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Bosonic field digitization for quantum computers
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Quantum simulation of quantum field theory is a flagship application of quantum computers that promises
to deliver capabilities beyond classical computing. The realization of quantum advantage will require methods
that can accurately predict error scaling as a function of the resolution and parameters of the model and that can
be implemented efficiently on quantum hardware. In this paper, we address the representation of lattice bosonic
fields in a discretized field amplitude basis, develop methods to predict error scaling, and present efficient qubit
implementation strategies. A low-energy subspace of the bosonic Hilbert space, defined by a boson occupation
number cutoff, can be represented with exponentially good accuracy by a low-energy subspace of a finite-size
Hilbert space. The finite representation construction and the associated errors are directly related to the accuracy
of the Nyquist-Shannon sampling and the finite Fourier transforms of the boson number states in the field
and the conjugate-field bases. We analyze the relation between the boson mass, the discretization parameters
used for wave function sampling, and the finite representation size. Numerical simulations of small size �4

problems demonstrate that the boson mass optimizing the sampling of the ground state wave function is a good
approximation to the optimal boson mass yielding the minimum low-energy subspace size. However, we find that
accurate sampling of general wave functions does not necessarily result in accurate representation. We develop
methods for validating and adjusting the discretization parameters to achieve more accurate simulations.
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I. INTRODUCTION

Numerical simulations of systems with continuous vari-
ables, whether classical or quantum, require digitization and
truncation approximations. For a simulation to be useful, it
is essential to know the limit and effect of these approxi-
mations. The impact of discretization is especially important
when the computational resources required for simulation are
scarce. This is a concern for present and near-future quantum
computations and classical simulation of complex systems.
For example, in the case of strongly correlated systems and
lattice field theories, complex schemes are developed [1,2] to
extrapolate the finite-size results to the thermodynamic and
continuous limits. Unlike the parameters defining the physical
problem under investigation, the parameters defining the algo-
rithm (discretization parameters, cutoffs, number of iterations,
etc.) should be chosen by the user to optimize the efficiency
of the simulations. To do this, criteria are needed to assess
whether the choice of these parameters is valid and proce-
dures are needed to adjust them for higher accuracy when
necessary. In this paper, we present digitization procedures
for bosonic fields, investigate the errors introduced by these
procedures and the errors’ dependence on the discretization’s
parameters, and introduce a guide for validating and adjusting
the discretization’s parameters using feedback from quantum
simulations.

Quantum computing offers a change of paradigm for nu-
merical simulations. Many-body and field theory simulations,
severely limited on classical computers by the exponentially
large memory requirement or the insurmountable Monte Carlo
sign problem, might be feasible on future quantum computers.

Nevertheless, due to the characteristics of the hardware used
for quantum computations, quantum algorithms require a rad-
ically different way of storing, manipulating and measuring
the information compared to classical computations. As a
consequence, specific methods are needed for error analysis,
benchmarking, and validation.

In a commonly used approach for the numerical simula-
tion of continuous field theories, especially for High Energy
Physics problems, the space (or the time-space) coordinates
are discretized and the continuous theory is mapped to a lattice
field theory. The lattice field problem is solved numerically
with the best methods available. The continuous field results
are obtained by extrapolating the lattice spacing to zero. This
procedure is well studied in the literature and is not the subject
of this work. In condensed matter problems, the lattice is given
by the physical crystalline structure, and this procedure might
not even be necessary. A different approach, which is the focus
of this paper, involves the discretization and the truncation of
the field amplitude and the representation of the lattice field
with qubits.

Systems with bosonic degrees of freedom arise in the Stan-
dard Model (Higgs field, gauge fields) and in the low-energy
effective models describing collective excitations in con-
densed matter physics (phonons, magnons, plasmons, etc.).
One challenge in developing quantum algorithms for bosonic
systems is related to the truncation of the Hilbert space, since,
unlike fermion or spin systems, boson systems can have an
unbounded occupation number. While it is easy to map a
truncated Hilbert space onto the qubit space in a boson num-
ber basis, it is difficult to efficiently implement the evolution
operator in this basis for many models of interest (such as
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relativistic scalar field models and electron-phonon systems).
For this reason, truncation and discretization in the field
amplitude basis have been considered. The first quantum
algorithm for scalar field theories using field amplitude dis-
cretization was proposed by Jordan et al. [3,4]. Their error
analysis, based on the Chebyshev’s inequality for estimat-
ing the probability to have large amplitude fields, implies a
number of discretization points per site that scales as O(ε−1),
where ε is the field truncation error. In fact [5–8], the number
of the discretization points scales exponentially better than
this, i.e., O(log2(ε−1)), when the wave function is restricted
to a low-energy subspace defined by a boson number cutoff.
This is a consequence of the properties of the Hermite-Gauss
functions [6,7] when using Nyquist-Shannon sampling.

The main focus of this paper is the representation of the
lattice bosonic fields on the finite space of the quantum hard-
ware. By representation of a bosonic field on qubits, we mean
two things: (1) a mapping of the bosonic wave functions to
qubit wave functions and (2) an isomorphic mapping of the
bosonic field operators to discrete field operators acting on
the qubit space.

The paper starts with a general overview of the main results
and concepts, in Sec. II. Section III builds upon the work
presented in Refs. [6,7] and addresses the construction of the
finite representation in the field amplitude basis. It extends
the previous work by providing a thorough analysis of the
errors associated with this construction and investigating the
relation between the sampling errors of the field-variable wave
function and the boson truncation. By errors in this paper,
we mean only the theoretical errors related to the boson field
representation on qubits. We do not consider other errors
specific to quantum simulations that arise from Trotterization,
qubit decoherence, gate fidelity, control noise, etc. The con-
struction of the finite Hilbert space is possible because (1)
the boson number wave functions both in the field and the
conjugate-field bases can be accurately sampled in a finite
number of points, which is a consequence of the Nyquist-
Shannon sampling theorem applied to almost band-limited
and field-limited functions [9–11] and (2) the field and the
conjugate-field sampling sets can be accurately connected via
a finite Fourier transform. The accuracy of the finite rep-
resentation depends upon the errors arising from sampling,
the finite Fourier transform and the truncation introduced by
the boson number cutoff. The dimension of the finite Hilbert
space is the same as the number of the sampling points.
The low-energy subspace is spanned by the boson number
states below a cutoff. For a fixed cutoff, the errors decrease
exponentially with increasing number of the sampling points.
Empirically, we find that an accuracy ε ≈ 10−4 requires a
finite Hilbert space dimension that is two times larger than
the dimension of the low-energy subspace. Many interesting
problems, including the broken symmetry phase of the �4

field model and the intermediate and the strongly coupled
regimes of electron-phonon systems, can be addressed with
no more than six qubits per lattice site. However, a word of
caution is appropriate. While accurate representation implies
accurate sampling, the converse statement is not true. We
present examples of functions that can be sampled with great
accuracy but have a significant component outside the low-
energy subspace. The action of the discrete field operators on

states outside the low-energy subspace yields uncontrollable
errors. Therefore, a measurement of the boson distribution
is necessary to ensure that the wave function in a quantum
simulation belongs to the low-energy subspace.

The second part of the paper (Sec. IV) addresses the choice
of the discretization parameters in quantum simulations. Dif-
ferent choices of the discretization and sampling intervals
correspond to different choices of the boson mass and boson
vacuum. The optimal choice of the boson mass corresponds
to the minimal boson number cutoff since this choice also im-
plies the minimal size of the finite Hilbert space and implicitly
the smallest number of required qubits for implementation.
The optimal boson mass is interaction-dependent and it is not
known a priori. While finding the optimal boson mass by
minimizing the boson number cutoff is impractical, finding
the boson mass that maximizes the accuracy of the wave
function’s sampling is feasible, requiring only local field mea-
surements. By employing exact diagonalization methods for
small size �4 problems in different parameter regimes, we
find that the boson mass providing optimal sampling corre-
sponds to the optimal boson mass.

In the third part of this paper (Sec. V), we describe mea-
surement methods for the local field and the conjugate-field
distributions and additionally for the local boson distribution.
We also introduce a practical guide for adjusting and vali-
dating the discretization parameters using the feedback from
quantum simulation measurements. The guideline follows a
simple procedure. First, based on the field distribution mea-
surements, the sampling intervals are adjusted to minimize the
sampling errors. The optimal sampling intervals determine the
number of discretization points and the boson mass to be used
in further simulations, provided that these parameters yield
a measured boson distribution below the cutoff. Otherwise,
the number of the discretization points is increased. Note
that the boson distribution measurement is not needed during
the optimization process, but only as a final check after the
discretization parameters are adjusted.

In Sec. VI we discuss the applicability of the discretization
method presented here to quantum problems written in the
first quantization formalism and the challenges for imple-
menting bosonic algorithms on present and future quantum
computers.

Section VII contains our conclusions.

II. OVERVIEW

The objective of our work is to present a comprehensive
study of bosonic field digitization on quantum computers. We
present our methodology in great detail to allow the readers
to build their own models and perform calculations for spe-
cific problems. However, in this section we present a general
overview of the main results and concepts.

A general assumption for our method is that the problem of
interest can be addressed accurately by restricting the Hilbert
space to a finite low-energy subspace defined by a cutoff of
maximum Nb bosons per lattice site.

While qubit encoding of the boson number states is
straightforward (employing, for example, a binary represen-
tation of the boson number), the implementation in the boson
number basis of the Trotter step operators corresponding to
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the field-dependent interaction terms requires a lengthy de-
composition in single and two qubit gates, as discussed in
Sec. III A. The implementation of these Trotter steps is much
simpler in the field amplitude basis, since the Hamiltonian’s
field-dependent terms are diagonal in this basis. However,
representing the truncated low-energy subspace in the field
amplitude basis has its challenges, caused mainly by the fact
that the field amplitude basis is a continuous and unbounded
set. Controlled discretization and truncation procedures are
required. We address the construction of the bosonic field
representation in the field amplitude basis in Sec. III B.

We start constructing the representation of a local Hilbert
space in Sec. III B 1 and then, in Sec. III B 2, the representa-
tion for the lattice field is constructed as a direct product of
local (one at each lattice site) representations. The construc-
tion of the local representation is based on the discretization
properties of the Hilbert space’s vectors in the field ampli-
tude basis. In this basis the vectors are equivalent to square
integrable functions. Their weight at large argument decreases
fast with increasing the argument. The same statement is true
for the Fourier transform of these functions. The Nyquist-
Shannon sampling theorem can be employed to approximate
these functions and, as well, their Fourier transforms. A
field variable wave function can be reconstructed with O(ε)
accuracy from its value in a finite set of sampled points.
Analogous the Fourier transform of the wave function can
be reconstructed with O(ε) accuracy from its values in a
finite set of conjugated-field sampled points. The set of field
sampling points and the set of conjugate-field sampling points
are related with O(ε) accuracy via a finite Fourier trans-
form. The error O(ε) can be decreased by increasing the
width of the field and conjugate-field sampling windows.
In Appendixes B 1 and C 2 we calculate upper bounds for
the sampling errors, relating these bounds to the wave func-
tion’s weight outside the field and conjugate-field sampling
windows.

To construct the local representation we focus on the sam-
pling properties of boson number states written in the field
amplitude basis. Both the boson number states in the field
amplitude basis and their Fourier transforms are proportional
to Hermite-Gauss functions. For a cutoff Nb and an accuracy
ε a finite number of discretization points Nϕ > Nb can be
chosen such that all boson states with n < Nb can be sam-
pled with O(ε) accuracy in Nϕ field-variable points or Nϕ

conjugate-field-variable points. The sampling and the recur-
rence properties of the Hermite-Gauss functions allows us to
define a Nϕ finite-size Hilbert space H̃ and discrete version of
the field and conjugate-field operators, �̃ and �̃, acting on H̃.
On the subspace of H̃ spanned by the first Nb eigenvectors of
the discrete harmonic oscillator Hamiltonian [i.e., constructed
with the discrete field operators, �̃ and �̃; see Eq. (45)]
the discrete field operators obey the canonical commutation
relation [�̃, �̃] = iI + O(ε). For a problem of interest, as
long as Nb is taken large enough such that the contribution
of the boson states with n > Nb can be neglected, the infinite
Hilbert space can be replaced by H̃ and the field operators
� and � can be replaced by �̃ and �̃ with O(ε) accuracy.
The number of the qubits required for a local representation
is nq = log2(Nϕ ). The representation for a N site lattice field,
requires N log2(Nϕ ) qubits.

In practice it is essential to quantify and control the errors.
In the last part of Sec. III B 1 a numerical analysis of the
errors involved in the construction of the finite representation
is presented. For Nϕ = 64, Nϕ = 128, and Nϕ = 256 we cal-
culate the sampling errors and the error associated with the
commutations relation of the discrete field operators. These
errors are proportional to the tail weights of the boson number
states outside sampling interval windows. For a fixed Nb the
representation error can be reduced exponentially by increas-
ing the number Nϕ of the discretization points. The ratio
Nb/Nϕ belongs to [0.3, 0.7] when the error is in the range
[10−5, 10−3]. For example, a finite representation with an
accuracy of order 10−4 can be obtained by taking Nϕ = 2Nb.
Encoding this representation requires only one extra qubit
(per site) when compared to the encoding in the boson number
basis.

The relation between the sampling accuracy of a general
wave function and its projection onto the low-energy subspace
defined by the boson number cutoff is further addressed in
Sec. III C. While belonging to the low-energy subspace im-
plies accurate sampling (consequence of the representation’s
construction described in Sec. III B), we find that the converse
is not true. We present two examples of functions with small
tail weights outside sampling intervals which can be dis-
cretized with very good accuracy but have significant weight
onto the subspace spanned by boson states with n > Nb. As
a consequence, the discrete field operators acting on these
functions produce uncontrollable errors. Accurate discretiza-
tion of bosonic field wave functions is not enough to ensure
the accuracy of the numerical simulations. Boson number
distribution measurements are required to ensure the wave
function belongs to the low-energy subspace.

The construction of the field amplitude representation de-
pends on the definition of bosons, which is not unique. The
boson creation and annihilation operators depends on the mass
parameter. Different mass bosons are related by a squeezing
operator (Bogoliubov transformation). Different choices of
the boson mass correspond to different representations. A rep-
resentation which requires the smallest truncation cutoff Nb

for a given accuracy is optimal, since it requires the smallest
amount of resources for algorithm implementation.

In principle the optimal boson mass can be determined
by optimizing the boson distribution as a function of the
mass parameter. However, this approach is impractical, since
boson distribution measurement is expensive in quantum sim-
ulations. On the other hand the measurements of the local
field and conjugate-field distribution are straightforward (as
discussed in Sec. V A). Calculating the sampling windows
which minimize the sampling errors of the wave function is
much easier than optimizing the boson mass for the smallest
cutoff Nb. In Sec. IV we investigate the relation between the
optimal sampling intervals and the optimal boson mass.

For a given number of the discretization points, the sam-
pling and finite Fourier transform errors are the smallest when
the weight of the wave function outside the field sampling
interval F equals the weight of the wave function’s Fourier
transform outside the conjugate-field sampling interval K . For
this choice of the sampling intervals, is the ratio K/F , which
equals the representation’s boson mass, the same as the opti-
mal boson mass? While we don’t know the answer in general,
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numerical simulation for small size lattices find the answer to
be yes in many cases. Several examples are presented.

The harmonic oscillator case is illustrated first in Sec. IV A.
The optimal boson mass is equal to the harmonic oscillator
mass parameter m0, since in this case the ground state is the
vacuum state. When the boson mass m1 is larger (smaller)
than m0, for a fixed truncation error, the cutoff number Nb

increases linearly with increasing the ratio m1/m0 (m0/m1).
The optimal boson mass can be obtained by optimizing the
sampling errors. The ratio K/F = m0 when F and K are
chosen such that the the weight of the wave function outside
the interval F equals the weight of the wave function’s Fourier
transform outside the interval K .

Two examples of interacting systems, a local φ4 scalar
field (Sec. IV B 1) and a two-site φ4 scalar field with imag-
inary mass (Sec. IV B 2) are also presented. In both cases
the ground state local field distribution is narrower than the
local conjugate-field distribution. Optimal sampling requires
the ratio K/F to be larger than the Hamiltonian mass pa-
rameter. The ratio K/F determined this way agrees with the
optimal boson mass obtained by optimizing the boson number
distribution.

In order to enhance the fidelity of applications using our
methodology, procedures for validating and adjusting the dis-
cretization parameters Nϕ and m for optimal performance,
using feedback from quantum simulations, are presented in
Sec. V. The procedures require measurements of the local
field distribution, the local conjugate-field distribution and the
local boson distribution. These measurements, described in
Sec. V A, are local, involving the register of log2(Nϕ ) qubits
assigned to encode the bosonic field at one lattice site. The
field and conjugate-field distributions require a direct mea-
surement of the qubits. The boson distribution measurement
is more laborious. We present two methods for the boson
distribution measurement. The first one employs quantum
state tomography [12,13] of the local qubit register of size
log2(Nϕ ). The second method is done by employing Quan-
tum Phase Estimation method [13,14] for a local harmonic
oscillator and requires an ancillary register of log2(Nϕ ) + 1
qubits. The boson distribution can be measured with great
accuracy since the energy levels of a harmonic oscillator are
equidistant. The probability of having bosons above the cutoff
Nb is given by the probability to measure integers larger than
Nb in the ancillary register.

Finally, to support efficient utilization of compute re-
sources, a practical guide for adjusting the discretization
parameters in order to improve quantum simulation’s per-
formance is proposed in Sec. V B. The initial discretization
intervals are determined by assuming a mean-field value for
the boson mass. Simulations are run and the local field and
conjugate-field distributions are measured. The sampling in-
tervals are adjusted to optimally cover the regions where
the field and the conjugate-field distribution have significant
support. New simulations which measure the boson distribu-
tion are run. If the number of bosons above the cutoff Nb is
negligible (i.e., it is of the order of the desired accuracy) the
discretization parameters are good and the simulation’s results
can be trusted. Otherwise the number of the discretization
points Nϕ should be increased to accommodate for a larger
cutoff Nb.

III. LOW-ENERGY SUBSPACE REPRESENTATION

The Hilbert space of a lattice bosonic field is a direct
product of local Hilbert spaces at each lattice site. Every local
Hilbert space is infinite dimensional, but for most problems
can be represented by a finite subspace that contains the rel-
evant degrees of freedom. In general, the relevant degrees of
freedom depend on the problem under investigation. In this
work, we study the low-energy physics of a field theory where
a cut off Nb on the boson occupation number can be imposed
at each site, such that the states with more than Nb bosons
per site can be safely neglected. First, we briefly discuss the
problems associated with the representation of the bosonic
field in the boson occupation number basis. Then we address
the bosonic field representation in the field amplitude basis.

A. Representation in the occupation number basis

The lattice boson number states are a direct product of
single site boson number states. At each site the boson number
states |n〉 are eigenstates of the harmonic oscillator Hamilto-
nian:

Hh = 1

2
�2 + 1

2
m2

0�
2 = m0

(
a†a + 1

2

)
. (1)

The creation and the annihilation operators, a† and a, are
related to the field operators by

� = 1√
2m0

(a + a†) and � = −i

√
m0

2
(a − a†) (2)

and |n〉 = 1√
n!

a†n|0〉, where |0〉 is the boson vacuum state.
The boson number basis has been used extensively for

numerical simulations of bosonic fields on classical comput-
ers. For field theories, it is intuitive to define a low-energy
subspace by introducing a cutoff Nb in the boson number
states. The cutoff is chosen such that the states with more than
Nb bosons have a negligible contribution to the low-energy
physics. In general, the cutoff Nb depends on the interaction
type and strength, but also on the boson mass parameter m0,
as can be seen in Eq. (2). A particular choice of the boson
mass m0 makes the most efficient use of the computational
resources, as we will discuss in Sec. IV.

At each site, boson number states truncated to a cutoff Nb

can be easily encoded on nq = log2(Nb) qubits of a quantum
computer. For example, a binary representations of the integer
number n can be used. Different encodings are also possible
[15]. However, quantum computation using the boson number
representation is difficult to implement in models with field-
amplitude-dependent coupling when the cutoff Nb is of the
order of 10 or larger (i.e., when nq > 3). For example, let’s
consider coupling terms such as

∑
〈 j,l〉 � j�l present in �4

theory or in the phonon models, where j and l are nearest-
neighbor lattice site indices. The correspondent Trotter step
unitary operator,

e−iθ� j�l = e−i θ
2m0

(a†
j a

†
l +a†

j al +a j a
†
l +a j al ), (3)

has a dense matrix representation. Since a general unitary of
size k requires O(4k ) CNOT gates [16–18] this Trotter step re-
quires a lengthy decomposition with O(42nq ) two-qubit gates
(in this case k = 2nq because bosons at two different sites are
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involved). Similarly, the Trotter step operators for λ
4!

∑
j �

4
j

interaction in �4 theory or for electron-phonon coupling in
phonon models requires a decomposition with O(4nq ) two-
qubit gates (in this case bosons at only one site are involved,
hence k = nq).

For weakly interacting problems with small number of
bosonic excitations, quantum algorithms implemented using
a boson number representation for the bosonic field might be
feasible. The study of different encoding schemes presented
in Ref. [15] finds that the efficiency of a particular encoding
is heavily dependent on the model and on the truncation cut-
off. In this study we propose a finite representation suitable
for quantum algorithms addressing both weakly and strongly
interacting field theories.

B. Representation in the field amplitude basis

We consider first the local field construction and then we
extend it to lattice field.

1. Representation of the local Hilbert space

In this section, we address the finite representation of local
Hilbert space at a particular lattice site. The local Hilbert space
is specified by the field and the conjugate-field operators, �

and �, satisfying the canonical commutation relation

[�,�] = iI. (4)

The local Hilbert space admits continuous bases, such as
the field and the conjugate-field variable ones, and denumer-
able bases. In the field variable basis, the local Hilbert space is
the space of the square integrable functions, L2(R). The boson
number states, discussed in Sec. III A, are an example of a
denumerable basis.

Considering the difficulties associated with the implemen-
tation of Trotter step operators for field-amplitude-dependent
interaction terms in the boson number basis, a more conve-
nient basis for quantum computation is the field amplitude
basis {|ϕ〉}. Here {|ϕ〉} are the eigenvectors of the field opera-
tor, i.e., �|ϕ〉 = ϕ|ϕ〉. The field-dependent interaction terms
and the corresponding Trotter step operators are diagonal
in this basis and easy to implement in a quantum algo-
rithm [6,7,19]. However, the eigenvectors {|ϕ〉} are Schwartz
distributions and not proper vectors of the Hilbert space.
The eigenspectrum of the field operators is continuous and
unbounded, but a representation suitable for quantum com-
putation requires discretization and truncation procedures. An
apparent difficulty to introducing a finite representation for
field operators is caused by their commutation relations. It is
known (see, for example, Ref. [20]) that the canonical com-
mutation relations cannot be satisfied on a finite dimensional
space, since on a finite dimensional space the trace of the
left-hand side of Eq. (4) is zero and the trace of the right-
hand side is not. However, we construct (see Sec. III B 1 b)
a finite Hilbert space H̃ with a dimension Nϕ larger than the
boson number cutoff Nb to represent the low-energy subspace
of dimension Nb. We define the field operators �̃ and �̃

on the finite Hilbert space such that [�̃, �̃]INb = iINb , where
INb is the projector operator onto the low-energy subspace
spanned by the first Nb eigenvectors of the harmonic oscillator

Hamiltonian. The algebra generated by the operators �̃ and �̃

is isomorphic with the algebra generated by � and �, when
both are restricted to the low-energy subspace.

The construction of the finite representation in the field
amplitude basis is based on the discrete sampling of the square
integrable functions, which is discussed in the next section.

a. Nyquist-Shannon sampling of wave functions. The field
amplitude representation of the low-energy subspace is di-
rectly related to the discretization and the truncation of wave
functions belonging to L2(R) space. The discretization proce-
dure takes advantage of the fact that the weight of the square
integrable functions at large argument is small and decreases
with increasing argument.

To simplify our analysis we consider arbitrary wave
functions f (ϕ) ∈ S(R), where S(R) is the Schwartz space
containing the smooth and rapidly decaying functions. The
Schwartz space is dense in L2(R) [21–23]. The Fourier trans-
form

f̂ (κ ) = 1√
2π

∫ ∞

−∞
f (ϕ)e−iκϕ dϕ (5)

also belongs to S(R).
We introduce the field limiting projector on the interval

[−F, F ]

PF =
∫ F

−F
|ϕ〉〈ϕ| dϕ (6)

and the tail vector∣∣w f
F

〉 = (1 − PF )| f 〉 ≡ QF | f 〉, (7)

with | f 〉 = ∫
f (ϕ)|ϕ〉 dϕ. The norm of |wF 〉 is equal to the

tail weight of f (ϕ) outside the interval [−F, F ],

∥∥w f
F

∥∥ =
(∫ −F

−∞
| f (ϕ)|2 dϕ +

∫ ∞

F
| f (ϕ)|2 dϕ

) 1
2

. (8)

Similarly, we introduce the conjugate-field limiting (we will
also call it band-limiting borrowing a signal processing com-
mon nomenclature) projector on the interval [−K, K],

PK =
∫ K

−K
|κ〉〈κ| dκ, (9)

and the tail vector∣∣w f
K

〉 = (1 − PK )| f 〉 ≡ QK | f 〉. (10)

The norm of |w f
K〉 is equal to the tail weight of f̂ (κ ) outside

the interval [−K, K],

∥∥w f
K

∥∥ =
(∫ −K

−∞
| f̂ (κ )|2 dκ +

∫ ∞

K
| f̂ (κ )|2 dκ

) 1
2

. (11)

The tail weight of f (ϕ) outside the interval [−F, F ] can be
made as small as desired by increasing F . In the literature
[9–11], functions with ε small tail weigh are called almost
field-limited functions. Analogously, the tail weight of f̂ (κ )
outside the interval [−K, K] can be made as small as desired
by increasing K . The function f (ϕ) is almost band-limited.

When ‖w f
K‖ is small, the vector | f 〉 can be considered

band-limited to a good approximation, i.e., | f 〉 ≈ PK | f 〉. The
Nyquist-Shannon sampling theorem [24] for band-limited
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functions can be employed. The approximation for f (ϕ) (see
Appendix A) is

f (ϕ) ≈ 〈ϕ|PK | f 〉

=
∞∑

i=−∞
〈ϕi|PK | f 〉uK (ϕ − ϕi ) ≈

∞∑
i=−∞

f (ϕi )uK (ϕ − ϕi ),

(12)

where

ϕi = i�ϕ, �ϕ = π

K
, and uK (ϕ) = sinc

(
ϕ

�ϕ

)

≡
sin

(
π

ϕ

�ϕ

)
π

ϕ

�ϕ

. (13)

Moreover, f (ϕ) is small for |ϕ| > F when F is large. The
summation in Eq. (12) can be restricted to a finite number Nϕ

of points

f (ϕ) ≈ f̃ϕ (ϕ) =
Nϕ−1

2∑
i=− Nϕ−1

2

f (ϕi )uK (ϕ − ϕi ), (14)

when the condition Nϕ�ϕ � 2F is fulfilled, i.e., when the
sampling points cover the window interval [−F, F ] where
f has significant support. Note that the Nyquist-Shannon
theorem commonly described in the literature considers the
summation index i in Eq. (12) to take integer values, but this
is easily generalized to half-integer values (see Appendix A),
which are more convenient for an even number of discretiza-
tion points (as required by a qubit representation).

According to Eq. (14), the wave function f (ϕ) can be
approximated by a finite expansion of sinc functions with the
coefficients equal to the value of the function in

Nϕ =
⌈

2

π
FK

⌉
(15)

equidistant points. In Eq. (15) the notation 
x� means the
ceiling function applied to the real number x, and is equal
to the least integer greater than or equal to x. Finding ana-
lytical bounds for the accuracy of this approximation is not
straightforward, see for example Ref [11]. We claim that (see
Appendix B 1) a bound for Eq. (14) is

‖ f − f̃ϕ‖ �
∥∥w f

K

∥∥+ ∥∥w f
F

∥∥
+ πr f

K

2K
+
√

π

2K
(| f (−F )|2 + | f (F )|2), (16)

where r f
K is the weight of κ f̂ (κ ) outside the interval [−K, K],

r f
K =

(∫ −K

−∞
κ2| f̂ (κ )|2 dκ +

∫ ∞

K
κ2| f̂ (κ )|2 dκ

) 1
2

. (17)

All terms in Eq. (16) vanish rapidly in the limit of large F
and K for the rapidly decaying functions belonging to the
Schwartz space.

Using the same reasoning, the conjugate-field variable
functions can approximated by a finite expansion of Nϕ sinc

functions

f̃κ (κ ) =
Nϕ−1

2∑
p=− Nϕ−1

2

f̂ (κp)uF (κ − κp), (18)

with

κp = p�κ, �κ = π

F
, and uF (κ ) = sinc

(
κ

�κ

)
. (19)

The vector | f̃κ〉 differs from | f 〉 by

‖ f − f̃κ‖ �
∥∥w f

K

∥∥+ ∥∥w f
F

∥∥+ πr f
F

2F

+
√

π

2F

(| f̂ (−K )|2 + | f̂ (K )|2), (20)

where r f
F is the weight of ϕ f (ϕ) outside the interval [−F, F ],

r f
F =

(∫ −F

−∞
ϕ2| f (ϕ)|2 dϕ +

∫ ∞

F
ϕ2| f (ϕ)|2 dϕ

) 1
2

. (21)

The accuracy of both approximations of | f 〉, | f̃ϕ〉 and | f̃κ〉,
is determined by the values of f (ϕ) and f̂ (κ ) outside the
intervals [−F, F ] and [−K, K], respectively. Note that | f̃ϕ〉
is a band-limited function and | f̃κ〉 is a field-limited func-
tion, while | f 〉 isn’t necessary band-limited or field-limited.
An approximation of | f 〉 that is both band-limited and field-
limited does not exist, since no analytical function, except
the zero function, can be simultaneously band-limited and
field-limited [10,11,25].

The vector | f 〉 can be reconstructed from a set containing
the field-sampled values { f (ϕi )}i or from a set containing
the conjugate-field sampled values { f̂ (κp)}p. The accuracy of
the reconstruction is determined by the values of | f 〉 outside
the field and conjugate-field sampling intervals. However,
accurate sampling is only a necessary condition for the rep-
resentation of the bosonic field on quantum hardware. A
quantum algorithm also requires implementation of unitary
operators that can describe accurately the evolution of the
system. While the field and conjugate-field functions f (ϕ)
and f̂ (κ ) are related by a continuous Fourier transform, the
representation for bosonic fields on qubits is based on the
assumption that a finite Fourier transform (FFT) connects the
sampling sets { f (ϕi )}i and { f̂ (κp)}p with high precision, as
will be discussed in Sec. III B 1 b.

The difference between the FFT F̃ of the field sampling set
{ f (ϕi )}i denoted by {(F̃ f )(κp)}p and the function’s Fourier
transform in the conjugate-field sampling points { f̂ (κp)}p is
determined by the weight of the function outside the sam-
pling windows and decreases with increasing F and K . In
Appendix C 1 we find that

�κ

Nϕ−1
2∑

p=− Nϕ−1
2

|(F̃ f )(κp) − f̂ (κp)|2 � 2
(∥∥w f

F

∥∥2 + ∥∥w f
K

∥∥2)

+ π

K

[| f (−F )|2 + | f (F )|2]
+ π

F

[| f̂ (−K )|2 + | f̂ (K )|2]. (22)
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Similarly, the difference between the inverse finite Fourier
transform of the set { f̂ (κp)}p, denoted by {(F̃−1 f̂ )(ϕi )}i, and
the function at the field sampling points, { f (ϕi )}i, is given by

�ϕ

Nϕ−1
2∑

i=− Nϕ−1
2

|(F̃−1 f )(ϕi ) − f (ϕi )|2 � 2
(∥∥w f

F

∥∥2 + ∥∥w f
K

∥∥2)

+ π

K

[| f (−F )|2 + | f (F )|2]
+ π

F

[| f̂ (−K )|2 + | f̂ (K )|2]. (23)

The definition of F̃ and F̃−1 is given by Eqs. (C3) and (C4)
in Appendix C 1.

b. Finite representation construction. In this section, we
define the discrete field operators and construct the finite
Hilbert space of the representation based on the discretization
properties of the boson number states. This section ends with
a detailed analysis of the errors generated by the approxima-
tions used in this construction.

Sampling of Hermite-Gauss functions. The wave func-
tions’ sampling procedures discussed in the previous sec-
tion are applied here to the boson number states in the field
amplitude basis. The boson number states form a denumerable
basis for the local Hilbert space and provide an intuitive way
to introduce the relevant low-energy subspace for the problem
under investigation.

In the field amplitude basis the boson number state |n〉 is
the Hermite-Gauss (HG) function of order n,

〈ϕ|n〉 ≡ φn(ϕ) =
(

m0

π

)1/4 1√
2nn!

e− m0ϕ2

2 Hn(
√

m0ϕ), (24)

where Hn is the Hermite polynomial of order n. The Fourier
transform of φn(ϕ) to the conjugate-field variable κ is also
proportional to a Hermite-Gauss function of order n [26],

〈κ|n〉 ≡ φ̂n(κ ) = (−i)n

π1/4m1/4
0

√
2nn!

e− κ2

2m0 Hn

(
κ√
m0

)
. (25)

The recurrence properties of the HG functions [see also
Eq. (2)] imply

ϕφn(ϕ)=〈ϕ|�|n〉 = 1√
2m0

(√
nφn−1(ϕ) + √

n + 1φn+1(ϕ)
)
,

(26)

κφ̂n(κ )=〈κ|�|n〉 = −i

√
m0

2

(√
nφ̂n−1(κ ) − √

n + 1φ̂n+1(κ )
)
.

(27)

The HG functions have significant weight on an interval
centered on zero and are exponentially small at large argu-
ment, as can be inferred from Eqs. (24) and (25). The width
of the window needed to contain a significant weight increases
with increasing order n. Several HG functions are shown in
Fig. 1 for illustration.

For a boson state φn(ϕ), the sampling errors appearing in
Eqs. (16), (20), (22), and (23) can be written in terms of the
tail weights ‖wφn

F ‖ and ‖wφn
K ‖. This can be understood by

noting that ‖wφn
F ‖ and ‖wφn

K ‖ are monotonically decreasing
with increasing F and K , respectively, when F and K are

(a)

(b)

FIG. 1. (a) Hermite-Gauss functions φ0(ϕ), φ15(ϕ), and φ34(ϕ)
(respectively, solid, dashed, and dot-dashed lines) and the discrete
harmonic oscillator (with m0 = 1) eigenstates φ̃0(ϕi ), φ̃15(ϕi ), and
φ̃34(ϕi ) (respectively, circle, square, and triangle symbols) for a finite
Hilbert space with Nϕ = 64 discretization points. Within O(10−4)
accuracy the support of the HG functions with n � Nb = 34 is inside
the interval [−L, L], where L = √

πNϕ/2 [see Eq. (29)]. These HG
functions are sampled accurately by the discrete harmonic oscillator
eigenvectors. (b) The support of φ57(ϕ) (solid line) has significant
weight outside [−L, L], and the function cannot be sampled by
the eigenvector φ̃57(ϕi ) (circle symbols) of the discrete harmonic
oscillator.

large enough. Therefore the dependence F = F (‖wφn
F ‖), and

K = K (‖wφn
K ‖) can be found, i.e., the sampling interval widths

can be expressed as function of the tail weights. As a conse-
quence, all of the terms rφn

F , rφn
K , |φn(F )|2 and |φ̂n(K )|2 can be

written in terms of the tail weights.
For HG functions, a parameter L can be defined that re-

lates the field and conjugate-field sampling windows when
‖wφn

F ‖ = ‖wφn
K ‖:

F = L√
m0

, K = L
√

m0. (28)

The HG function φn(ϕ) and its Fourier transform φ̂n(κ ) can
be sampled with a finite set of points

Nϕ =
⌈

2

π
FK

⌉
=
⌈

2

π
L2

⌉
, (29)

and an error determined by the function tail weights,

εw(n, L) ≡ ∥∥wφn
F

∥∥ = ∥∥wφn
K

∥∥. (30)

By considering only the leading term 2nϕn of the Hermite
polynomial Hn(ϕ), employing partial integration, and apply-
ing Stirling’s formula, it can be shown that

ε2
w(n, L) � 1

L
√

π

2nL2n

n!
e−L2 ≈ e−L2−ln

√
2Lπen ln 2eL2

n e− 1
2 ln n.

(31)

For a fixed n, the tail weight εw(n, L) decreases exponen-
tially with increasing L. For a fixed L and n � 2eL2, the tail
weight εw(n, L) increases with increasing n. Thus, for a cutoff
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Nb and an error ε, a parameter L(Nb, ε) can be chosen such
that

εw(n, L) < ε for all n < Nb. (32)

By increasing L, the error ε can be decreased exponentially,

i.e., ε ∝ e− L2

2 +(Nb− 1
2 ) ln L, as can be inferred from Eq. (31).

Equations (14), (16), and (32) imply that, for n < Nb,

φn(ϕ) =
Nϕ−1

2∑
i=− Nϕ−1

2

φn(ϕi )uK (ϕ − ϕi ) + O(ε), (33)

where

ϕi = i�ϕ and �ϕ =
√

2π

Nϕm0
. (34)

Similarly, Eqs. (18), (20), and (32) imply that, for n < Nb,

φ̂n(κ ) =
Nϕ−1

2∑
p=− Nϕ−1

2

φ̂n(κp)uF (κ − κp) + O(ε), (35)

where

κp = p�κ and �κ =
√

2πm0

Nϕ

. (36)

The orthogonality properties of the sinc functions,∫
uK (ϕ − ϕi )uK (ϕ − ϕ j ) dϕ = �ϕδi j, (37)

and HG functions yield the following orthogonality relation

�ϕ

Nϕ−1
2∑

i=− Nϕ−1
2

φn(ϕi )φm(ϕi ) = δnm + O(ε) for n, m < Nb.

(38)

Finally, Eqs. (22), (23), and (32) imply that, for n < Nb,
the field sampling set {φn(ϕi )}i and the conjugate-field one
{φ̂n(κp)}p are related via a finite Fourier transform

√
�κφ̂n(κp) = 1√

Nϕ

Nϕ−1
2∑

j=− Nϕ−1
2

√
�ϕφn(ϕ j )e

−i 2π j p
Nϕ + O(ε).

(39)

Finite Hilbert space construction. The low-energy sub-
space of dimension Nb can be represented by a Hilbert space
H̃ of dimension Nϕ > Nb, spanned by a set of orthogonal
vectors {|ϕ̃i〉}i. On H̃, we define the discrete field operator

�̃|ϕ̃i〉 =ϕi|ϕ̃i〉, with ϕi = i�ϕ = i

√
2π

Nϕm0
and

i = − Nϕ − 1

2
,−Nϕ − 1

2
+ 1, . . . ,

Nϕ − 1

2
, (40)

and the discrete conjugate-field operator

�̃ = m0F̃�̃F̃−1, (41)

where F̃ is the finite Fourier transform,

F̃ = 1√
Nϕ

Nϕ−1
2∑

j,p=− Nϕ−1
2

ei 2π
Nϕ

j p|ϕ̃ j〉〈ϕ̃p|. (42)

Note that the vectors {|κ̃p〉}p, obtained by applying a finite
Fourier transform on {|ϕ̃i〉}i

|κ̃p〉 ≡ F̃ |ϕ̃p〉 = 1√
Nϕ

Nϕ−1
2∑

j=− Nϕ−1
2

|ϕ̃ j〉ei 2π j p
Nϕ , (43)

are eigenvectors of �̃,

�̃|κ̃p〉 = κp|κ̃p〉 with κp = p�κ = p

√
2πm0

Nϕ

and

p = − Nϕ − 1

2
,−Nϕ − 1

2
+ 1, . . . ,

Nϕ − 1

2
. (44)

The subspace of H̃ spanned by the first Nb eigenvectors,
{|φ̃n〉}, of the discrete harmonic oscillator Hamiltonian

H̃h = 1

2
�̃2 + 1

2
m2

0�̃
2 (45)

is a representation of the low-energy subspace of the full
Hilbert space with O(ε) accuracy, provided that Nϕ�ϕ � 2F ,
where F is large enough that the weight of the n = Nb + 2
Hermite-Gauss function outside the interval [−F, F ] is O(ε)
small.

To validate our construction, consider the subspace of H̃
spanned by the vectors {|ñ〉}n<Nb+2 defined as

|ñ〉 ≡ √
�ϕ

∑
i

φn(ϕi)|ϕ̃i〉 =
√

�κ

∑
p

φ̂n(κp)|κ̃p〉 + O(ε)

(46)

[see Eqs. (39) and (43)]. Note that the ability to relate ac-
curately the field and conjugate-field sampling points of HG
functions of order n < Nb + 2 by the finite Fourier transform
is essential for Eq. (46). The set {|ñ〉}n<Nb+2 is orthogonal and
normalized [within O(ε) accuracy], as implied by Eq. (38).
Moreover Eqs. (26) and (27) imply

〈ϕ̃i|�̃|ñ〉 = ϕi〈ϕ̃i|ñ〉

= 1√
2m0

(√
n〈ϕ̃i| ˜n − 1〉 + √

n + 1〈ϕ̃i| ˜n + 1〉)
+ O(ε), (47)

〈κ̃p|�̃|ñ〉 = κp〈κ̃p|ñ〉 = −i

√
m0

2

(√
n〈κ̃p| ˜n − 1〉

−√
n + 1〈κ̃p| ˜n + 1〉)

+ O(ε), when n + 1 < Nb + 2, (48)

since, as can be deduced from Eq. (46), 〈ϕ̃i|ñ〉 ∝ φn(ϕi ) and
〈κ̃p|ñ〉 ∝ φ̂n(κp). Eqs. (47) and (48) can be written as

�̃|ñ〉 = 1√
2m0

(√
n| ˜n − 1〉 + √

n + 1| ˜n + 1〉)+ O(ε), (49)
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FIG. 2. Within O(ε) accuracy, the algebra generated by the field operator � and � restricted to the Nb size low-energy subspace of the
harmonic oscillator Hamiltonian (1) (shaded region, left side) is isomorphic with the algebra generated by the discrete field operators �̃ and �̃

restricted to the the Nb size low-energy subspace of the discrete harmonic oscillator Hamiltonian (45) (shaded region, right side). The accuracy
increases exponentially with increasing the size Nϕ of the finite Hilbert space; see Eq. (61).

�̃|ñ〉 = − i

√
m0

2

(√
n| ˜n − 1〉 − √

n + 1| ˜n + 1〉)+
× O(ε), when n + 1 < Nb + 2. (50)

Using Eqs. (49) and (50), it can be shown that

H̃h|ñ〉 = m0

(
n + 1

2

)
|ñ〉 + O(ε) when n + 2 < Nb + 2.

(51)

The vectors {|ñ〉}n<Nb are approximations of order O(ε) of the
eigenstates of the discrete harmonic oscillator. For illustration,
in Fig. 1(a) we show several eigenvectors {|φ̃n〉}n<Nb of H̃h

(circle, square, and triangle symbols), obtained by exact di-
agonalization. As can be seen, they sample very well the HG
functions plotted with lines.

Using Eqs. (49) and (50) to calculate the commutator of
the discrete field operators, one gets[

�̃, �̃
]|ñ〉 = i|ñ〉 + O(ε), for n < Nb. (52)

Thus the operators �̃ and �̃ obey [within the error O(ε)] the
same commutation relation as � and � [see Eq. (4)] on the
subspace spanned by the vectors {|ñ〉}n<Nb .

As long as the physics of the problem of interest can be
addressed by truncating the number of bosons per site to Nb

(i.e., Nb is taken large enough), the full Hilbert space can be
replaced by the finite-size H̃ space and the operators � and
� can be replaced by �̃ and �̃, respectively. The operators �̃

and �̃ act on the subspace spanned by {|φ̃n〉}n<Nb as the field

operators � and � act on the subspace spanned by {|n〉}n<Nb .
The situation is illustrated in Fig. 2.

Nevertheless, the high-energy eigenvectors of the finite
space H̃ have very different properties then the corresponding
eigenvectors of the full Hilbert space. For example, one can
see in Fig. 1(b) that the H̃h eigenvector coefficients 〈ϕ̃i|φ̃57〉
(circle symbols) do not sample the HG function φ57(ϕ) (solid
line), since φ57(ϕ) does not belong to the low-energy subspace
when Nϕ = 64. When doing numerical simulations one has
to make sure that Nb and Nϕ are sufficiently large that the
high-energy subspace contribution to the physical problem
can be safely neglected. This will be discussed more in Sec. V.

An interesting property of the discrete harmonic oscillator
Hamiltonian H̃h, Eq. (45), is that it commutes with the FFT.
By writing

H̃h = 1

2
m2

0

(
F̃�̃2F̃−1 + 1

2
�̃2

)
= 1

2
m2

0

(
F̃−1�̃2F̃ + 1

2
�̃2

)
,

(53)

it is easy to see that [H̃, F̃ ] = 0. The last equality in Eq. (53)
is a consequence of the parity inversion symmetry of H̃. All
eigenvectors {|φ̃n〉}n of H̃ (the ones belonging to the high-
energy subspace too) are eigenvectors of the finite Fourier
transform. This is just the discrete version of the HG func-
tions’ property of being eigenvectors of both the harmonic
oscillator Hamiltonian and the continuous Fourier transform.

Error analysis. We argued previously that the errors of
the finite representation are of the same order of magnitude
as the weight εw(n, L) of the HG functions with n � Nb +
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FIG. 3. Tail weight εw (n) [Eq. (30)] (solid lines) of HG functions
vs n for Nϕ = 64 (upper, black), Nϕ = 128 (middle, red) and Nϕ =
256 (lower, blue) discretization points. Equation (54) (dashed lines)
is a good approximation for small n � 0.3Nϕ . For larger n, εw (n) =
εc(n − 2)/(1.5

√
n(n − 1)) with εc(n) given by Eq. (61) (dotted lines)

provides a better bound for the error.

2 outside the interval [−F, F ]. In this section we investigate
numerically the errors involved in the construction of the finite
representation.

Figure 3 shows the tail weight of the HG functions,
εw[n, L(Nϕ )] [see Eqs. (29) and (30)], as a function of n for
Nϕ = 64, Nϕ = 128 and Nϕ = 256. The tail weight is obtained
by numerical integration of Eq. (8). For comparison, the tail
weight approximation obtained from Eqs. (29) and (31),

εw(n, Nϕ ) ≈ 1

π
√

π
e− π

4 Nϕ e
2n−1

4 ln Nϕ e− n
2 ln ne

n
2 (ln π+1)e− 1

4 ln n,

(54)

is shown with dashed lines. Equation (54) is a good approx-
imation for the tail weight for n � 0.3Nϕ and overestimates
εw(n) at larger values of n.

Nonzero εw(n) causes a finite difference between the
discretized HG functions |ñ〉 defined by Eq. (46), and the
eigenvectors of the discrete harmonic oscillator, |φ̃n〉. Employ-
ing exact diagonalization to calculate |φ̃n〉 we find that

εd (n) = |||ñ〉 − |φ̃n〉|| (55)

is proportional to εw(n), i.e., εd (n) ≈ 1.5εw(n), as illustrated
with thin continuous red and dashed red lines in Fig. 4.

Each time the field operators �̃ and �̃ act on the eigen-
vector |φ̃n〉 of H̃h, the errors are amplified approximately by
a factor of

√
n + 1. This can be understood from Eqs. (49)

and (50) when one replaces | ˜n + 1〉 with |φ̃n+1〉 + (| ˜n + 1〉 −
|φ̃n+1〉). The leading error associated with the finite magnitude
of | ˜n + 1〉 − |φ̃n+1〉 is magnified by a factor

√
n + 1. Numer-

ical calculations agree with this assertion. For example, the
state �̃|φ̃n〉 behaves as �|n〉 up to an error,

ε�(n) =
∣∣∣∣
∣∣∣∣�̃|φ̃n〉 − −i√

2

(√
n|φ̃n−1〉 − √

n + 1|φ̃n+1〉
)∣∣∣∣
∣∣∣∣.
(56)

As shown in Fig. 4 with dash-dot-dot green and dotted
green lines, ε�(n) ≈ √

n + 1εd (n + 1). The same conclusion

FIG. 4. The tail weight, εw (n), Eq. (30), of HG functions (dash-
dot black), the difference between the discretized HG and the discrete
harmonic oscillator, εd (n), Eq. (55) (thin solid red), the error as-
sociated with the �̃ operator ε�(n), Eq. (56) (dash-dot-dot green),
the error associated with the �̃�̃ operator ε��(n), Eq. (57) (thick
solid blue), and the commutation relation error, εc(n), Eq. (58)
(orange circle symbols). In good approximation εd (n) ≈ 1.5εw (n)
(dashed red line), ε�(n) ≈ √

n + 1εd (n + 1) (dotted green line), and
ε��(n) ≈ εc ≈ √

(n + 1)(n + 2)εd (n + 2) (dot-dash-dash blue line).
The size of the finite Hilbert space is (a) Nϕ = 64 and (b) Nϕ = 128.

is valid for the error associated with the behavior of the state
�̃|φ̃n〉 (not shown).

The error associated to the commutation relation,
[�̃, �̃]|φ̃n〉, is comparable with the errors associated to the
states �̃�̃|φ̃n〉 and �̃�̃|φ̃n〉. Figure 4 shows

ε��(n) =
∣∣∣∣∣∣�̃�̃|φ̃n〉 − i

2

(−√(n − 1)n|φ̃n−2〉

+
√

(n + 1)(n + 2)|φ̃n+2〉 + |φ̃n〉
)∣∣∣∣∣∣, (57)

with a thick solid blue line, and

εc = ||([�̃, �̃
]− i

)|φ̃n〉||, (58)

with orange dots. We find (see also the dot-dash-dash blue
line) that

ε��(n) ≈ εc ≈
√

(n + 1)(n + 2)εd (n + 2). (59)

Since εw(n, Nϕ ) increases with increasing n, for a finite
representation of size Nϕ and cutoff Nb, the leading error
is of the order of εw(Nb + 2, Nϕ ). For a given cutoff Nb,
the error can be reduced exponentially by increasing the
number of discretization points Nϕ , ε ∝ εw(Nb + 2, Nϕ ) �
e− π

4 Nϕ+ (2Nb+3)
4 ln Nϕ , as Eq. (54) and the numerical results shown

in Fig. 3 imply.
For fixed accuracy, an increase of the low-energy subspace

requires an increase of Nϕ . For small Nb/Nϕ the dependence
between Nb and Nϕ at fixed error is given by Eq. (54). The
region where the accuracy is of order ε = 10−3–10−5 is of
practical interest for simulations. In this region Nb/Nϕ ∈≈
[0.3, 0.7] and Eq. (54) overestimates the errors. Numerical in-
vestigations and arguments based on the WKB approximation
[6,7] indicate that, in this region

Nϕ ≈ c1 + c2Nb, (60)
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where c1 and c2 are accuracy-dependent parameters. At fixed
accuracy, there is a linear dependence between the size Nϕ

of the finite space H̃ and the boson cutoff number Nb. For
example, we find that the number of discretization points
Nϕ ≈ 32 + 1.5Nb for an accuracy ε = 10−3 [7]. In practice,
for many problems of interest, such as scalar �4 theory
and electron-phonon systems, the representation in the field
amplitude basis requires only one more qubit per harmonic
oscillator than the representation in the boson number basis.

Numerical investigations in the region with the error range
ε ∈ [10−5, 10−3] [7], yield the following upper bound for the
error associated with the commutation relation [Eq. (58)],

εc < 10e−(0.51Nϕ−0.765Nb). (61)

In Fig. 3 we show with dotted lines εw(n) = εc(n −
2)/(1.5

√
n(n − 1)) [see the numerical dependence between εd

and εc in Eq. (59)] where εc is given by Eq. (61).

2. Representation of the lattice Hilbert space

The construction of the lattice representation is a straight-
forward extension of the local representation construction.
The lattice Hilbert space is a direct product of N local infinite
Hilbert spaces,

H =
N∏

j=1

⊗H j ≡ L2(RN ), (62)

where N represents the number of the lattice sites. The finite-
size Hilbert space of dimension (Nϕ )N ,

H̃ =
N∏

j=1

⊗H̃ j, (63)

with H̃ j being the local Hilbert spaces of dimension Nϕ

constructed in Sec. III B 1, is a representation of the lattice
low-energy subspace with maximum Nb bosons per site. The
Hilbert space H̃ is spanned by the vectors

{|ϕ̃i1〉1|ϕ̃i2〉2 · · · |ϕ̃iN 〉N }, with i j = −Nϕ − 1

2
,

Nϕ − 1

2
.

(64)

The discrete field operators are defined as

�̃ j |ϕ̃i1〉1..|ϕ̃i j 〉 j · · · |ϕ̃iN 〉N = i j�ϕ|ϕ̃i1〉1 · · · |ϕ̃i j 〉 j · · · |ϕ̃iN 〉N ,

(65)

�̃ j |ϕ̃i1〉1 · · · |κ̃mj 〉 j · · · |ϕ̃iN 〉N=mj�κ |ϕ̃i1〉1 · · · |κ̃mj 〉 j · · · |ϕ̃iN 〉N ,

(66)

where

|ϕ̃i1〉1 · · · |κ̃mj 〉 j · · · |ϕ̃iN 〉N

= 1√
Nϕ

Nϕ−1
2∑

i j=− Nϕ−1
2

∑
|ϕ̃i1〉1 · · · |ϕ̃i j 〉 j · · · |ϕ̃iN 〉N ei

2π i j m j
Nϕ

(67)

is obtained via a local Fourier transform at site j. The
conjugate-field operator can be written as

�̃ j = m0F̃ j�̃ jF̃−1
j , (68)

where

F̃ j = I1 ⊗ I2 ⊗ · · · I j−1 ⊗ (F̃ ) j ⊗ I j+1 · · · ⊗ IN (69)

is the finite Fourier transform acting on the local Hilbert space
H̃ j .

On the subspace spanned by

{|φ̃n1〉1|φ̃n2〉2 · · · |φ̃nN 〉N }n1,n2,...,nN <Nb, (70)

where |φ̃n〉 j ∈ H̃ j is the n’s’ eigenvector of a discrete har-
monic oscillator Hamiltonian (45), the field operators satisfy[

�̃i, �̃ j
] = δi j[iIi + O(ε)], (71)

where O(ε) represents the error of constructing local represen-
tations and was discussed in Sec. III B 1. With O(ε) accuracy,
the algebra generated by the field operators is isomorphic with
the algebra generated by the continuous field operators when
restricted to the low-energy subspace defined by n j < Nb at
every j site.

C. Accurately sampled states not contained
in the low-energy subspace

We have described how to map a low-energy subspace
of the infinite Hilbert space onto a low-energy subspace of
a finite Hilbert space. The dimension Nϕ of the local finite
Hilbert space depends on the dimension Nb of the low-energy
subspace and the accuracy ε.

While an accurate representation of the low-energy sub-
space implies accurate sampling of the low-energy wave
functions, the converse is not necessarily true. Good sampling
of a wave function does not imply that the wave function be-
longs to the low-energy subspace. There are functions that can
be sampled with ε-accuracy in Nϕ points and do not belong to
the low-energy subspace of dimension Nb(Nϕ, ε). Since the
high-energy subspace projection of these wave functions is
significant, the actions of the discrete field operators on them
yield uncontrollable errors. Therefore, it is important to verify
that the system wave function has a boson distribution that is
below the cutoff. We describe how this can be accomplished
with quantum simulations in Sec. V.

To emphasize this point, we present examples of wave
functions with small tail weights outside sampling intervals
that can be sampled accurately on Nϕ discretization points, but
have a significant high-energy weight and therefore cannot be
represented accurately on a finite Hilbert space of dimension
Nϕ .

For the first example, we consider a band-limited function
f (ϕ) [see Eqs. (12) and (13)]

f (ϕ) =
Nϕ−1

2∑
i=− Nϕ−1

2

aiuK (ϕ − ϕi ), (72)

where we take F = K = √
πNϕ/2 [see Eq. (15)], with Nϕ =

64. As described in Appendix D, the coefficients ai are chosen
such that the behavior as ϕ → ∞ is

f (ϕ) ∼ c f sin

(
πϕ

�ϕ

− π

2

)
�8

ϕ

πϕ8
+ O

(
�10

ϕ

πϕ10

)
, (73)
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FIG. 5. (a) The square amplitude of the functions f (ϕ) [Eq. (73)]
and g(ϕ) [Eq. (78)] (solid black) and of their Fourier transforms
f̂ (κ ) and ĝ(κ ) (dashed blue), respectively. At this scale, f and g
are indistinguishable. (b) | f (ϕ)|2 (solid black) and |g(ϕ)|2 (dashed
green) for ϕ < −F . (c) | f̂ (κ )|2 (solid blue) and |ĝ(κ )|2 (dashed red)
for κ < −K . The weights of both f and g outside the sampling
interval is small, ≈O(10−5). (d) The function s(ϕ) [Eq. (79)] used
to define g(ϕ). s(ϕ), and implicitly g(ϕ), decay exponentially fast at
large |ϕ|.

where c f is a normalization constant, i.e., the function de-
cays as |ϕ|−8 with increasing |ϕ|. The square amplitudes
| f (ϕ)|2 and | f̂ (κ )|2 are plotted in Fig. 5. For ϕ < −F , we
have | f (ϕ)|2 ≈ O(10−10) as can be seen in Fig. 5(b). The
weight outside the interval [−F, F ] is ‖w f

F ‖ ≈ 1.1 × 10−5.
Since the function is band-limited, f̂ (κ ) = 0 for |κ| > K .
By construction, the finite Fourier transform connects the
sets { f (ϕi )}i=−(Nϕ−1)/2,(Nϕ−1)/2 and { f̂ (κp)}p=−(Nϕ−1)/2,(Nϕ−1)/2

without error, since, in the sampling points, the function coin-
cides with the aliased function [see Eqs. (C1) and (C2)].

Despite the small tail weight and perfect sampling, the
wave function f (ϕ) cannot be represented accurately on a
finite Hilbert space of size Nϕ = 64. To demonstrate this, we
show in Fig. 6(a) the boson distribution of the wave function
f (ϕ),

p(n) = |〈n| f 〉|2 =
∣∣∣∣
∫

φn(ϕ) f (ϕ) dϕ

∣∣∣∣
2

, (74)

and in Fig. 6(b) the weight 1 − WNb of the high-energy sub-
space versus the cutoff Nb, where

WNb =
∑
n<Nb

p(n). (75)

The figure indicates a significant boson distribution for n >

Nb = 30. In fact, we observe that 50% of the wave function
belongs to the subspace spanned by boson states with n >

30 and 20% of the wave function belongs to the subspace
spanned by boson states with n > 40. However, according
to the data presented in Fig. 4(a), the boson number states
with n > 30 cannot be represented with O(10−5) accuracy on
Nϕ = 64 discretization points.

FIG. 6. (a) Boson distribution of the wave functions f (ϕ) and
g(ϕ) (solid black). Discrete harmonic oscillator eigenstate distribu-
tion of the discretized states | f̃ 〉 and |g̃〉 (hashed red). At large n the
boson and the discrete harmonic oscillator eigenstate distributions
differ significantly. (b) The high-energy weight of the wave functions
f (ϕ) and g(ϕ) vs the cutoff Nb. Fifty percent (20%) of the wave
functions’ weight belongs to the high-energy subspace spanned by
states with n > 30 (n > 40).

Due to the significant high-energy weight of f (ϕ), the
representation of the function on a finite space with Nϕ = 64,

| f̃ 〉 =
i= Nϕ−1

2∑
i=− Nϕ−1

2

f (ϕi )|ϕ̃i〉, (76)

yields uncontrollable errors when measurements are taken.
For example, the boson distribution calculated on the finite
Hilbert space using the discrete representation f̃ and the har-
monic oscillator eigenstates φ̃n,

p̃(n) = |〈φ̃n| f̃ 〉|2, (77)

is different from the real boson distribution given by Eq. (74),
as illustrated in Fig. 6(a).

Since the asymptotic behavior of the wave function might
impact significantly its boson distribution, we consider a
second example obtained by multiplying f (ϕ) with the ex-
ponentially decaying function s(ϕ):

g(ϕ) = cg f (ϕ)s(ϕ), (78)

s(ϕ) = 1(
e− ϕ+L

σ + 1
)2(

e
ϕ−L
σ + 1

)2 . (79)

In Eq. (78), cg is a normalization constant, and, in Eq. (79), we
take σ = 0.4. The function s(ϕ), plotted in Fig. 5(d), takes the
value 1 almost everywhere inside the interval [−F, F ] and de-
cays exponentially outside this interval (s(ϕ) ∝ exp(−ϕ2/σ 2)
at large |ϕ|). Unlike f (ϕ), which might be considered a spe-
cially chosen case, g(ϕ) is a more common example. It is not
band-limited or field-limited and has exponentially decaying
tails. However, at the scale shown in Fig. 5(a), the functions
f (ϕ) and g(ϕ) are indistinguishable. The difference between
f (ϕ) and g(ϕ) can be seen in Fig. 5(b). The difference
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between their Fourier transforms can be seen in Fig. 5(c).
The tail weight of g(ϕ) outside [−F, F ] is ‖wg

F ‖ ≈ 6 × 10−6.
Unlike f̂ (κ ), the conjugate variable function ĝ(κ ) is not zero
for κ > |K|. However, its tail weight is small, ‖wg

K‖ ≈ 6.2 ×
10−6. Within accuracy O(10−5), the discrete representation of
g(ϕ) is the same as the one for f (ϕ), |g̃〉 ≈ | f̃ 〉.

Despite the different asymptotic behavior of the functions
f (ϕ) and g(ϕ) at large argument, the difference between the
boson distribution of these two functions functions is very
small, indistinguishable on the scale shown in Fig. 6. The
differences are noticeable for n > 80 where the boson weight
is small, of the order O(10−10) (not shown). All the conclu-
sions we drew about f (ϕ) are valid for g(ϕ) too. The wave
function g(ϕ) is not restricted to the low-energy subspace
corresponding to Nϕ = 64 and accuracy O(10−5) and cannot
be represented accurately on a finite Hilbert space of size
Nϕ = 64. The boson distribution |〈n|g〉|2 of the wave func-
tion g(ϕ) differs from the boson distribution |〈φ̃n|g̃〉|2 of the
discrete representation.

These two examples of functions with small tail weight at
large argument, one band-limited and having algebraic decay
and one with exponential decay, that can be sampled accu-
rately but cannot be restricted to the low-energy subspace,
show that the criteria of small weight at large argument is not
enough for determining the size of the finite representation.
It would be useful to have an estimate of the Hermite-Gauss
functions expansion series for almost band-limited and field-
limited functions as a function of the tail weights and the
cutoff Nb,∥∥∥∥∥ f 〉 −

Nb∑
n=0

cn|n〉
∥∥∥∥∥ ≈ E (Nb,

∥∥w f
F

∥∥, ∥∥w f
K

∥∥, . . .). (80)

Such an expression could be used to estimate the cutoff Nb and
the number of the discretization points necessary for an accu-
rate representation by measuring the field and conjugate-field
distributions. We are not aware if an estimation like Eq. (80)
exists in the literature. It is possible that combining the es-
timation of the prolate spheroidal wave functions expansion
of almost band-limited functions [11] with the estimation of
the Hermite-Gauss function expansion of prolate spheroidal
wave functions [27] would yield an useful expression, but the
problem requires further investigation.

IV. SAMPLING PARAMETERS AND
THE BOSON MASS CHOICE

As discussed previously, the low-energy subspace of a
bosonic field can be mapped accurately onto a low-energy
subspace of a finite Hilbert space. The dimension Nϕ of the
local finite Hilbert space is monotonically increasing with
the low-energy subspace dimension Nb. The boson number
states and implicitly the cutoff Nb are dependent on the mass
parameter m0 [see Eq. (2)]. The definition of the finite Hilbert
space H̃ and of the discrete field operators depends on m0 too,
as implied by Eqs. (40) and (41). There are many possible
finite representations of the bosonic field that correspond to
different choices of the boson mass. The optimal represen-
tation is the one that requires the smallest cutoff Nb for the
ground state and for the low-energy excitations of the system.

A. Squeezed boson states

To represent the ground state of a harmonic oscillator with
mass m0, the optimal choice for the boson mass is simply
m0, because for this choice the ground state has zero bosons
(the ground state is the vacuum). However, other choices
for the mass parameter can be taken, but they require more
discretization points for a specified accuracy, as we discuss
below. We work through this case as a prelude to more com-
plicated Hamiltonians where the optimal choice of mass is not
obvious.

The Hamiltonian (1) can be rewritten as

Hh = m1

4

(
m2

0

m2
1

− 1

)(
a†

1a†
1 + a1a1

)

+ m1

4

(
m2

0

m2
1

+ 1

)(
2a†

1a1 + 1
)
, (81)

where the mass m1 bosons are defined by

a†
1 = 1√

2

(√
m1� − i

1√
m1

�

)
and

a1 = 1√
2

(√
m1� + i

1√
m1

�

)
. (82)

The relation between the mass m1 bosons and the mass m0

ones is given by the squeezing operation

a†
0 = S(r)†a†

1S(r), (83)

where

S(r) = e
1
2 r
(

a†
1

2−a2
1

)
and r = 1

2
ln

(
m1

m0

)
. (84)

In the basis {|n〉1}n, where |n〉1 = 1√
n!

a†n
1 |0〉1 is the state

with nm1 bosons, the harmonic oscillator ground state |0〉 is a
squeezed vacuum state [28],

|0〉 ≡ |0〉0 = S†(r)|0〉1 =
∞∑

n=0

Cn|n〉1, (85)

C2n = (−1)n

√
(2n)!

2nn!

(tanh r)n

√
cosh r

, C2n+1 = 0. (86)

The magnitude of the coefficients C2n in Eq. (86) decrease
rapidly with increasing n. For any small ε a cutoff Nb can be
introduced such that the the harmonic oscillator ground state
has ε probability to have more than Nb m1 bosons.

The cutoff Nb increases with increasing or decreasing m1
m0

.
In Fig. 7(a) we plot the m1-boson distribution, p(n; m1

m0
) =

p(n; m0
m1

) = |Cn|2 as a function of n for different values of
m1
m0

. When m1 = m0 the distribution has p(0) = 1 and p(n >

1) = 0, since the ground state is the m0 boson vacuum. The
distribution weight at large n increases with increasing m1

m0
or

m0
m1

. The cutoff Nb is defined by requiring that 1 − WNb = ε,
where WNb is the weight of the low-energy subspace spanned
by the boson number states below the cutoff Nb [see Eq. (75)]
and ε is the desired truncation error. In Fig. 7(b) we show Nb

vs ε = 1 − WNb for different values of the squeezing parame-
ter r. The cutoff Nb increases logarithmically with decreasing
1 − WNb . In Fig. 7(c) we show the cutoff Nb versus r for differ-
ent values of 1 − WNb . The cutoff Nb increases exponentially
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FIG. 7. (a) m1-boson distribution of the harmonic oscillator
ground state for different values of the ratio m1/m0. (b) Boson
cutoff number Nb vs the high-energy subspace weight 1 − WNb for
different values of the squeezing parameter r = 1

2 ln( m1
m0

). (c) Bo-
son cutoff number Nb vs the squeezing parameter r for different
values of 1 − WNb . Numerical fitting yields Nb ≈ [−0.595 − 0.477
ln(1 − WNb )] m1

m0
.

with increasing r, which implies linear dependence of Nb on
the boson mass m1. Numerical fitting yields Nb ≈ [−0.595 −
0.477 ln ε] m1

m0
. Since the number of the discretization points

Nϕ needed to represent the low-energy subspace increases
monotonically with Nb, a boson mass choice m1 �= m0 is not
optimal.

This same conclusion can be inferred just by analyzing the
Nyquist-Shannon sampling parameters of the harmonic oscil-
lator wave functions φ0(ϕ) and φ̂0(κ ). For a given number Nϕ

of discretization points, the m0-sampling implies the sampling
intervals [see Eqs. (28) and (29)]

F0 =
√

πNϕ

2m0
, K0 =

√
πNϕm0

2
, (87)

which yield equal tail weights ‖wφ0
F0

‖ = ‖wφ0
K0

‖. For m1 sam-
pling one has

F1 = F0

√
m0

m1
, K1 = K0

√
m1

m0
. (88)

For m1 > m0, the field sampling interval decreases while
the conjugate-field sampling interval increases by a fac-
tor

√
m1/m0. Consequently the tail weight ‖wφ0

F1
‖ � ‖wφ0

F0
‖

increases exponentially, while ‖wφ0
K1

‖ � ‖wφ0
K0

‖ decreases ex-
ponentially (since the tail weights have an exponential
dependence on the sampling intervals’ length). Similarly,
when m0 > m1 the tail weight ‖wφ0

F1
‖ � ‖wφ0

F0
‖ and ‖wφ0

K1
‖ �

‖wφ0
K0

‖. In both cases, because of the large increase of one
of the tail weights, the finite Fourier transform that connects
the field and the conjugate-field sampling sets yields a much
larger error [see Eqs. (22) and (23)] than in the case of m0

sampling. Since the error in constructing the finite Hilbert
space representation is proportional to the error introduced

by the finite Fourier transform [see Eq. (46)], sampling corre-
sponding to m1 �= m0 implies larger errors than m0 sampling.

B. Sampling intervals

The sampling and discretization intervals depend on the
boson mass and the number of the discretization points, in
accordance with Eqs. (34), (36), and (87). The ratio of the
sampling intervals and, as well, the ratio of the discretization
intervals, equal the boson mass

m = K

F
= �κ

�ϕ

. (89)

By definition, the optimal boson mass requires the minimal
number of the discretization points for an accurate representa-
tion. In principle, for a specified accuracy, the optimal boson
mass can be obtained by minimizing the cutoff Nb of the wave
function’s expansion in the boson number basis. However,
this is not easy to accomplish, since the extraction of Nb

from quantum simulations is laborious, as will be discussed
in Sec. V.

Nevertheless, instead of finding the boson mass for optimal
representation, one can ask about the boson mass that yields
optimal sampling. Adjusting parameters for optimal sampling
in quantum simulations is much easier than optimizing for the
smallest cutoff Nb, as will be discussed in Sec. V. The sam-
pling accuracy of a wave function is determined by the wave
function behavior outside the field and the conjugate-field
sampling intervals. For a specified accuracy ε, the sampling
intervals parameters F and K should be chosen such that
[see Eqs. (8) and (11)]∥∥wφ

F

∥∥ = ∥∥wφ
K

∥∥ = ε. (90)

This choice will provide, via Eq. (15), the minimum number
of discretization points required for a sampling approximation
with O(ε) accuracy.

Do the sampling intervals F and K determined by imposing
Eq. (90) yield the optimal boson mass through Eq. (89)?
While we do not know the answer in general, numerical
checks show that the answer is yes in many cases. That is the
case of the harmonic oscillator, as was already discussed in
Sec. IV A. We also found the answer to be yes for small size
�4 scalar field models that we can solve numerically using
exact diagonalization methods. In the following, we present
two relevant �4 scalar field examples.

1. Local �4 scalar field

The first example is a strong interacting local �4 field
model, equivalent to an anharmonic oscillator, with the Hamil-
tonian

H = �2

2
+ 1

2
m2

0�
2 + g

4!
�4. (91)

Figure 8(a) shows the field and the conjugate-field distribu-
tion of the ground state of the Hamiltonian (91) for interaction
strength g

m3
0

= 100. One effect of the interaction is to narrow

the field distribution |�(ϕ)|2 and to widen the conjugate-field
distribution |�̂(κ )|2 compared to the noninteracting case. The
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FIG. 8. Local φ4 field theory, Eq. (91), with g
m3

0
= 100. (a) Field

and conjugate-field distributions, |�(ϕ)|2 (dashed black) and |�̂(κ )|2
(solid red), respectively, in the ground state. Insets: The conjugate-
field distribution has an oscillatory behavior at large |κ|. (b) The ratio
of the sampling intervals widths K

F vs the tail weight ε, calculated by
employing Eq. (90). K

F is larger than the bare mass m0, and increases
logarithmically with increasing the accuracy. (c) The number of
the required discretization points Nϕ = 
 2

π
FK� increases logarith-

mically with decreasing the tail weight. (d) m-boson distribution for
different choices of m

m0
. (e) The low-energy subspace cutoff Nb vs m

m0
for different truncation errors 1 − WNb . The optimal boson mass is
found when Nb is minimum.

interaction also affects the field distributions behavior at large
argument, as can be seen in the insets. The wave function
�̂(κ ) has an oscillatory behavior at large |κ|.

Optimal sampling implies a ratio (∝ K/F ) larger than the
bare mass m0, because the |�̂(κ )|2 distribution is wider than
the |�(ϕ)|2 one. Figure 8(b) shows the ratio of the sam-
pling intervals 1

m0

K
F vs the tail weight ε, where F and K are

determined by Eq. (90). The ratio 1
m0

K
F is dependent on ε,

and increases logarithmically (and nonuniformly due to the
oscillatory behavior of |�̂(κ )|2) with increasing the accuracy,
from 1

m0

K
F ≈ 4 for an accuracy ε = 10−3 to 1

m0

K
F ≈ 6 for ε =

10−9. The number of discretization points Nϕ = 
2KF/π�,
necessary to sample the local �4 field ground state increases
logarithmically with increasing the accuracy, as can be seen in
Fig. 8(c).

To calculate the boson distribution, we diagonalize nu-
merically the Hamiltonian (91) in the boson number basis.
Figure 8(d) shows the boson distribution, p(n), as function
of n for different choices of the boson mass. In all cases, the
boson distribution decreases rapidly with increasing number
of bosons. We find that the largest decreasing slope occurs
when the boson mass m/m0 ∈≈ [4, 8]. Figure 8(e) shows
the cutoff Nb vs the boson mass for different truncation er-
rors 1 − WNb . Remember that 1 − WNb , with WNb defined by
Eq. (75), is the weight of the subspace spanned by the bo-
son number states above the cutoff. The optimal boson mass
occurs at the minimum of Nb(m/m0). For a truncation error
1 − WNb ≈ 10−5 we find m/m0 ≈ 4. The optimal boson mass

increases to m/m0 ≈ 8 with decreasing the truncation error to
1 − WNb ≈ 10−12.

The optimal boson mass determined by minimizing Nb is in
agreement with the boson mass calculated by minimizing the
sampling errors of �(ϕ) and �̂(κ ). Since the truncation error
given by the weight of the subspace spanned by the boson
number states above the cutoff is not the same as the sam-
pling error determined by the wave function’s weight outside
the sampling intervals, a quantitative comparison between K

F
plotted in Fig. 8(b) and an optimal boson mass extracted from
Fig. 8(e) is not meaningful. However, we found in both cases
that the optimal boson mass is in the same range, m/m0 ∈
[4, 8], and that it increases when increasing the accuracy of
the approximation.

2. Two-site �4 scalar field

The next example is a two-site �4 field theory,

H =
∑
i=1,2

(
�2

i

2
+ 1

2
m2

0�
2
i + g

4!
�4

i

)
− h�1�2, (92)

with m2
0 = −1, g

|m0|3 = 2 and h
|m0|2 = 1. The coupling between

the fields operators at neighboring sites is a consequence of
the gradient term, (∇�)2, present in the Lagrangian of a
continuous �4 field theory. Although no real broken sym-
metry occurs for a two-site system, the negative value of m2

0
yields interesting behavior relevant for exploring models with
a broken symmetry phase. The field in the ground state has a
two-peak structure and the excitation gap is small.

The local field distribution,

p1(ϕ) = 〈ϕ|ρ1|ϕ〉, (93)

and the local conjugate-field distribution,

p1(κ ) = 〈κ|ρ1|κ〉, (94)

are plotted in Fig. 9(a). In Eqs. (93) and (94)ρ1 is the local
density matrix

ρ1 = Tr2(|φ〉〈φ|), (95)

obtained by tracing out the degrees of freedom at site 2, while
|φ〉 in Eq. (95) is the ground state of the Hamiltonian (92).

Since the sampling errors of lattice wave functions de-
pend on the tail weights of the local distributions (see
Appendix B 2), the sampling intervals lengths are determined
by imposing w

φ

1F = w
φ

1K = ε, where

w
φ

1F

2 =
∫ −F

−∞
dϕ〈ϕ|ρ1|ϕ〉 +

∫ ∞

F
dϕ〈ϕ|ρ1|ϕ〉, (96)

w
φ

1K

2 =
∫ −K

−∞
〈κ|ρ1|κ〉 dκ +

∫ ∞

K
〈κ|ρ1|κ〉 dκ (97)

[see also Eqs. (B28) and (B40)]. As can be seen in the inset
of Fig. 9(a), the local field distribution decays more rapidly
with increasing argument than the conjugate-field one. The
ratio of the sampling intervals widths, 1

|m0|
K
F , versus the tail

weight is plotted in Fig. 9(b). It increases logarithmically
with decreasing tail weight, from 1

|m0|
K
F ≈ 1.2 when the tail

weight is ε ≈ 10−4 to 1
|m0|

K
F ≈ 2 for a tail weight ε ≈ 10−12.
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FIG. 9. Two-site �4 field theory, Eq. (92), with m2
0 = −1 and

g
|m0 |3 = 2 and h = 1 (a) Local field, Eq. (93) (dashed black) and
conjugate-field, Eq. (94) (continuous red) distributions in the ground
state. Inset: At large argument, the field distribution decays faster
than the conjugate-field distribution. (b) The ratio of the sampling
intervals widths K

F vs the tail weight. K
F is larger than |m0| and

increases logarithmically with increasing accuracy. (c) The number
of required discretization points Nϕ = 
 2

π
FK� increases logarithmi-

cally with decreasing the tail weight. (d) m-boson local distribution
for different choices of m

|m0 | . (e) The low-energy subspace cutoff Nb vs
m

|m0 | for different truncation errors 1 − WNb . The optimal boson mass
is found when Nb is minimum.

The number of discretization points, Nϕ = 
 2
π

FK�, increases
logarithmically with the accuracy, as shown in Fig. 9(c).

The local boson distribution,

p1(n) = 〈n|ρ1|n〉, (98)

for different choices of the boson mass is shown in Fig. 9(d).
The boson distribution decreases rapidly with increasing num-
ber of bosons. The largest decreasing slope is observed for
m/|m0| ≈ 2. The cutoff Nb versus the boson mass is shown in
Fig. 9(e) for different values of the truncation error 1 − WNb .
For a truncation error 1 − WNb ≈ 10−5 we find the optimal
boson mass to be m/|m0| ≈ 1.2. The optimal boson mass
increases to m/|m0| ≈ 2 with decreasing the truncation error
to 1 − WNb ≈ 10−12.

As in the case of the local �4 field example, the boson
optimal mass calculated by minimizing Nb is in agreement
with the boson mass that minimizes the sampling errors of
the local field distributions p1(ϕ) and p1(κ ). In both cases,
the boson mass is in the same range, m/|m0| ∈ [1.2, 2], and it
increases when increasing the accuracy of the approximation.

Note that the optimal mass from our analysis is not de-
termined by the standard deviation of the field distributions
but by the field and conjugate-field distributions’ behavior at
large argument. The ratio of the standard deviations in some
mean-field theory approaches is related to the value of the
boson mass. Our results suggest that the mean-field solutions
obtained in this way are not very good approximations to the
optimal mass.

V. POSTSIMULATION DISCRETIZATION VALIDATION
AND PARAMETERS ADJUSTMENT

For an accurate simulation, the low-energy subspace
should be large enough to contain the relevant physics. The
number Nϕ of discretization points per lattice site and the bo-
son mass determine the low-energy subspace, but the optimal
values for these parameters are not known a priori. Therefore,
it is important to determine a posteriori whether the chosen
simulation’s parameters are good and to have procedures to
adjust them for optimal performance.

Note that when sufficient quantum computational re-
sources are available, in order to estimate the accuracy of the
simulation’s results, one can run simulations for subsequently
increasing values of Nϕ and analyze the results’ convergence
properties. However, this approach does not provide direct
information about optimal discretization intervals and likely
will result in suboptimal use of the available resources.

A. Local measurements

The results of a quantum simulation are obtained by mea-
suring the state of the qubits in the computational basis. Not
all information about the system is easily accessible from
quantum simulations. To validate the choice of discretization
parameters in our simulation, we only need measurements
of the local field distribution, the local conjugate-field dis-
tribution and the local boson distribution. Fortunately, these
observables can be measured relatively easily. We discuss
their measurements below.

The implementation of quantum algorithms for bosonic
fields is described at length in Refs. [6,7,19]. Here we present
only the minimum information necessary to understand the
measurements methods. For every lattice site, nq = log2(Nϕ )
qubits are assigned and the discrete field eigenvector |ϕ̃i〉 j is
mapped to

|ϕ̃i〉 j ≡ ∣∣xi
0, . . . , xi

nq−1

〉
j, (99)

where xi
r ∈ {0, 1} and j = 1, N is the site label. The field

operators [see Eqs. (40) and (65)] are defined by

�̃ j |ϕ̃i〉 j = ϕi|ϕ̃i〉 j with ϕi = �ϕ

(nq−1∑
r=0

2rxi
r − Nϕ − 1

2

)
.

(100)

The field distribution at site j is given by

pj (ϕi ) = 〈ϕ̃i|ρ j |ϕ̃i〉 (101)

and is obtained by the direct measurement of the qubits as-
signed to represent the field at site j, as shown in Fig. 10(a).

The conjugate-field distribution at site j is given by

p j (κp) = 〈κ̃p|ρ j |κ̃p〉, (102)

where {|κ̃p〉 j}p are obtained by applying a local Fourier trans-
form (i.e., a nq-qubit Fourier transform at site j) to {|ϕ̃i〉 j}i, as
described by Eq. (43). The measurement of this distribution
requires an inverse Fourier transform, F̃−1 [see Eq. (42)], at
site j before measuring the qubits, as shown in Fig. 10(b).

The finite representation of the boson occupation num-
ber distribution (i.e., the probability of the discrete harmonic
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FIG. 10. At every lattice site nq = log2(Nϕ ) qubits are assigned to represent the field. (a) The field amplitude distribution at site j can is
obtained by direct measurement of the qubits assigned for the site j. (b) The conjugate-field amplitude distribution requires an inverse Fourier
transform, F̃−1 [see Eq. (42)] at j before measurement. (c) Quantum phase estimation algorithm for measuring the boson distribution at site
j. An ancillary register of size nr = nq + 1 is used to store the phase factors associated with the evolution of the system under the action of a
local discrete harmonic oscillator Hamiltonian [Eq. (109)].

oscillator eigenstates) at site j is given by

p j (n) = 〈φ̃n|ρ j |φ̃n〉. (103)

If we write the system’s wave function as

|φ〉 =
∑

e

Nϕ−1∑
n=0

cen|e〉|φ̃n〉 j, (104)

where {|e〉} is an arbitrary basis for the whole system with the
site j excluded, the boson distribution is

pj (n) =
∑

e

|cen|2. (105)

The probability to have bosons above the cutoff Nb is given by

εH =
Nϕ−1∑
n=Nb

p j (n) =
∑

e

Nϕ−1∑
n=Nb

|cen|2. (106)

The bosonic field representation is accurate when εH is negli-
gible.

We present two methods for the measurement of the local
boson distribution. The first method employs quantum state
tomography (QST) for the local density matrix ρ j . As de-
scribed in [12,13], ρ j can be written as

ρ j = 1

2nq

3∑
v0,...,vnq−1=0

sv0,...,vnq−1 Pv0,...,vnq−1 . (107)

The Pauli strings Pv0,...,vnq−1 ≡ σ
j

v0 ⊗ σ
j

v1 ⊗ · · · ⊗ σ
j

vnq−1 are

products of Pauli matrices. The single-qubit operator σ
j

vq ,
acting on the qubit q ∈ {0, 1, . . . , nq − 1} belonging to the
local register at site j, takes four possible values, σ

j
vq ∈

{I, σx, σy, σz}. The coefficients sv0,...,vnq−1 = Tr(Pv0,...,vnq−1ρ j )
are determined by measuring the corresponding Pauli strings.
Similar measurements of the Pauli strings are also employed
in Variational Quantum Eigensolver algorithms [29]. Since

the number of the independent coefficients defining ρ j is
4nq − 1, the number of measurements required for QST scales
exponentially with nq. This put a severe limitation on QST
with large nq [30–32]. However, the current experimental de-
velopment [32–34] indicates that QST for nq � 8 (which we
believe is large enough for addressing most interesting boson
problems) will be feasible in the near future.

Once the local density matrix is determined, its elements
in the computational basis can be easily calculated, since this
implies evaluating the matrix elements of the Pauli strings
in the computational basis. Finally, the boson distribution is
given by

p j (n) =
Nϕ−1∑
i,l=0

〈φ̃n|ϕ̃i〉〈ϕ̃i|ρ j |ϕ̃l〉〈ϕ̃l |φ̃n〉, (108)

where the coefficients 〈φ̃n|ϕ̃i〉 are obtained from the exact di-
agonalization of the discrete harmonic oscillator Hamiltonian
(45).

The second method for the measurement of the boson
distribution at the lattice site j employs quantum phase esti-
mation (QPE) [13,14] measurements for the discrete harmonic
oscillator

H̃h1 = 1

2
�̃2 + 1

2
m2

0�̃
2 − 1

2
m0 = Hh − 1

2
m0, (109)

where we subtract the constant term 1
2 m0 for convenience. The

eigenvalues of the Hamiltonian (109) have the following prop-
erty (within the desired accuracy of the finite representation
approximation):

Ẽn = m0n, for n < Nb, (110)

Ẽn �= m0n, for n � Nb. (111)

For example, see the eigenvalues of the discrete harmonic
oscillator for Nϕ = 64 and Nϕ = 128 plotted in Fig. 1(a) of
Ref. [7].
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The time evolution operator corresponding to Hamiltonian
(109)

U (θ ) ≡ e−i2πθHh1 (112)

can be implemented using Trotterization methods, as de-
scribed in Refs. [6,7,19]. The operator (112) acts only on the
nq qubits assigned to the field at the site j.

The implementation of the phase estimation algorithm is
illustrated in Fig. 10(c). An ancillary register of nr qubits is
used. On every ancillary qubit, a Hadamard gate is applied.
Next, for every qubit m from the ancillary register (with m =
0, nr − 1), a control-U (2mθ ) gate, acting on the ancilla qubit
m and the local field register at site j, is applied.

The state of the system together with the ancillas changes
from

|φ〉|0〉a =
∑

e

Nϕ−1∑
n=0

cen|e〉|φ̃n〉 j |0〉a, (113)

where |0〉a is the ancillary register state, to

∑
e

Nϕ−1∑
n=0

cen|e〉|φ̃n〉 j
1

2
nr
2

2nr −1∑
x=0

|x〉ae−i2πθ Ẽnx, (114)

after applying the Hadamard and the CU operators. In
Eq. (114), |x〉a is the binary representation on qubits of the in-
teger x = 0, 2nr − 1. To distinguish between the phase factors
corresponding to all eigenvalues of the Hamiltonian (109), the
parameter θ should be chosen such that

θ <
1

�E
, where �E = max

n
Ẽn − min

n
Ẽn (115)

is the range of the Hamiltonian (109) spectrum.
After the quantum Fourier transform is applied on the

ancilla register, the state described previously by Eq. (114)
becomes

|χ〉 ≡
∑

e

Nϕ−1∑
n=0

2nr −1∑
k=0

cenank|e〉|φ̃n〉 j |k〉a, (116)

where |k〉a is the binary representation on qubits of the integer
k = 0, 2nr − 1 and

ank = 1

2nr

2nr −1∑
x=0

e−i 2π
2nr (2nr θ Ẽn−k)x. (117)

The probability to measure the integer k on the ancilla register
is given by

p(k) =
∑

e

Nϕ−1∑
n=0

|cenank|2. (118)

If we choose

θ = 1

m02nr
, (119)

then

ank = 1

2nr

2nr −1∑
x=0

e−i 2π
2nr ( Ẽn

m0
−k)x

. (120)

The choice of θ given by Eq. (119) is convenient since
Ẽn/m0 = n for n < Nb. Thus, for n < Nb Eq. (117) is a Kro-
necker delta function, ank = δnk . The probability to measure
an integer k � Nb in the ancilla register reduces to

p(k) =
∑

e

Nϕ−1∑
n=Nb

|cen|2|ank|2, for k � Nb, (121)

since the terms in Eq. (118) with n < Nb are zero. Since
|ank| � 1 (see Appendix E), we have the following inequality:

p(k) �
∑

e

Nϕ−1∑
n=Nb

|cen|2 = εH , for k � Nb. (122)

For any k � Nb, the probability to measure k is smaller than
the probability to have more than Nb bosons. Thus

εH � max
k�Nb

p(k) ≡ p1max. (123)

The probability to measure any integer k � Nb in the an-
cilla register is given by

pall =
2nr −1∑
k=Nb

p(k) =
∑

e

Nϕ−1∑
n=Nb

|cen|2
2nr −1∑
k=Nb

|ank|2

� 4

π2

∑
e

Nϕ−1∑
n=Nb

|cen|2 = 4

π2
εH . (124)

In Eq. (124), we used

2nr −1∑
k=Nb

|ank|2 � max
k�Nb

|ank|2 � 4

π2
for n > Nb, (125)

which is proven in Appendix E [see Eq. (E5)].
Combining Eq. (123) and Eq. (124), the probability to have

more than Nb bosons is bounded as

p1max � εH � π2

4
pall. (126)

According to Eq. (126), the discretization parameters Nϕ

and m0 used for bosonic field representation are valid if there
is a negligible probability to measure integers larger than the
cutoff Nb(Nϕ ) on the ancillary registry.

The size of the ancillary register is determined by Eq. (115)
and Eq. (119),

nr � log2

([
�E

m0

])
. (127)

The number of ancillary qubits scales logarithmically with the
energy range of the discrete harmonic oscillator Hamiltonian.
The values of the energy range �E corresponding to different
Nϕ are given in Table I. We find that �E/m0 < 2Nϕ for Nϕ �
1024 (and probably true for larger values of Nϕ as well but
numerical checks are necessary for confirmation). In practice
the number of ancillary qubits required for the QPE register is

nr = nq + 1. (128)

Measuring energies in QPE algorithms with 2−n accuracy
and with 1 − ε probability requires registers of size nr =
n + log2[2 + 1/(2ε)] [13,14], thus larger than in our case
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TABLE I. Middle row: Energy range of the discrete harmonic
oscillator for different values of Nϕ , calculated using exact diago-
nalization. Bottom row: Boson cutoff number corresponding to the
commutation relation error [Eq. (58)] εc ≈ 10−4.

Nϕ 32 64 128 256 512 1024

�E/m0 42.319 89.396 185.376 379.976 772.944 1564.233
Nb (εc < 10−4) 10 30 74 164 353 741

when ε � 10−2. In our case, the goal of the QPE measurement
is not to estimate the energies of Hh (which we know from
exact diagonalization of the finite Hamiltonian matrix) but to
measure the boson distribution and especially the probability
to have states with the number of bosons larger than Nb. When
the probability to have bosons above the cutoff is negligible,
i.e., εH ≈ 0, the boson distribution can be measured with
high precision. This is true because the energies of the states
with n < Nb are proportional to n [see Eq. (110)], Eq. (120)
becomes a Kronecker delta function and the probability to
measure k < Nb on the ancillary register becomes equal to the
probability to have n bosons [see Eq. (105)],

p(k = n) =
∑

e

|cen|2 = p j (n) for k < Nb when εH = 0.

(129)

B. Simulation guideline for parameters’
validation and adjustment

In this section, we present a guideline for quantum sim-
ulations of bosonic fields. The main goal is to provide a
practical procedure for adjusting Nϕ and boson mass m for
optimal performance. Let’s assume for now that the system
has translational symmetry and the local measurements yield
identical results at all sites:

(1) If 10 or less bosons per site is expected to be adequate
to capture the low-energy physics, start with Nϕ = 32 dis-
cretization points per lattice site. Otherwise start with a larger
Nϕ . Equation (61) can be used to determine the dependence
Nb(Nϕ, ε). In Table I we provide the value of Nb for different
Nϕ when the accuracy is of order O(10−4).

(2) Start with a boson mass m = m0 + δm, where m0 is the
bare mass and δm is the mean-field contribution.

(3) After the system state is prepared on qubits, measure
the local field distribution, pj (ϕi ), and the conjugate-field
distribution, p j (κp) at the arbitrary site j, as described in
Sec. V A.

(4) Determine the coefficients βϕ and βκ such that
the probability to measure the field outside the range
[−βϕF, βϕF ] and the probability to measure the conjugate
field outside the range [−βκK, βκK], respectively, is smaller
than ε, ∑

i for |ϕi|>βϕF

p j (ϕi) < ε, (130)

∑
p for |κp|>βκ K

p j (κp) < ε. (131)

If both βϕ � fc and βκ � fc the wave function sampling is
accurate. The parameter 0 < fc < 1 should be chosen to en-

sure confidence that the distribution weights at large argument
are ε small. When fc is very large the confidence is low and
when fc is very small resources are wasted. We believe that an
acceptable range value for fc is [0.6, 0.8].

The factors βϕ and βκ can be modified by changing the
mass factor since they depend on the intervals’ widths F ∝
m−1/2 and K ∝ m1/2 [see Eq. (87)]. A change of the boson
mass by a factor μ, m → μm, implies βϕ → √

μβϕ and βκ →
(1/

√
μ)βκ .

(5) If βϕβκ � f 2
c and βϕ ≈ βκ the guess of the initial mass

was close to optimal. If βϕβκ � f 2
c and βϕ �≈ βκ adjust the

boson mass by multiplying it with a factor of μ = βκ/βϕ . The
new boson mass determines the optimal sampling discretiza-
tion intervals.

(6) The case βϕβκ > f 2
c means that both the field and

the conjugate-field distributions close to the sampling inter-
vals’ edges are significant and cannot be adjusted properly
by increasing one sampling interval and decreasing the other
via boson mass scaling. The number Nϕ of the discretization
points should be increased by at least a factor of βϕβκ/ f 2

c .
At this point the parameters Nϕ and m are good for optimal

field sampling. However, as shown in Sec. III C, accurate field
sampling does not necessary implies wave function contain-
ment to the low-energy subspace.

(7) Measure the local boson distribution as described in
Sec. V A.

(8) If the probability to measure integers k � Nb are larger
than ε, increase Nϕ [and implicitly Nb(Nϕ, ε)] until the proba-
bility to measure integers k � Nb are smaller than ε.

At this point the finite representation of the bosonic field
defined by the parameters Nϕ and m should be close to optimal
for an accuracy O(ε).

In case the wave function has no translational symmetry,
measurements at all sites are necessary for the validation and
adjustment of the discretization parameters. The parameters
Nϕ and m should be chosen to provide accurate sampling and a
boson distribution contained to the low-energy subspace at all
sites. In this case, the global optimal m might not be optimal
at every site.

In many simulations, the system’s wave function changes
in time under the action of the evolution operators. This might
be the case for adiabatic continuation or for studying nonequi-
librium physics, for example. In principle, measurements
for the validation of the discretization parameters should be
taken at every time step to make sure that the number of
bosons above the cutoff is always smaller than ε. However,
in practice, it is not necessary to take discretization validation
measurements at every Trotter step. The effect of one Trotter
step is of the order of the step size and, therefore, is small.
Likely, it will be sufficient to take discretization validation
measurements at a rather small number of time points, as
long as the boson distribution is well below Nb for these
measurements.

Use of the optimal parameters will yield the highest pre-
cision results for the computational resources available, but
this can be challenging in practice. However, accurate, error-
controlled quantum simulations can still be performed without
adjusting the parameters to their optimal value as long as
the problem we address can be restricted to the low-energy
subspace. Adjusting the boson mass to the one optimizing the
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sampling of the wave function might increase the precision of
the simulations even when the mass is not optimal.

VI. DISCUSSION OF FUTURE APPLICATIONS

In this paper, we used the boson number basis to construct a
local finite Hilbert space. A low-energy subspace was defined
by introducing a cutoff in this basis. A different denumerable
basis, for example {|αn〉}, might be considered for construct-
ing a finite representation, following a similar procedure.
However, this change is not trivial and would require the
investigation of the Nyquist-Shannon sampling properties of
〈ϕ|αn〉 and 〈κ|αn〉, knowledge of the recurrence relations for
ϕ〈ϕ|αn〉 and κ〈κ|αn〉 [similar to the ones given by Eq. (26)
and Eq. (27), respectively] and measurement methods for the
local distribution 〈αn|ρ j |αn〉. We mention this as a topic for
future investigation.

Quantum mechanical problems written in the first quanti-
zation formalism can be simulated on a quantum computer
by employing the discretization methods developed for the
bosonic fields. The position Xj and the momentum Pj opera-
tors (here j is an arbitrary label) entering the first quantization
Hamiltonian H (X1, X2, . . . , P1, P2, . . .) play the same role as
the field operators � and �, since they obey the canoni-
cal commutation relation [Xj, Pl ] = iIδ jl . The field variable
ϕ becomes the position variable x while the conjugate-field
variable κ becomes the momentum variable p. The system’s
wave function is discretized in the position and momentum
bases. For a general interaction potential V (X1, X2, . . .), a
qubit implementation of the corresponding Trotter step oper-
ator requires the calculation of the phase factor proportional
to V (x1, x2, . . .) for each qubit configuration |x1, x2, . . .〉. This
can be challenging when the computation resources are finite,
being of similar difficulty as designing a quantum circuit to
calculate the function V (x1, x2, . . .) [35,36]. However, when
the potential can be approximated by a truncated Taylor ex-
pansion, the implementation reduces to a number of Trotter
steps for the monomial terms appearing in the expansion. The
Trotter step corresponding to a monomial term with degree r
(for example XiXi+1 · · · Xi+r) requires O(nr

q) two-qubit gates
[7]. Special care should also be taken to ensure that the
number of the discretization points is large enough such that
the action of V (X1, X2, . . .) does not violate the low-energy
subspace constraints.

As for many quantum algorithms, the main limitation
for the implementation of bosonic quantum algorithms on
present-day quantum hardware is the two-qubit gate fidelity.
Finite coherence time and control error restrict the maximum
number of two-qubit gates to be less than 100 for quantum
simulation algorithms implemented on state-of-art quantum
processors [37,38]. This is not adequate for large bosonic
field simulations, considering that a Trotter step requires N ×
50 ∼ N × 10 000 two-qubit gates, where N is the lattice size
(depending on the interaction type and strength). Problems
which require time evolution simulations with thousands or
millions of Trotter steps can probably be addressed only after
error-corrected quantum technology is developed. However
we are optimistic that interesting problems, such as the one-
dimensional φ4 model and polaron and bipolaron models, can
be addressed on near-future quantum computers that can run

circuits with thousands of two-qubit gates. For example, for
problems where the cutoff Nb � 10 and the accuracy is ε ≈
10−2, we estimate Trotter steps requiring N × 50 ∼ N × 100
two-qubits gates. These problems can be simulated on near-
future hardware by employing noise mitigation techniques
[39,40] and variational algorithms which only require the
implementation of a few Trotter steps [41,42].

VII. CONCLUSIONS

In this work, we address the representation of lattice
bosonic fields on the finite Hilbert space of quantum comput-
ers. An accurate representation (1) implies accurate storage
of the wave function on qubits and (2) requires definition of
qubit field operators whose action on the qubit wave function
reproduces the action of the real field operators. We construct
a finite representation for the low-energy subspace spanned
by states with the number of bosons per site below a cutoff
Nb. Since the lattice Hilbert space is a direct product of local
Hilbert spaces, the representation of the lattice Hilbert space
is a direct product of local Hilbert space representations.

A local Hilbert space is infinite dimensional and equiv-
alent to the space of the square integrable functions. The
construction of the finite representation for a local Hilbert
space is based on Nyquist-Shannon sampling properties of
square integrable functions. Because the weight of these func-
tions vanishes at large argument, they can be sampled with
controlled accuracy both in a finite set of field variable points
and in a finite set of conjugate-field variable points. Within
the same level of accuracy as the sampling approximation, the
two sampling sets, of field and of conjugate-field points, are
connected by a finite Fourier transform. The accuracy of the
sampling approximation is determined by the weight of the
functions outside the sampling intervals. The errors decrease
with increasing the width of the sampling intervals and vanish
in the infinite width limit.

By exploiting the sampling properties of the Hermite-
Gauss functions, we construct a finite Hilbert space of
dimension Nϕ and define discrete field operators �̃ and �̃ such
that, within O(ε) accuracy, the operators �̃ and �̃ act on the
subspace spanned by the first Nb < Nϕ eigenstates of the dis-
crete harmonic oscillator in the same way the field operators,
� and �, respectively, act on the subspace spanned by the first
Nb harmonic oscillator eigenvectors. As long as the relevant
physics of the system is restricted to the low-energy subspace
defined by the cutoff Nb, the low-energy subspace can be
mapped to the low-energy subspace of the finite Hilbert space.

We investigate analytically and numerically the different
errors associated with the sampling of the HG functions and
with the action of the discrete field operators on the eigen-
states of the discrete harmonic oscillator. These errors are
proportional to the tail weight of the HG functions. The ac-
curacy of the finite representation is of the same order as
the weight of the HG function of the order Nb + 2 outside
the sampling interval. The errors are reduced exponentially
by increasing the number of the discretization points. For
fixed accuracy, the number of discretization points increases
linearly with the size Nb of the low-energy subspace.

The definition of the finite Hilbert space and of the discrete
field operators depends on the boson mass. The optimal boson
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mass is the one that requires the smallest number of discretiza-
tion points for a given accuracy. While a calculation of the
optimal boson mass by minimizing the low-energy cutoff Nb

is difficult in quantum simulations, finding a boson mass that
minimizes the sampling errors of the system wave function is
much easier. The boson mass optimizing the wave function’s
sampling equals the ratio of the sampling intervals that yield
ε small tail weights. For scalar �4 models on small lattices,
we find that the boson mass optimizing the sampling is a good
approximation for the optimal boson mass.

The states belonging to the low-energy subspace are sam-
pled accurately. However, the converse is not true: accurate
sampling does not necessarily imply that the states belong
to the low-energy subspace. We present two examples of
functions that are sampled with high accuracy but have a
significant high-energy component. As a consequence, local
boson distribution measurements are necessary to validate the
discretization parameters of a quantum simulation.

We present a guideline to validate and adjust the discretiza-
tion parameters Nϕ and m that determine the accuracy of the
simulation for optimal performance. The guideline requires
measurements of the local field, local conjugate-field and local
boson distributions. The field and conjugate-field measure-
ments are done by measuring the qubits assigned to represent
the field. For the measurement of the local boson distribution
we present two methods. The first employs quantum state
tomography of the nq-qubit register assigned to describe the
boson field at a particular lattice site. The second method
employs the QPE technique for a discrete harmonic oscillator
evolution operator acting on the local nq qubit register. The
QPE measurements require an ancillary register of size nq +
1. The probability to measure bosons states above the cutoff
is bounded by the probability to measure integers above the
cutoff in the ancillary register. When the bosons number states
above the cutoff have negligible weight, the local boson distri-
bution can be measured with high precision. The guideline’s
first part explains how, based on the field and conjugate-
field distribution measurements, the discretization parameters
can be optimized for optimal sampling. The validation of
the discretization parameters is finally done by measuring
the local boson distribution. The parameters are valid if the
probability to measure bosons above the cutoff is negligible.
Otherwise the number of the discretization points should be
increased.

The methodology presented here can be applied to quan-
tum problems written in the first quantization formalism, since
the position and momentum operators obey the same commu-
tation relation as the field and conjugate-field operators.

The idea of using an interaction-dependent boson mass to
represent the system’s relevant degrees of freedom in the most
efficient way is not new. When the optimal mass is used, the
state of the system has the smallest number of excitations
per site above the boson vacuum. This might be related to
the renormalization theory method of using an interaction-
dependent physical mass in the diagrammatic calculations.
Instead of the bare mass, which has no real physical signif-
icance, the physical mass absorbs many divergent diagrams
from the diagrammatic expansion. In our case, a large number
of bosonic excitations are absorbed by redefining the boson
mass.
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APPENDIX A: NYQUIST-SHANNON SAMPLING
WITH HALF-INTEGER SUMMATION INDICES

Let f (ϕ) be a band-limited function, i.e., f̂ (κ ) = 0 for
|κ| > K , where f̂ (κ ) is the Fourier transform of f (ϕ) defined
by Eq. (5) and K is a positive real number.

The antiperiodicity of the function defined as

f̂ap(κ ) = f̂ (κ ) for κ ∈ [−K, K], (A1)

f̂ap(κ + 2K ) = − f̂ap(κ ) (A2)

implies

f̂ap(κ ) = �ϕ√
2π

∞∑
i=−∞

f (ϕi )e
−iκϕi , with

ϕi =
(

i + 1

2

)
π

K
=
(

i + 1

2

)
�ϕ, (A3)

f (ϕi ) = 1√
2π

∫ K

−K
f̂ap(κ )eiκϕi dκ. (A4)

Since f̂ (κ ) has support only on the interval [−K, K], it can
be written as

f̂ (κ ) = f̂ap(κ )RK (κ ), (A5)

where RK (κ ) is the rectangular function defined as

RK (κ ) =
{

1 for κ ∈ [−K, K]
0 for |κ| > K

. (A6)

The Fourier transforms of RK (κ ) is proportional to the sinc
function uK (ϕ) [see Eq. (13)],

1√
2π

∫ K

−K
eiκϕ dκ =

√
2π

sin Lϕ

πϕ

=
√

2π

�ϕ

sinc

(
ϕ

�ϕ

)
≡

√
2π

�ϕ

uK (ϕ). (A7)

The function f (ϕ) is obtained by performing an inverse
Fourier transform of Eq. (A5),

f (ϕ) = 1√
2π

∫ ∞

−∞
dκeiκϕ �ϕ√

2π

∞∑
i=−∞

f (ϕi )e
−iκϕi RK (k)

=
∞∑

i=−∞
f (ϕi )uK (ϕ − ϕi ). (A8)
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Any band-limited function can be reconstructed from its val-
ues on an infinite and discrete set of sampling points, {ϕi =
(i + 1

2 )�ϕ}i=−∞,∞.

APPENDIX B: SAMPLING ERROR

1. Local wave functions

Consider the function f (ϕ) ∈ S(R). The difference be-
tween f (ϕ) and f̃ϕ (ϕ) defined by Eq. (14) is

f (ϕ) − f̃ϕ (ϕ) = f (ϕ) −
∞∑

i=−∞
f (ϕi )uK (ϕ − ϕi )

+
∑

|i|> Nϕ−1
2

f (ϕi)uK (ϕ − ϕi )

= f (ϕ) − 〈ϕ|PK | f 〉 +
∞∑

i=−∞
(〈ϕi|PK | f 〉

− f (ϕi ))uK (ϕ − ϕi )

+
∞∑

i=−∞
w

f
F (ϕi )uK (ϕ − ϕi )

= w
f
K (ϕ) −

∞∑
i=−∞

w
f
K (ϕi )uK (ϕ − ϕi )

+
∞∑

i=−∞
w

f
F (ϕi )uK (ϕ − ϕi ), (B1)

where w
f
F and w

f
K were defined by Eq. (7) and Eq. (10),

respectively. In the second line of Eq. (B1), we added and
subtracted the band-limited term 〈ϕ|PK | f 〉.

Equaton (B1) can be written as

| f 〉 − | f̃ϕ〉 = ∣∣w f
K

〉− |v〉 + |t〉 (B2)

with

〈ϕ|v〉 =
∞∑

i=−∞
w

f
K (ϕi )uK (ϕ − ϕi ), (B3)

〈ϕ|t〉 =
∞∑

i=−∞
w

f
F (ϕi )uK (ϕ − ϕi ). (B4)

The sampling error is bounded as

‖ f − f̃ϕ‖ �
∥∥w f

K

∥∥+ ‖v‖ + ‖t‖. (B5)

To estimate ‖v‖, we write |v〉 in the conjugate-field basis.
Using Eq. (A7), we have

v(κ ) =
∞∑

i=−∞
w

f
K (ϕi )

�ϕ√
2π

RK (κ )e−iκϕi

= 1

2K

∫
dqw

f
K (q)RK (κ )

∞∑
i=−∞

ei(q−κ )ϕi

=
∞∑

n=−∞

∫
dqw

f
K (q)RK (κ )(−1)nδ(κ − q + 2nK )

= RK (κ )
∞∑

n=−∞
(−1)nw

f
K (κ + 2nK ). (B6)

The (−1)n factor is a consequence of the half-integer values
of the summation index i in Eq. (B6).

The vector v(κ ) can be written as

v(κ ) =
∞∑

n=−∞
vn(κ ), (B7)

where

vn(κ ) = R(κ )(−1)nw
f
K (κ + 2nK ). (B8)

Note that v0(κ ) = R(κ )w f
K (κ ) = 0, since w

f
K (κ ) =

〈κ|QK | f 〉 = 0 for κ ∈ [−K, K].
For n �= 0

‖vn‖2 =
∫ K

−K

∣∣w f
K (κ + 2nK )

∣∣2 dκ =
∫ 2nK+K

2nK−K

∣∣w f
K (κ )

∣∣2 dκ.

(B9)

Now consider the function κ f̂ (κ ). Since f̂ (κ ) ∈ S(R) ⇒
κ f̂ (κ ) ∈ S(R). The tail weight of κ f̂ (κ ) outside the interval
[−K, K], denoted by r f

K is

(
r f

K

)2 =
∫ ∞

−∞
κ2
∣∣w f

K (κ )
∣∣2 dκ=

∞∑
n=−∞

∫ 2nK+K

2nK−K
κ2
∣∣w f

K (κ )
∣∣2 dκ.

(B10)

Since k2 � K2c2(n) for k ∈ [2nK − K, 2nK + K] and

c(n) =
{

2n − 1 for n > 0
2n + 1 for n < 0 , (B11)

the following inequality is true:

(
r f

K

)2 �K2
∞∑

n=−∞
c(n)2

∫ 2nK+K

2nK−K

∣∣w f
K (κ )

∣∣2

= K2
∞∑

n=−∞
c(n)2‖vn‖2. (B12)

Employing Eq. (B7), the Cauchy-Schwartz inequality and
Eq. (B12), one gets

‖v‖ �
∑
n �=0

‖vn‖|c(n)| 1

|c(n)|

�
√∑

n �=0

c(n)2||vn||2
√√√√∑

n �=0

1

c(n)2

= π

2

√∑
n �=0

c(n)2||vn||2 � πr f
K

2K
. (B13)

In Eq. (B13) we used

∑
n �=0

1

c(n)2
= 2

∑
n>1

1

(2n − 1)2 = π2

4
. (B14)
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The square norm ‖t‖2 is given by

‖t‖2 =
∫ ∞

−∞
dϕ

∞∑
i, j=−∞

w
f
F (ϕi)

∗w f
F (ϕ j )

×
∫ ∞

−∞
uK (ϕ − ϕi )uK (ϕ − ϕ j ) dϕ

= �ϕ

∞∑
i=−∞

∣∣w f
F (ϕi )

∣∣2. (B15)

Note that the sum over i in Eq. (B15) is just the Rie-
mann approximation of the integral

∫ |w f
F (ϕ)|2 dϕ. Using the

Euler-Maclaurin integration rule [43], one gets the following
approximation:

‖t‖2 ≈ ∥∥w f
F

∥∥2 + �ϕ

2

(| f (−F )|2 + | f (F )|2)+ O
(
�2

ϕ

)
.

(B16)

Equations (B5), (B13), and (B16) imply

‖ f − f̃ϕ‖ �
∥∥w f

K

∥∥+ ∥∥w f
F

∥∥+ πr f
K

2K

+
√

π

2K
[| f (−F )|2 + | f (F )|2]. (B17)

2. Lattice wave functions

For a wave function f (ϕ) ≡ f (ϕ1, ϕ2, . . . , ϕN ) ∈ S(RN ),
let’s consider a sampling interval [−F, F] ≡ [−F, F ]N ⊂ RN ,
the projector

PF =
∫ F

−F
· · ·

∫ F

−F
|ϕ〉〈ϕ|dϕ (B18)

and the tail vector∣∣w f
F

〉 = (1 − PF )| f 〉 ≡ QF | f 〉. (B19)

Analogously, for the conjugate-field function f̂ (κ) ≡
f̂ (κ1, κ2, . . . , κN ) ∈ S(RN ) let’s consider the sampling
interval [−K, K] ≡ [−K, K]N ⊂ RN , the projector

PK =
∫ K

−K
· · ·

∫ K

−K
|κ〉〈κ|dκ (B20)

and the tail vector∣∣w f
K

〉 = (1 − PK )| f 〉 ≡ QK | f 〉. (B21)

As for the one-dimensional functions, when K is large
| f 〉 ≈ PK | f 〉, the Nyquist-Shannon theorem can be employed
and f (ϕ) can be approximated by a infinite series expansion
of sinc functions products. When F is large, the series can be
truncated to (Nϕ )N terms,

f (ϕ) ≈ f̃ϕ (ϕ) =
Nϕ−1

2∑
i1=− Nϕ−1

2

· · ·
Nϕ−1

2∑
iN =− Nϕ−1

2

f (ϕi1 , . . . , ϕiN )

× uK (ϕ1 − ϕi1 ) . . . uK (ϕN − ϕiN ), (B22)

where ϕi j = i j�ϕ , �ϕ = π
K , and Nϕ = 
 2

π
KF�.

Analogously to Eq. (B1), the difference between a
N-dimensional function f (ϕ) ∈ S(RN ) and its truncated
Nyquist-Shannon sampled approximation f̃ϕ (ϕ) defined by
Eq. (B22) is given by

f (ϕ) − f̃ϕ (ϕ) = w
f
K (ϕ) − v(ϕ) + t (ϕ), (B23)

where

v(ϕ) =
∞∑

i=−∞
wK (ϕi )uK (ϕ − ϕi), (B24)

t (ϕ) =
∞∑

i=−∞
wF (ϕi)uK (ϕ − ϕi ). (B25)

The following notation was used in Eqs. (B24) and (B25):

uK (ϕ) = uK (ϕ1)uK (ϕ2) · · · uK (ϕN )

i = {i1, i2, . . . , iN }.

The norm of the tail vector |w f
K〉 is bounded as

∥∥w f
K

∥∥2 �
N∑

j=1

∫
dκ1

(∫ −K

−∞
dκ j +

∫ ∞

K
dκ j

)

· · ·
∫

dκN | f̂ (κ1, . . . , κ j, . . . , κN )|2

=
N∑

j=1

(∫ −K

−∞
〈κ j |ρ f

j |κ j〉 dκ j +
∫ ∞

K
〈κ j |ρ f

j |κ j〉 dκ j

)

=
N∑

j=1

w
f
jK

2
, (B26)

where

ρ
f
j = Tr1,2,..., j−1, j+1,...,N (| f 〉〈 f |), (B27)

is the local density operator at site j obtained by tracing over
all other sites and

w
f
jK

2 =
∫ −K

−∞
〈κ|ρ f

j |κ〉 dκ +
∫ ∞

K
〈κ|ρ f

j |κ〉 dκ (B28)

is the tail weight of f̂ (κ) at site j.
To estimate ‖v‖, we write |v〉 in the conjugate-field basis.

The Fourier transform of Eq. (B24) yields

v(κ) =
∑

n

vn(κ), (B29)

where

vn(κ) = RK (κ)(−1)n1+n2+···+nN wK (κ + 2nK ), (B30)
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with RK (κ) = 1 for κ ∈ [−K, K] and zero otherwise. The norm of vn is

||vn||2 =
∫ K

−K
dκ1 · · ·

∫ K

−K
dκN |wK (κ + 2nK )|2 =

∫ 2nK+K

2nK−K
|wK (κ)|2dκ. (B31)

Now consider the function κ f̂ (κ) ≡ κ1 . . . κn f̂ (κ1, . . . , κn) ∈ S(RN ). The tail weight of κ f̂ (κ) outside the interval [−K, K],
denoted by r f

K is

r f
K

2 =
∑

n

∫ 2n1K+K

2n1K−K
dκ1κ

2
1 · · ·

∫ 2nN K+K

2nN K−K
dκNκ2

N |wK (κ)|2. (B32)

The following inequality is true:

r f
K

2 � K2N
∑

n

c(n)2
∫ 2nK+K

2nK−K
|wK (κ)|2dκ = K2N

∑
n

c(n)2||vn||2, (B33)

where

c(n) = c(n1)c(n2) · · · c(nN ), (B34)

with c(n) defined by Eq. (B11). Employing the Cauchy-Schwartz inequality

∑
n

|vn(κ)| =
∑

n

|vn(κ)||c(n)| 1

|c(n)| �
√∑

n

|vn(κ)|2|c(n)|2
√∑

n

1

|c(n)|2 (B35)

and

∑
n�=0

1

|c(n)|2 =
(

2
∑
n>0

1

(2n − 1)2 + 1

)N

− 1 =
(

π2

4
+ 1

)N

− 1, (B36)

one gets

||v|| �
(

π2

4
+ 1

)N/2 r f
K

KN
. (B37)

Using Eq. (B25) and the orthogonality properties of sinc functions, one gets

‖t‖2 =
∫

|t (ϕ)|2dϕ = �N
ϕ

∞∑
i=−∞

|wF (ϕi )|2, (B38)

‖t‖2 �
N∑

j=1

�N
ϕ

∞∑
i1=∞

· · ·
∑

|i j |> Nϕ−1
2

· · ·
∞∑

iN =∞
| f (ϕi1 , . . . , ϕi j , . . . , ϕiN )|2

≈
N∑

j=1

∫ ∞

−∞
dϕ1 · · ·

∑
|i j |> Nϕ−1

2

�ϕ · · ·
∫ ∞

−∞
dϕN f (ϕ1, . . . , ϕi j , . . . , ϕN )|2

≈
N∑

j=1

∑
|i j |> Nϕ−1

2

�ϕ〈ϕi j |ρ f
j |ϕi j 〉

≈
N∑

j=1

[
w

f
jF

2 + �ϕ

2

(〈−F |ρ f
j | − F 〉 + 〈F |ρ f

j |F 〉)], (B39)

where

w
f
jF

2 =
∫ −F

−∞
dϕ〈ϕ|ρ f

j |ϕ〉 +
∫ ∞

F
dϕ〈ϕ|ρ f

j |ϕ〉 (B40)

is the tail weight of f (ϕ) at site j. Analogously to Eq. (B16), in Eq. (B39) we used the Euler-Maclaurin integration rule to
approximate the Riemann sum with the integral.

Employing Eqs. (B23), (B26), (B37), and (B39), one has

‖ f − f̃ϕ‖ �
N∑

j=1

[
w

f
jK + w

f
jF +

√
π

2K

(〈−F |ρ f
j | − F 〉 + 〈F |ρ f

j |F 〉)]+
(

π2

4
+ 1

)N/2 r f
K

KN
. (B41)
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Similarly, | f 〉 can be approximated by the field-limited function | f̃κ〉 defined as

f̂ (κ) ≈ f̃κ (κ) =
Nϕ−1

2∑
p1=− Nϕ−1

2

· · ·
Nϕ−1

2∑
pN =− Nϕ−1

2

f̂ (κp1 , . . . , κpN )uF (κ1 − κp1 ) · · · uF (κN − κpN ), (B42)

where κp j = p j�κ , �κ = π
F . The error of the approximation is bounded as

‖ f − f̃κ‖ �
N∑

j=1

[
w

f
jF + w

f
jK +

√
π

2F

(〈−K|ρ f
j | − K〉 + 〈K|ρ f

j |K〉)]+
(

π2

4
+ 1

)N/2 r f
F

F N
, (B43)

where r f
F is the weight of ϕ1ϕ2 · · · ϕN f (ϕ1, . . . , ϕN ) outside the N-dimensional sampling interval [−F, F],

r f
F

2 =
∫

dϕ1 · · ·
∫

dϕNϕ2
1 · · ·ϕ2

N |wF (ϕ1, . . . , ϕN )|2. (B44)

APPENDIX C: ALIASING AND FINITE
FOURIER TRANSFORM

1. Aliased functions

Consider a function f (ϕ) ∈ L2(R) and its Fourier trans-
form f̂ (κ ) given by Eq. (5). Consider also a set of Nϕ field

sampling points {ϕi = i�ϕ}i with i = −Nϕ−1
2 ,

Nϕ−1
2 and a set

of Nϕ conjugate-field sampling points {κp = p�κ}p with p =
−Nϕ−1

2 ,
Nϕ−1

2 , where the discretization intervals are chosen
such that �ϕ�κ = 2π

Nϕ
.

Here we will show that the aliased functions at the sam-
pling points,

fa(ϕi ) = √
�ϕ

∞∑
n=−∞

(−1)n f (ϕi + nNϕ�ϕ ), (C1)

f̂a(κp) =
√

�κ

∞∑
n=−∞

(−1)n f̂ (κp + nNϕ�κ ) (C2)

are related via a finite Fourier transform,

f̂a(κp) = (F̃ fa)(κp) ≡ 1√
Nϕ

Nϕ−1
2∑

j=− Nϕ−1
2

fa(ϕ j )e
−iκpϕ j (C3)

and

fa(ϕ j ) = (F̃−1 f̂a)(ϕ j ) ≡ 1√
Nϕ

Nϕ−1
2∑

p=− Nϕ−1
2

f̂a(κp)eiκpϕ j . (C4)

The proof of Eq. (C3) and Eq. (C4) is similar to the one
presented in Ref. [44] and is sketched below.

The value of the function f (ϕ) at {ϕi = (i +
1/2)�ϕ}i=−∞,∞ is given by

f (ϕi ) = 1√
2π

∞∑
n=−∞

∫ K+2nK

−K+2nK
f̂ (κ )eiκϕi dκ

= 1√
2π

∞∑
n=−∞

∫ K

−K
(−1)n f̂ (κ + nNϕ�κ )eiκϕi dκ, (C5)

where K = Nϕ�κ/2. Equation (C5) reads

f (ϕi ) = 1√
2π�κ

∫ K

−K
f̂a(κ )eiκϕi , (C6)

where

f̂a(κ ) ≡
√

�κ

∞∑
n=−∞

(−1)n f̂ (κ + nNϕ�κ ). (C7)

Since f̂a(κ ) defined by Eq. (C7) is antiperiodic, i.e.,
f̂a(κ ) = − f̂a(κ + Nϕ�κ ), it can be written as

f̂a(κ ) =
√

�κ

�ϕ√
2π

∞∑
i=−∞

f (ϕi )e
−iκϕi . (C8)

The value of f̂a(κ ) at the sampling points {κp}
p=− Nϕ−1

2 ,
Nϕ−1

2

is given by

f̂a(κp) =√
�ϕ

√
�ϕ�κ

2π

∞∑
n=−∞

Nϕ−1
2∑

i=− Nϕ−1
2

× (−1)n f (ϕi + nNϕ�ϕ )e−iκpϕi , (C9)

which implies Eq. (C3). Analogously, Eq. (C4) can be derived.

2. Finite Fourier transform approximation for the continuous
Fourier transform

The difference between the vector defined by the sampling
points of a function and the vector defined by the aliased
function is given by the function’s values outside the sampling
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interval. For example,

�ϕ

Nϕ−1
2∑

i=− Nϕ−1
2

| fa(ϕi ) − f (ϕi )|2 = �ϕ

∞∑
n=−∞

Nϕ−1
2∑

i=− Nϕ−1
2

∣∣w f
F (ϕi + nNϕ�ϕ )

∣∣2 = �ϕ

∞∑
i=−∞

∣∣w f
F (ϕi )

∣∣2

≈ ∥∥w f
F

∥∥2 + �ϕ

2

[| f (−F )|2 + | f (F )|2], (C10)

where the same approximation as in Eq. (B16) was made. Similarly,

�κ

Nϕ−1
2∑

p=− Nϕ−1
2

| f̂a(κp) − f̂ (κp)|2 = �κ

∞∑
n=−∞

Nϕ−1
2∑

p=− Nϕ−1
2

∣∣w f
K (κp + nNϕ�κ )

∣∣2 = �κ

∞∑
p=−∞

∣∣w f
K (κp)

∣∣2

≈ ∥∥w f
K

∥∥2 + �κ

2

[| f̂ (−K )|2 + | f̂ (K )|2]. (C11)

The difference between the finite Fourier transform of the set { f (ϕi)}i and the vector defined by the function f̂ (κ ) at the
conjugate-field sampling points is given by

�κ

Nϕ−1
2∑

p=− Nϕ−1
2

|F̃ f (κp) − f̂ (κp)|2 = �κ

Nϕ−1
2∑

p=− Nϕ−1
2

|(F̃ f )(κp) − (F̃ fa)(κp) + f̂a(κp) − f̂ (κp)|2

� 2�κ

Nϕ−1
2∑

p=− Nϕ−1
2

|(F̃ f )(κp) − (F̃ fa)(κp)|2 + 2�κ

Nϕ−1
2∑

p=− Nϕ−1
2

| f̂a(κp) − f̂ (κp)|2

= 2�ϕ

Nϕ−1
2∑

i=− Nϕ−1
2

| f (ϕi) − fa(ϕi )|2 + 2�κ

Nϕ−1
2∑

p=− Nϕ−1
2

| f̂a(κp) − f̂ (κp)|2

≈ 2
(∥∥w f

F

∥∥2 + ∥∥w f
K

∥∥2
)

+ π

K

[| f (−F )|2 + | f (F )|2]+ π

F

[| f̂ (−K )|2 + | f̂ (K )|2]. (C12)

In the first line of Eq. (C12), we added and subtracted
the aliased function f̂a(κp) = (F̃ fa)(κp). In the last line of
Eq. (C12), we used Eq. (C10) and Eq. (C11).

APPENDIX D: BAND-LIMITED WAVE FUNCTION
WITH LARGE NUMBER OF BOSONS

For our example in Sec. III C, we construct a band-limited
function

f (ϕ) =
∑

i

aiuK (ϕ − ϕi ) (D1)

where we take F = K = √
πNϕ/2 [see Eq. (15)], with

Nϕ = 64.
When the summation over i is restricted to a finite set,

| f (ϕ)| decays as least as |ϕ|−1 with increasing |ϕ| [since
uK (ϕ) ∝ ϕ−1; see Eq. (A7)]. As described below, we choose
the coefficients ai such that | f (ϕ)| decays as |ϕ|−8 at large |ϕ|.
Let’s first take all the coefficients ai = 0 except for the one
corresponding to the indices i = ±q1, (where q1 is an arbitrary

half-integer). If a±q1 = 1, one gets

fq1 (ϕ) = 1√
2�ϕ

[
sin

(
πϕ

�ϕ
− q1π

)
πϕ

�ϕ
− q1π

+
sin

(
πϕ

�ϕ
+ q1π

)
πϕ

�ϕ
+ q1π

]

= − 2
1√
2�ϕ

sin

(
πϕ

�ϕ

− π

2

)[
q1

�2
ϕ

πϕ2
+ 6q3

1

�4
ϕ

πϕ4

+ 120q5
1

�6
ϕ

πϕ6
+ 5040q7

1

�8
ϕ

πϕ8
+ O

(
�10

ϕ

ϕ10

)]
. (D2)

The function fq1 (ϕ) decays as |ϕ|−2 with increasing |ϕ|. We
define our function as

f (ϕ) = c1 fq1 (ϕ) + c2 fq2 (ϕ) + c3 fq3 (ϕ) + c4 fq4 (ϕ)

+ c5 fq5 (ϕ) + c6 fq6 (ϕ)

+ c7 fq7 (ϕ) + c8 fq8 (ϕ), (D3)

where q1, . . . , q8 are half-integer smaller than Nϕ/3 and
c1, . . . , c8 are chosen such that the terms proportional to |ϕ|−2,
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|ϕ|−4, and |ϕ|−6 cancel out. The function can be written as

f (ϕ) = c f sin

(
πϕ

�ϕ

− π

2

)
�8

ϕ

πϕ8
+ O

(
�10

ϕ

πϕ10

)
. (D4)

where c f is a normalization constant term depending on
q1, . . . , q8 and �ϕ .

APPENDIX E: INEQUALITIES FOR LOCAL BOSON
DISTRIBUTION MEASUREMENT

The probability to measure a certain integer k on the ancil-
lary register depends on the quantity ank defined by Eq. (120).

We have

|ank| =
∣∣∣∣∣ 1

2nr

2nr −1∑
x=0

e−i 2π
2nr μnkx

∣∣∣∣∣ = 1

2nr

| sin (πμnk )|
| sin

(
πμnk

2nr

)| (E1)

with

μnk = Ẽn

m0
− k. (E2)

The following properties of ank are true:

(1) |ank| = 1 when μnk = 0. It can be checked by direct
substitution in the first part of Eq. (E1).

(2) |ank| � 1. It follows from the inequality | sin(Mx)| �
M| sin(x)|, which holds for any integer M > 1 and any x (it
can be easily proven by induction). In Eq. (E1) one needs to
take M = 2nr and x = πμnk/2nr .

(3) |ank| � 2/π when |μnk| � 1/2. The proof is similar
to the one in Refs [13,14] for estimating the probability to
measure the nearest integer to the phase factor in a QPE
algorithm. The inequality |x| � | sin(x)| implies

|ank| � 1

2nr

| sin (πμnk )|
|πμnk

2nr | = | sin (πμnk )|
|πμnk| . (E3)

Furthermore, the inequality | sin(x)| � |2x/π |, which holds
for |x| � π/2 [on the interval [0, π/2] sin(x), is above the
line connecting (0, 0) and (π/2, 1)] implies

|ank| � 2

π
for |μnk| � 1

2
. (E4)

For any n � Nb we have μnk � 1/2 when k is the nearest
integer to Ẽn/m0. Thus for any n � Nb there is always a k such
that Eq. (E4) is true. That implies

max
k�Nb

|ank|2 � 4

π2
. (E5)
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