,), where ps(t,) € S(Hs)
and pa(t,) € S(Ha4). For simplicity we will suppose that the
apparatus is initially a pure state pa(t,) = [¥a(tp)) (¥a(tp)]
localized in position space around x = 0,

2

[Ya(t,)) = dxe ¥ |x), 3)

1
w4 Jo, /
where |x) is the generalized eigenvector of the position oper-
ator X, that is, X |x) = x |x) for all x € R. The apparatus must
interact with the system such that it keeps a coherent record
of the energy of the system at times #; and 77. An interaction
Hamiltonian that accomplishes this is

Hsa(t) = f(t)Hs(t) @ AP,

where A € R has units of inverse energy momentum and is
interpreted as the conversion factor between the displacement
of the apparatus and the work done on the system, P is the mo-
mentum operator acting on Hy, f(t) 1= gt —t75) — gt — 1),
and g(¢) is a function with narrow support around # = 0 and
units of energy. Because the momentum operator P generates
a translation of the position operator X, the evolution gener-
ated by Hg(t) first translates the apparatus to the left by an
amount conditioned on the internal energy of the system at
time #; and then translates the apparatus to the right condi-
tioned on the internal energy of the system at time #;. The
system and apparatus evolve from time ¢, to #,,, > ¢, according
to the unitary operator

= (Im
—i [™dtH(1)
Ut,,~>t,,, =Te v s

where T denotes the time-ordering operator and the total
Hamiltonian H (¢) describing the system, apparatus, and their
interaction is

H(t) = Hs(t) + Hp + Hsa(2). 4

At time t,, a position measurement of the apparatus is
made, the outcome of which corresponds to the measured
work W in this realization of the process governed by H(¢).
Accordingly, the probability density of an amount of work W
being done on the system is given by

PW) = trlls ® Memw U, 05(t,) ® patp)U] , 1,

where IT, := |x) (x| € £(H,) is the effect operator associated
with outcome x € R. This protocol constitutes a measurement
model and is depicted in Fig. 1 as a quantum circuit.

The above measurement model induces a positive operator-
valued measure (POVM) described by effect operators
E(W) e E(Hys) forall W € R such that

PW) = tu[EW)ps(t,)]
= tr[ls ® Mamw Uy, 1, p5(1p) ® pa@)U/ L, 1, (5)

where the last equality defines E(W) and is known as the
probability reproducibility condition [16]. Inverting Eq. (5)
allows for the POVM elements to be solved for explicitly,

EW) = (Yalt)| U, Is ® MemwU,y, [¥a(t)) . (6)
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ps(tp) — Us
U; Uy
pa(ty) — Ua —D ﬁj
Time } i 1 I
tp t; tf tm

FIG. 1. The measurement model described in the text is depicted
as a quantum circuit. The system and apparatus are prepared at time
t, in the states ps(t,) and pa(t,), respectively, and their free evolution
is described by Us and U,. The apparatus and system interact at
times #; and f; via the interaction unitaries U; and Uy, and a final
measurement of the apparatus takes place at time 7,, and is described
by the POVM TI1I,.

The ideal limit occurs when the initial state of the apparatus
is completely localized in the position basis, o, — 0, the mea-
surement interaction happens infinitely fast, g(t) — 46(¢), and
the initial state of the system is prepared in the state |E,,(¢,))
with probability P, := (E,,(1,)|ps(t,)|En(t,)). In this limit,
the probability distribution in Eq. (5) is equivalent to the work
distribution sampled in the two-point measurement scheme
and given in Eq. (2). Henceforth, we will refer to this limit
as the ideal measurement limit.

C. Thermodynamic considerations

Suppose the system of interest is subject to a time-
dependent Hamiltonian Hg(¢) and evolves as ps(¢). The first
law of thermodynamics states that

(AU) = (W) +(0), @)

(W) = f,f dt tr[Hg(t) ps ()] and (Q) =
fl; dt tr[Hs(t)ps(t)] (see, for example, [17]).

The fact that the measurement apparatus has to interact
with the system in order to sample the work distribution leads
to the possibility of the apparatus performing work on the sys-
tem and modifying the work distribution. Although this does
not occur when using ideal von Neumann measurements in
the two-point measurement scheme [10], we expect a different
outcome based on the finite resolution of our measurement
model. To examine this further we have to specify additional
layers of detail defining the measurement process; see Fig. 2.
The first layer involves completely ignoring the effect of the
measurement interaction between the system and apparatus
on the evolution of the system pgs(#) and corresponds to the
ideal measurement limit. An additional layer of detail takes
into account the measurement interaction, which in turn mod-
ifies the evolution of the system state to ps(t) # ps(¢). As a
consequence, this results in different amounts of average work
being performed on the system (Fig. 2),

where

1 .
(Ws 2=/ ditr[Hs(1)ps(1)], 3

i

Measuring
Apparatus (W )dist
P(W,1)
;};A\ Eq. (14)
(W)s
Eq. (11)

<3S
Eq. (12)

FIG. 2. The three measurement model layers outlined in
Sec. II C, qualitatively illustrating their associated averages (W)g,

(W)g, and (W) The latter two definitions reduce to the former
upon taking the ideal measurement limit.

- i .
W)s 1=/ drtr[Hg(t)ps(1)]- €))

i

The difference between these quantities,

AWip 1= (W) — (W), (10)
quantifies the additional work done on the system due to its
interaction with the measuring apparatus. Using the first law
in Eq. (7), we similarly quantify the heat exchanged between
the system and apparatus via the quantities

(Q)s == (AU) — (W)s, (D)5 :=(AU) — (W),
and their difference
AQin := (0Q)s — (Q)s.. (11)

Both of the above average work quantities reference observ-
ables that are to be measured on the system itself, as opposed
to an observable on the measuring apparatus. The average
work computed from the work distribution is

(Wgist i= de WPW,t,). 12)

Similarly, the difference in the average work arising from
sampling this work distribution,

AWpovm = (W)gise — (W) s 13)

quantifies the effect of using the measured work distribution
P(W, t,,) and the additional work done on the system relative
to the ideal measurement limit. Note that we do not define
similar quantities for the heat since that would require a pre-
scription for calculating (AU using the measuring apparatus.

In Sec. I1I, we show that AWpgyn, which is nonzero in gen-
eral, vanishes upon taking the ideal measurement limit. More
surprisingly, we find that AW, vanishes when the system
Hamiltonian commutes with itself at different times, which
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means that the second layer of detail in describing realistic
work measurements does not suffice in finding the average
work imparted by the apparatus in the sense defined above.
In Sec. IV, we examine an example of a non-self-commuting
system Hamiltonian and find that in general AWpoym and
AW, are non-zero and differ from each other.

III. SELF-COMMUTING SYSTEM HAMILTONIANS

In this section, analytic expressions of the work distri-
bution P(W,t) are derived using the POVM construction
above for the case of systems driven by a time-dependent
Hamiltonian Hg(¢) which commutes with itself at different
times, [Hs(t), Hs(t')] = 0. This includes quantum adiabatic
processes for which no heat is added to the system by Hj.
For such systems, it is shown that AW;,, = 0 and AWpgyy is
a function of the measurement interaction that vanishes in the
ideal measurement limit discussed above. The measured work
distribution is modified on account of the system-apparatus
interaction, which in turn leads to corrections to both the
Crooks relation and the Jarzynski equality.

A. Setup

Consider a system described by the Hilbert space
‘Hs whose evolution is governed by the time-dependent
Hamiltonian Hg(t) € B(Hs). Suppose that Hg(f) commutes
with itself at different times

[Hs(t), H(t)] =0 Vit,t' eRT.

It follows that for such Hamiltonians, the energy eigenba-
sis does not change in time, and therefore, by the spectral
theorem”

Hs(t) =Y Ey(t) |En){En] .

where |E,) € Hs is the energy eigenstate associated with
the eigenvalue E,(t) € Spec[Hs(t)], that is, Hs(t) |E,) =
E,(t) |E,). Thus, it is only the spectrum of the system Hamil-
tonian that changes in time, not its eigenbasis. An example
of such a self-commuting system Hamiltonian is a two-level
atom in the presence of a uniform magnetic field of varying
strength.

As evaluated in the Appendix, the probability of a
measurement of the apparatus at some time ¢ giving the
outcome W is

n,n) m 5 )
pon= LT

where
o8 (t) = (Eql ps(t) |E) = p§"" (1),

21 — )2 3
AS(t) = (%Jra”(m—z”)) .

P

2For simplicity, we consider here the case when the spectrum oy is
discrete; however, the results presented here naturally generalize to
the case of continuous and degenerate spectrum Hamiltonians.

Note that the diagonal elements of the state of the system do
not evolve under Hg(z). It is seen that the Gaussian factors
appearing in Eq. (14) disperse as ¢ increases in a nontrivial
manner that depends on m and o). Moreover, o, I quantifies
how localized the initial apparatus state is in posmon space,
S0 as o, I decreases, the measurement model approaches the
ideal measurement limit.

Since the work distribution is simply a sum of Gaussians,
the average work done on the system is

Whas = 2o [ aroso. s

In the ideal measurement limit, f(¢t) — 6(t —t7) — &(t —
t;), this expression reduces to the average work obtained from
the first law using the freely evolving system state pg, so that
AWpoym = 0 for arbitrary m and o,,. However, away from this
limit AWpgyy 1S, in general, nonzero. Moreover, as evaluated
in the Appendix, we find that the quantity AW, defined in
Eq. (10) vanishes independent of the shape of f(¢). Coupled
with the fact that the diagonal elements of pg(¢) are the same
as those of ps(¢) and Eq. (7), it follows that on average no heat
transfer between the system and apparatus occurs. In general,
this need not be the case, in particular when [Hs(t), Hs(t')] #
0 since AW,y is nonzero and the diagonal elements of pg(t)
are modified nontrivially.

Finally, the work distribution is seen to depend only on the
diagonal elements in the energy eigenbasis of the system den-
sity matrix, which is a consequence of tracing out the system
degrees of freedom in obtaining the reduced state of the appa-
ratus. In the case of self-commuting system Hamiltonians, we
find that the diagonal elements of the system density matrix
do not evolve under Hs(t) since |E,) remain eigenvectors for
allt € RT. We will see in Sec. IV that this no longer holds for
the non-self-commuting case.

B. Fluctuation relations

Fluctuation relations are an important tool in statisti-
cal mechanics because they relate equilibrium properties to
measurable nonequilibrium quantities. Generalizing classical
fluctuation relations to the quantum regime has been the sub-
ject of much attention [2,18-20]. Moreover, measurements of
work fluctuations in quantum systems have been proposed and
were recently realized [21-25].

Consider a system in contact with a heat bath of inverse
temperature §, evolving under the system Hamiltonian Hy ().
The Crooks relation that connects the work distributions asso-
ciated with the forward and backward protocols for an initial
equilibrium thermal state, where the former corresponds to
Pr(W,t) and the latter corresponds to Pg(—W, 1, —t) for
t € [tp, 1] [2,13], can be stated as

Pr(W) = Py(=W)e! V=20,

where AF is the change in the equilibrium free energy of the
system, defined by AF 1= —1 ln é((’[f)), and Z(z) := tre PHs®
is the partition function of the system at time ¢. If we consider

. - —~BHs (1;)
an initial thermal state, ps(t;) = £ Z(;; , the work done on

the system obeys W = —AF in the ideal measurement limit.

Then, the Crooks relation simply states that PF((“V/V)) = 2V,
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Using Eq. (14), we obtain the work distribution associated
with this thermal state,
1 [W—[[™ dirf () En ()12

PrD = ZavEEo

Y et (16)

n

,PF(W’I) o E(l‘m _I)Z(tf)

T e PE® oW dt FOE, 0P /50

Using this work distribution, which takes into account the act
of measuring the system on which work is being performed,
we arrive at a modified Crooks relation specific to our mea-
surement model:

Po(—W,tn —1)  Z()Z(t)

where we have parameterized the forward protocol with ¢ for
t, <t < t, and the backward protocol with #,, — ¢ for 7, <
T < t,,. Equation (17) constitutes a generalization of the stan-
dard Crooks relation when the ancilla-assisted measurement
protocol is used to define work and finite-measurement-
interaction times and dispersion effects in the measuring
apparatus are taken into account. Note that by taking the ideal
measurement limit discussed following Eq. (6), we reproduce
the Crooks relation for equilibrium states.

The Jarzynski equality is another important fluctuation
relation that governs systems away from equilibrium [2,14],
which can be derived straightforwardly from the Crooks
relation

(e Py = dePF(W)e’ﬂW _ear 20 (18)
Z(t;)
Moreover, using Jensen’s inequality, (e Wy > ¢ PW) | the
statement of the second law of thermodynamics follows

(W) > AF. (19)

By using the work distribution in Eq. (16), we can calculate
the exponentiated average work at the time of measurement of
the apparatus 7,, and use that to arrive at a modified Jarzynski
equality

£222m)
e * 3 BB aroE®]
Z(t;)

(&P i =

Upon taking the ideal measurement limit, the modified
Jarzynski equality reduces to the standard Jarzynski equality
in Eq. (18). These corrections are similar to those found in
Refs. [3,12], especially the constant exponential correction
eP"Ztn/4  except that our measurement model takes into
account the finite duration of the interaction and the mass
of the detector through the dependence on ¥ and not just
o,. Moreover, the remaining corrections depend on how the
apparatus samples the energy of the system through the f(¢)
term appearing in Hjp;.

For an equilibrium state of the system at inverse tempera-
ture B, Eq. (15) simplifies to the following:

_ % Zef,sE,l(t,-)/m dtf(t)E,(1).

n 14

<W)dist

Using the same reasoning that led to Eq. (19), we arrive at a
statement of the second law of thermodynamics with respect
to our measurement model:

1 1 CE a0 BE(tm)
(W>dist>_gln (m Ze v -7

Zn e—BEn (rf)e—[WJrf,’”’j dt f(tn—1)Ey(tw—1)12/ Z(tw—1)?

a7

(

It is seen that the finite resolution of the measurement
modifies the expression of the second law in a way that is
dependent on the temperature of the system and the measure-
ment model parameters. In the ideal measurement limit, the
first term in the above expression reduces to AF, while the
second term goes to zero, thus reproducing the expression
in Eq. (19). We find that there is a constant correction pro-
portional to the product of 8 and the square of the width of
the work distribution at ¢,,. For sufficiently low temperatures,
this constant correction may remain nonzero even in the ideal
measurement limit.

IV. THE WORK DONE ON A TWO-LEVEL ATOM BY A
CHANGING MAGNETIC FIELD

We now consider the case in which the system
Hamiltonian Hg(¢) does not commute with itself at different
times, [Hs(t), Hs(t')] # 0. As an example of such a scenario,
we consider a two-level atom Hg =~ C? in the presence of a
magnetic field that changes in strength and direction between
times ¢, and t,,,

Hs(t) = uB(t) - 3,

where p is the magnetic moment of the atom, B(@t) = B()A(r)
is the magnetic-field vector, and ¢ = (oy, 0y, 0;) is the Pauli
vector. For simplicity, we suppose that the magnetic field is
rotating around the z axis at a polar angle 6 so that in the basis
furnished by the eigenstates of the o, operator, the system
Hamiltonian takes the form

Hs(t) = uB(t)[cos wt sin Bo, + sin wt sin 6o, + cos O ].

This Hamiltonian does not commute with itself at different
times, [Hs(t), Hs(¢')] o sin 6, unless 6 is an integer multiple
of m, in which case the results developed in Sec. III A apply.
Thus, we will use the parameter 6 as a measure of the non-
self-commutativity of Hg(t).

Suppose that the system and measuring apparatus are pre-
pared at time f, in a product state [V4(2,)) [Vs(t,)), where
[Wa(tp)) is given in Eq. (3) and the initial state of the system
at the time of the first sampling ¢; is

[¥s(t) = a0) + B 1),

where o and B are complex numbers such that loe)? + B> =
1. To properly compare the effects of the parameters defining
the measurement model (A, m, o), A, w) with the ideal mea-
surement model as described in Sec. I[I B, & and 8 are chosen
such that if the system were to evolve under Hs(t) alone, then
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0.00k

e 0= - 0=

FIG. 3. For a system prepared in an equally weighted superpo-
sition of the two energy eigenstates, which corresponds to o = %
at the time of the first measurement «t; = 2, we show the work
distribution at «t,, = 4 for different values of 6. The mass of the
measuring apparatus and the duration of the interaction are taken to

be ’;—’;’ = 1000 and kA = 0.2.
P

at #; the system would be in the state

Te_ift; dt Hs(t) |wS(tﬂ)> = |0> + ,B |1) .

Generally, we can expand the joint state of both the appa-
ratus and the system at time ¢ as

V(1) = Z /dpcn(t,p)lm Ip) . (20)

nef0,1}

where we have expanded the system’s state in the o, basis. The
coefficient functions c¢,(¢, p) can be determined by substitut-
ing Eq. (20) in the Schrodinger equation of the Hamiltonian
in Eq. (4). We arrive at two coupled differential equations,
2
.. )4
i¢j(t, p) = 5-¢;(t, )+ 1+ 2f()p] Zk:ck(t, PHui (1),

2n

where j, k € {0, 1} and we have defined H(t) = (j|Hs(t)|k).
The work distribution is obtained from the diagonal entries in
the position basis of the reduced apparatus density matrix. In
this case, the work distribution is given by

1 . ,
PW,t) = 7 Xn: / dpdp c,(t, p)cit, pHe"VP=r)

1 iaw
= Ezn:‘/dpcn(t,p)e P

The coupled differential equations in Eq. (21) can be solved
numerically, and their solutions can be used to arrive at a work
distribution specific to the measurement model.

To illustrate measurement interaction effects on the
ancilla-assisted measurement protocol in a concrete example,
consider B(t) = yt, where y has units of magnetic field times

2

Change in Average Work

Wpovm

K K

FIG. 4. For an initially excited two-level system, corresponding
to a = 0 at the time of the first measurement «¢; = 2, the differences
in average work % and AW"Kﬂ, as defined in Eqgs. (10) and (13),
are plotted at the time of measurement «t, =4 for 6 € [0, 7]. In
general, these differences are nonzero, illustrating a discrepancy
between the average estimated work and modification due to the act
of measuring the work distribution, with the average work defined in
Eq. (8) corresponding to the work done in the absence of measure-
ment. The mass of the measuring apparatus and the duration of the
interaction are taken to be % = 1000 and kA = 0.2.

energy. The overall factor entering the system Hamiltonian is
k2 := uy, where « has units of energy or inverse time. More-
over, suppose that g(t) = ﬁe” */A* with the interpretation
that the duration of the interaction between the apparatus and
system is on the order of k A. To characterize this process,
plotted in Fig. 3 is the estimated work distribution, and plotted
in Fig. 4 is the discrepancy between the average estimated
work and the average work defined in Eq. (8) as a function
of 0. In all figures, the first interaction occurs at «t; = 2, the
second interaction occurs at k¢ = 3, and the measurement of
the work distribution occurs at «t,, = 4.

From Fig. 3, we note that the general structure of
the work distribution in Eq. (14) as a weighted sum of
Gaussian functions centered at different work values remains
just as in the self-commuting case. This is because the system
Hamiltonian at #; has energy eigenvalues {+uB(t;), —uB(t1)}
which evolve to {+uB(t;), —uB(t;)} at time t,, from which
it is seen that in general, there will be four possible energy
exchange modes for the two-level system. Given our choice
of parameters, these modes correspond to % € {1, £5}. Nu-
merically, we see that as 6 increases, the exterior peaks (those
at £5) of the work distribution gain nontrivial amplitudes in
contrast to the & = 0 case. Recall that [Hg (1), Hs(t')] o sin 9,
so variation in € modifies the evolution of the state of the
system, leading to different probability amplitudes for the
expected modes of energy exchange. In addition, the location
of the peaks of the work distributions is displaced nontriv-
ially relative to the classically expected locations as 6 is
varied.
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FIG. 5. For an initial equally weighted classical mixture, cor-
responding to ps(t;) = %(|O) (O] 4+ |1) (1]) at the time of the first
measurement «t; = 2, we show the work distribution at «t,, = 4 for
the same values of 6 displayed in Fig. 3. The mass of the measuring

Km

apparatus and the duration of the interaction are taken to be 5 =
r
1000 and k A = 0.2.

Figure 4 is a plot of AWpoym and AWy, defined respec-
tively in Eqs. (10) and (13), quantifying the discrepancy in
the estimated average work and the additional work done
by the act of measuring. It is observed that in general these
quantities are nonzero, reflecting model parameters differ-
ent from the ideal measurement limit; in the ideal limit,
AWpovm, AWine — 0, as expected. We emphasize that this
deviation in the average work can be quite large. A similar
analysis of the average heat exchanged between the measuring
apparatus and system leads to the conclusion that AQ;, as
defined in Sec. II C is generically nonzero when 6 # 0. This
can be seen from the nontrivial modification to the reduced
state of the system

ps) = / dpea(t, p)cy(t, p) In) (ml ,
n,m ‘

constructed from the solutions to Eq. (21), on account of the
system’s interaction with the apparatus.

A key difference between the two-point measurement
scheme and the POVM approach to estimating the work
distribution is that the latter keeps a coherent record of the
energy of the system of interest. The former, where projective
measurements are employed, projects the system into different
energy eigenstates so that any coherence in the initial state is
gone while the time-dependent Hamiltonian is doing work. In
Fig. 5, we plot the work distribution for an initial system state
that is in a classical equally weighted mixture. The behavior
of the work distribution is seen to be different from that in
Fig. 3, which is for an equally weighted superposition initial
system state.

V. CONCLUSION

The ancilla-assisted protocol for measuring work distri-
butions was generalized to account for dispersion and the
finite-resolution effects of the measuring apparatus used to
extract the work distribution. An explicit measurement model
was considered that replicates the statistics of the probability
distribution associated with the work done on the system. Two
regimes were explored, one in which the system Hamiltonian
self-commutes with itself at different times and another in
which it does not. The former admits an analytic expression
for the work distribution while the latter does not but was
explored numerically via an example of a two-level in a time-
dependent magnetic field. Corrections to the Crooks relation
and Jarzynski equality were shown to manifest on account of
the finite resolution of the measuring apparatus, which are
expected to manifest in any realistic measurement of work
distributions.
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APPENDIX: SELF-COMMUTING WORK DISTRIBUTION

We consider the case where the Hamiltonian commutes with itself at different times, so the time-evolution operator governing
the evolution of the state does not need to be time ordered; expanding this operator in the energy eigenbasis of the system

Hamiltonian yields

_: fmd "
Usty =Y eI B0\ ().
n

The evolution of the joint system is governed by the following unitary operator:
U(t) = Usa(®)[Us (1) @ Ua(1)].

Because the system Hamiltonian commutes with itself at different times and because of the form of the interaction Hamiltonian,
it follows that all three terms contributing to the total Hamiltonian in Eq. (4) commute among themselves. Evolving the initial

state of the system and apparatus yields

—_3i fmd A E, , P fmd )E E,, ) ,
psa®) = f dpdp &P A OO o ) giP Ly R OEO 5000 0 |, E,| @ ) (]
m,n

(Al)
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where the free evolution of the reduced state of the apparatus state appearing above is

1 (Gsm)s
(pp)(f)_WA(P,t)l/fA(P 1), K”A(P,t)=ﬁe (”"Jr ) .

By construction, the amount of work done on the system by H(¢) is encoded in the position degree of freedom of the measuring
apparatus. The reduced state of the apparatus is obtained by tracing over the system Hilbert space,

~ —i(p—p' d
pA<r>=Z/dpdp’e U T OB 0 1 o2 (1) | ) (]
n

This state may be expressed in the position basis as

poa(t) = Z/dxdx dpdp’el(xp—xp) —i(p— p)j,m di L f(0)E, (1) (PP)(t)p(" ")(t)|x)(x/| .

Finally, the work distribution of the system is given by the diagonal elements of pa(¢) in the position basis

P(W,I)_ Zp(nn)(l)/dpdp/ ir(p—pIW— f dtf(f)En(f)]p;iP,P/)(t). (A2)

Defining a := JLZ +ie l") , consider the integral appearing in Eq. (A2):

11 /dpdp’ p=p W [ dt FOE, )] ,— a4

2n /7o,
_ 1 /‘dpe”\”lw Sy dt fOE, O], o dple —ip W[ dt af OE ()] — = w? ;efki(“ilgrl)lwfff;’dtf(t)E,,(t)]z
271%0,, Jrlalo,
_ L o w-asesor L cwepragosorsio, (A3)
Jlalo, \/_E(l‘)
where we have defined A X(¢) := o,|al. Substituting Eq. (A3) into Eq. (A2), we find
n)
ps™" (1) oWl di FOE@P/Z )
PW,t) = A4
W.1) = Z W08 (A4)

where p(” " are the diagonal elements of the system state subject to evolution under Hs(¢) alone.

Conversely, we can obtain the reduced system state ps(¢) by tracing out the apparatus in Eq. (A1):

" dt A f () En(t)—En
sty =7 / dpe” "l A OEDZEL G000 (1) 00 (1) |, (E, |

m,n

—Z—ip [ At Af OO —En ()]
Pgm n)(t)fdpe K ’ |Em) (Enl

\/_Upmn

=L dt A f OIE.()—En (D]
= prnye e B (Bl (AS)

Using the definition in Eq. (9) and the above expressions an analytic expression of the average work is obtained:

- "t 3 f (O En ()~ En ()] )
)5 = [ drotrispston) = D [ o we s ) (Fal) = 3 ) [ it = s,
This means that AW, = 0 for self-commuting system Hamiltonians, in contrast to AWpoym,

Iy
AWpoyy = Z pg" ( / dtwf()E,(t) — [Ey(ty) — En<r,~)]),

4

which vanishes only in the ideal measurement limit.
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