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The quantum coherence of a multipartite system is investigated when some of the parties are moving with
uniform acceleration and the analysis is carried out using the single-mode approximation. Due to acceleration
the quantum coherence is divided into two parts as accessible and inaccessible coherence. First we investigate
tripartite systems, considering both GHZ and W states. We find that the quantum coherence of these states does
not vanish in the limit of infinite acceleration, rather asymptoting to a nonzero value. These results hold for both
single- and two-qubit acceleration. In the GHZ and W states the coherence is distributed as correlations between
the qubits and is known as global coherence. However, quantum coherence can also exist due to the superposition
within a qubit, the local coherence. To study the properties of local coherence we investigate a separable state.
The GHZ state, W state, and separable states contain only one type of coherence. Next we consider the WW̄ and
star states in which both local and global coherences coexist. We find that under uniform acceleration both local
and global coherence show similar qualitative behavior. Finally, we derive analytic expressions for the quantum
coherence of N-partite GHZ and W states for n < N accelerating qubits. We find that the quantum coherence of
a multipartite GHZ state falls exponentially with the number of accelerated qubits, whereas for multipartite W
states the quantum coherence decreases only polynomially. We conclude that W states are more robust to Unruh
decoherence and discuss some potential applications in satellite-based quantum communication and black-hole
physics.
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I. INTRODUCTION

Entanglement is a widely studied quantum resource with
applications in quantum computing [1], quantum algorithms
[2–4], metrology [5], teleportation [6,7], and cryptography
[8,9]. In recent times, it has become more apparent that there
are several other quantum properties such as nonlocality [10],
steering [11], discord [12], and coherence [13], which can
also be used as a resource. Based on their relative presence,
it is known that there is a hierarchy among these different
resources. Of all these resources, quantum coherence is more
extensively present, even when the quantum system does not
have steering, entanglement, or discord. Hence an investi-
gation of quantum coherence can provide more complete
information about the “quantumness” of physical systems.
Consequently, several studies were performed into quantum
coherence with the aim being to understand the fundamental
quantum behavior of systems. Some important investigations
carried out so far are on the measurement of quantum co-
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herence [13,14], the formulation of the resource theory of
quantum coherence [15–18], the effect of external environ-
ments on coherence [19,20], and finally, the applications of
quantum coherence [21–23].

Investigations in quantum information theory are gener-
ally carried out in inertial reference frames. An extension to
noninertial reference frames was discussed through several
works [24–27]. In this context, entanglement in noninertial
frames of reference has been an important area of research
[28–30]. Initial works [31] in this direction considered a fam-
ily of peaked Minkowski wave packets which admits only a
single Unruh mode. Later on, the entanglement of a general
set of states was discussed in a multimode setting [32,33].
Though the multimode approximation is more generally valid,
several studies were still carried out in the single-mode ap-
proximation [34] due to the ease of obtaining a clear analytic
expression. Another approach was also available in the non-
inertial scenario by considering the Unruh-Dewitt detector
model [35,36]. Several interesting results were obtained in
the fields of black-hole physics [31,37–41], quantum error
correction [42], relativistic quantum metrology [43–46], rel-
ativistic teleportation [47–50], and communication [36,51–
53]. Similar studies on relativistic effects on quantum dis-
cord [54,55] have also been performed. Recent experimental
advances have increased the scope of quantum technologies
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from applications in terrestrial situations [56–58] to satellite-
based space-level technologies [59–65]. Hence, we investigate
quantum coherence under uniform acceleration since, com-
pared to entanglement or other resources, it is more commonly
found and can be measured more easily.

The effect of relativistic motion on quantum coherence was
studied in Refs. [66–69]. In Ref. [66], the relativistic effects
on the quantum coherence between a pair of Unruh-Dewitt
detectors was studied. Here the authors found that, com-
pared to entanglement, quantum coherence was more robust
to Unruh decoherence. A generalization of this result to the
tripartite system was performed by the authors of Ref. [68].
Both these works considered a massless scalar field. The
relativistic coherence of a system of Dirac fields was con-
sidered in Ref. [69]. In our work we consider the modes of
a massless scalar field and measure the coherence between
different modes as well as the coherence within a mode. Here
we consider a uniformly accelerating system, which can be
described using a family of peaked Minkowski wave packets,
and consequently, we work in the single-mode setting. We
estimate the information-theoretic change in the coherence of
the system using the �1 norm of coherence. For a complete
study of tripartite systems, we investigate both the stochastic
local operations and classical communication (SLOCC) class
of states, namely, the Greenberger-Horne-Zeilinger (GHZ)
and W class of states. However, these two states have only
global coherence, which arises due to the correlation between
qubits. For completeness sake, we investigate the relativis-
tic effects on separable states with only local coherence, a
type of quantum coherence arising due to the superposition
within qubits. We also look into two different tripartite states,
namely, the WW̄ and star states in which both global and local
coherence coexist.

The structure of the paper is as follows. In Sec. II we
discuss the notion of relativity in the field of quantum infor-
mation and also introduce the �1 norm of coherence, which
is used to measure coherence in our work. The SLOCC class
of states is studied in detail in Sec. III with the GHZ class
and W class forming two different subsections. The separable
state and an introduction to the notions of local coherence
and global coherence are described in Sec. IV. The tripartite
systems with both local and global coherence are analyzed in
Sec. V. In Sec. VI we discuss certain applications related to
satellite-based communication as well as black holes. Finally
in Sec. VII we discuss our results.

II. RELATIVITY AND QUANTUM COHERENCE

To describe events independent of the inertial frame of
reference, the combination of three space and one time di-
mension known as Minkowski space are used. For noninertial
reference frames we need to use the Rindler coordinates. The
Minkowski and Rindler coordinates are related to each other
via a Rindler transformation. For a situation with one spatial
and one time dimension (z, t ), the Minkowski space-time is
divided into four wedges as shown in Fig. 1. The regions F
and P represent the future and the past light cones and the
regions I and II are the two causally disconnected Rindler
regions. The equations |z| = t and |z| = −t describe the fu-
ture and past event horizons. For situations with one spatial

FIG. 1. The (z, t ) plane of the Minkowski coordinates is divided
into four regions of the Rindler coordinates. The solid lines are
the future (F ) and past (P) event horizons and the dashed lines
are the trajectories of the uniformly accelerated observers. Here H
represents the horizon.

and one time dimension (z, t ), the world lines of uniformly
accelerated observers in Minkowski coordinates correspond
to a hyperbola. The two branches of the hyperbola constitute
the regions I and II of the Rindler coordinates. The coordinates
of the two regions are

t = a−1eaξ sinh aτ, z = a−1eaξ cosh aτ, |z| < t,

t = −a−1eaξ sinh aτ, z = a−1eaξ cosh aτ, |z| > t,
(2.1)

where ξ is the space-like coordinate, τ is proper time, and a is
acceleration.

Alice, Bob, and Charlie each have a monochromatic de-
tector with their corresponding frequencies ω1, ω2, and ω3

of a free massless scalar field in a Minkowski space-time. A
maximally entangled GHZ state in the framework reads∣∣0ω1

〉M∣∣0ω2

〉M∣∣0ω3

〉M + ∣∣1ω1

〉M∣∣1ω2

〉M∣∣1ω3

〉M
√

2
, (2.2)

where |0ωi〉M (|1ωi〉M) is the vacuum (single-particle exci-
tation) state of frequency ωi in Minkowski space. Initially,
when all three parties are in inertial frames then |0ω1〉M,
|0ω2〉M, and |0ω3〉M are their respective ground states. Their
excited states can be obtained by applying their corresponding
Minkowski creation operators as follows:

∣∣nωi

〉M =
(
â†

ωi

)n

√
n!

∣∣0ωi

〉M
. (2.3)

If Charlie starts moving with uniform acceleration, the
wave function becomes highly delocalized in space and the
quantum state corresponding to the frequency ω3 can be
specified using Rindler or Unruh coordinates [32]. In both
the Rindler and Unruh basis, the initial Minkowski space is
divided into two regions which are casually disconnected from
each other. Let � be the dimensionless Rindler frequency
and the Unruh modes are also sharply peaked at the same
frequency. Using an analytic continuation argument, it was
shown [32] that the Unruh mode is a purely positive frequency
linear combination of the Minkowski modes. However, the
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definition of positive frequency in the Rindler mode differs
from the positive frequency definition on the Minkowski
mode. So we can relate the Minkowski and the Rindler modes
via the Unruh modes. The field in each of these three bases
are expanded as follows:

φ =
∫ ∞

0
(aω,Muω,M + a†

ω,Mu∗
ω,M) dω

=
∫ ∞

0
(A�,Ru�,R + A†

�,Ru∗
�,R + A�,Lu�,L + A†

�,Lu∗
�,L ) d�

=
∫ ∞

0
(b�,Iu�,I + b†

�,Iu
∗
�,I + b�,IIu�,II + b†

�,IIu
∗
�,II ) d�,

(2.4)

where aω,M is the Minkowski annihilation operator,
A�,R&A�,L are the Unruh annihilation operator for the right
and left regions, and b�,I&b�,II are the Rindler annihila-
tion operators in the I and II regions. The operators obey
the bosonic commutation relations [aω1,M, a†

ω2,M] = δω1ω2 ,

[A�1,R, A†
�2,R

] = [A�1,L, A†
�2,L

] = δ�1�2 , and [b�1,I, b†
�2,I

] =
[b�1,II, b†

�2,II
] = δ�1�2 . For the Unruh mode, the commutator

between operators in the R and L regions vanish. Similarly, the
commutator between the operators in regions I and II vanish.
The creation and annihilation operators of the Minkowski and
Unruh bases do not mix and hence we have |0〉M = |0〉U =∏

� |0�〉U . But the state |0〉U does not coincide with the
Rindler vacuum and we have

|0�〉U =
∑

N

tanhn r�

cosh r�

|n�〉I|n�〉II. (2.5)

Here |n�〉I is the nth excited state of the Rindler I vacuum
state |0�〉I.

We consider a wave packet which is narrowly peaked
in � and for this the Unruh and Rindler commuta-
tors read [A�,R, A†

�,R] = [A�,L, A†
�,L] = 1 and [b�,I, b†

�,I] =
[b�,II, b†

�,II] = 1. Under these ideal conditions, the most
general creation operator of a purely positive Minkowski fre-
quency can be written as

a†
�,U = qLA†

�,L + qRA†
�,R. (2.6)

Here the factors qR and qL are complex numbers with |qR|2 +
|qL|2 = 1. Under these conditions we have

a†
�,U |0�〉U =

∞∑
n=0

tanhn r�

cosh r�

(√
n + 1

cosh r�

)∣∣	n
�

〉
,

∣∣	n
�

〉 = qL|n�〉I|(n + 1)�〉II + qR|(n + 1)�〉I|n�〉II, (2.7)

where, in general, we consider qR = 1 and qL = 0. Let us
consider a Minkowski smearing function which is a Gaussian
in ln(ωl ),

f (ω) =
(

λ

πω2

)1/4

exp
{−1

2
λ[ln(ω/ω0)]2

}
(ω/ω0)−iμ,

(2.8)

When the uniformly accelerated particle has the above smear-
ing function and has negligible overlap with the other states,
then it is well approximated by a single Unruh frequency.
Thus we use this monochromatic wave approximation in

our investigation. Under this condition, the Minkowski and
Rindler modes can be connected via the relations

â†
ω3

= b̂†
�3I cosh r − b̂�3II sinh r = Ŝ�3 b̂†

�3IŜ
†
�3

,

âω3 = b̂�3I cosh r − b̂†
�3II sinh r = Ŝ�3 b̂�3IŜ

†
�3

, (2.9)

where

Ŝ�(r) = exp[r(b̂†
�Ib̂

†
�II − b̂�Ib̂�II )]. (2.10)

Here the operator (Ŝ) effecting the transformation from
Minkowski coordinates to Rindler coordinates is structurally
identical to the two-mode squeezing operator

Ŝ(ζ ) = exp(ζ ∗ab − ζa†b†), (2.11)

in the quantum optics context. Hence for a noninertial
observer, the single-mode Minkowski vacuum becomes a two-
mode squeezed state in the Rindler vacuum

|0ω〉M = Ŝ�3 (r)(|0〉I ⊗ |0〉II )

= 1

cosh r

∞∑
n=0

tanhn r|n�〉I|n�〉II, (2.12)

where cosh r = (1 − e−2π�)−1/2 and � = |ω|c/a. The factors
ω and c are the wave vector and velocity of light, respectively.
Here |n�〉I and |n�〉II are the mode decompositions in Rindler
regions I and region II, respectively. For the single-particle
excitation state we have

|1ω〉M = â†
ω3

∣∣0ω3

〉M = Ŝ�3 (r)b̂†
�3I(|0〉I ⊗ |0〉II )

= 1

cosh2 r

∞∑
n=0

√
n + 1 tanhn r|(n + 1)�〉I|n�〉II.

We observe that, due to the squeezing behavior of a nonin-
ertial observer, a single Minkowski mode can be written as
a superposition of two Rindler modes. Consequently, there
exists coherence between the two Rindler modes. Since these
two modes are not causally connected, this coherence cannot
be experimentally observed. Actually, there is no new coher-
ence created in the system.

To illustrate this let us consider a tripartite system with
Alice and Bob at rest and Charlie moving with constant accel-
eration. The coherence shared by Charlie with Alice and Bob
is split into two parts. One part remains in Rindler mode I and
can be experimentally observed, which we call the accessible
coherence. The other part of the coherence, which is shared
with Rindler mode II, cannot be measured, which we refer to
as inaccessible coherence. This inaccessible coherence quan-
tifies the decrease in coherence due to relativistic effects. A
schematic diagram explaining the accessible and inaccessible
coherence is shown in Fig. 2.
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In a tripartite state when two qubits are accelerated the vacuum (|000〉) and excited (|111〉) states can be expressed as

|000〉ABC = |0〉 ⊗ |0〉 ⊗ |0〉
accl−→ ∣∣0ω1

〉 ⊗ [
Ŝ�2 (r2)

(∣∣0�2

〉
I ⊗ ∣∣0�2

〉
II

)] ⊗ [
Ŝ�3 (r1)

(∣∣0�3

〉
I ⊗ ∣∣0�3

〉
II )

]
= |0〉 ⊗ 1

cosh r2

[ ∞∑
m=0

tanhm r2|m〉I|m〉II

]
⊗

[
1

cosh r1

∞∑
n=0

tanhn r1|n〉I|n〉II

]
, (2.13)

|111〉ABC = |1〉 ⊗ |1〉 ⊗ |1〉
accl−→ ∣∣1ω1

〉 ⊗ [
Ŝ�2 (r2)b̂†

�2I

(∣∣0�2

〉
I ⊗ ∣∣0�2

〉
II

)] ⊗ [
Ŝ�3 (r1)b̂†

�3I

(∣∣0�3

〉
I ⊗ ∣∣0�3

〉
II

)]
= |1〉 ⊗

[
1

cosh2 r2

∞∑
m=0

√
m + 1 tanhm r2|m + 1〉I|m〉II

]
⊗

[
1

cosh2 r1

∞∑
n=0

√
n + 1 tanhn r1|n + 1〉I|n〉II

]
. (2.14)

The modes I and II correspond to the two causally discon-
nected regions in Rindler coordinates of Minkowski space.
Hence mode II is physically inaccessible to Alice, Bob, and
Charlie and is partially traced out. For an inertial observer,
a quantum system in Minkowski space-time is independent
of the nature of the observer. However, when the observer
is moving with constant acceleration, they perceive a thermal
bath with temperature proportional to acceleration. This ther-
mal bath is made up of Rindler particles which are associated
with the vacuum state of Minkowski space. Due to this ther-
mal bath, the observer perceives decoherence of the quantum
system, a phenomenon known as Unruh decoherence.

Quantum coherence is, in general, measured as the distance
between the quantum state under consideration and the closest
incoherent state in the same basis. Several measures of quan-

(a) (b)

FIG. 2. A schematic diagram of coherence in tripartite is shown
where the circles labeled A, B, and C represent the qubit and the blue
arrow between them represents the coherence. Panel (a) contains the
coherence in a tripartite system when all the qubits are in inertial
frame. Panel (b) contains the coherence in the tripartite system when
qubit C is under acceleration. Here qubit C enclosed by the red ellipse
with dashed boundary line is split into two Rindler modes I and
II. Consequently, the coherence shared by qubit C also is split into
two parts. The coherence shared with C of Rindler mode I is the
accessible coherence and the coherence shared with C of Rindler
mode II is the inaccessible coherence. The lighter shades of blue
for the accessible and inaccessible coherence represents their relative
strength to the coherence initially present with C and shown in panel
(a).

tum coherence [13,14,70,71] were presented, but in the first
work on quantum coherence by Baumgratz, Cramer, and Ple-
nio [13] two measures were introduced corresponding to the
entropic class and geometric class of measures. The relative
entropy-based measure of quantum coherence belongs to the
entropic class and the �1 norm of coherence to the geometric
class. Here we use the �1 norm of quantum coherence, defined
as

Cl1 (ρ̂, ρ̂d ) = ‖ρ̂ − ρ̂d‖l1 =
∑
i 	= j

|ρ̂i, j |, (2.15)

where ρ̂ is a given density matrix and ρ̂d is the associated
decohered density matrix defined as

ρ̂d =
∑

i

ρ̂i,i|i〉〈i|. (2.16)

We can observe that this is equivalent to the sum of the off-
diagonal elements of the density matrix. Using interference
fringes, the quantum coherence of a physical system can be
measured using the robustness of coherence [72], a measure
introduced in Ref. [73]. In Ref. [74] it was shown that, for a
pure state, the robustness of the coherence measure is equal to
the �1 norm of coherence. Hence the �1 norm of coherence can
be directly obtained from the interference fringes, providing a
method to compare theoretical results with experimental data.

III. RELATIVISTIC EFFECTS IN THE SLOCC
CLASS OF STATES

Based on the local operations and classical communication
(LOCC), tripartite-entangled quantum states can be divided
into two distinct classes, namely the GHZ class and the W
class. The entanglement distribution is different in these two
class of states. In a GHZ state all the entanglement vanishes
even with the loss of a single qubit, whereas in a W state a
finite amount of entanglement is always present even when we
loose a single qubit. The coherence of these class of states in
inertial frames was discussed in detail in Ref. [20]. We extend
upon this by investigating the coherence when some of the
qubits of the tripartite system are in a noninertial reference
frame. In particular, we probe the loss of coherence due to the
acceleration of qubits.
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A. GHZ class

A GHZ state is maximally entangled and so the loss of just
a single qubit results in the complete loss of entanglement and
coherence. The general form of a tripartite GHZ state is

|GHZ〉ABC = cos θ |000〉ABC + sin θ |111〉ABC, (3.1)

where θ ∈ [0, 2π ) is a parameter generalizing the GHZ state
via the bias between the two basis states. On accelerating qubit
C its Minkowski modes are replaced with their corresponding
Rindler modes and the tripartite states become

|GHZ〉ABC = 1

cosh r

∞∑
n=0

tanhn r

[
cos θ |00〉|n〉I|n〉II

+
√

n + 1

cosh r
sin θ |11〉|n + 1〉I|n〉II

]
. (3.2)

Here, |00〉|n〉I|n〉II and |11〉|n + 1〉I|n〉II refer to the quan-
tum state in which the Minkowski modes of the first two
qubits are |ab〉 and the Rindler modes corresponding to the
third qubit is as |c〉I|c〉II. We know that the modes from the
Rindler I and II regions are not causally connected, so we can
trace out the modes corresponding to Rindler region II and
the density matrix of the state with Alice, Bob, and Charlie
reduces to

ρ̂GHZ = 1

cosh2 r

∞∑
n=0

tanh2n r

[
cos2 θ |00n〉〈00n|

+ cos θ sin θ

√
n+1

cosh r
(|00n〉〈11n+1|+|11n+1〉〈00n|)

+ n + 1

cosh2 r
sin2 θ |11n + 1〉〈11n + 1|

]
. (3.3)

The total coherence in the generalized GHZ state is calcu-
lated using the �1-norm measure of coherence. The sum of the
off-diagonal elements of Eq. (3.3) is

C(ρ̂ ) = 2 sin θ cos θ

cosh3 r

∞∑
n=0

√
n + 1 tanh2n r. (3.4)

Using the trigonometric identities,

∞∑
n=0

tanh2n r = cosh2 r,

∞∑
n=0

(n + 1) tanh2n r = cosh4 r, (3.5)

and the polylogarithm function

Li−1/2(z) =
∞∑

n=0

√
n + 1(tanh2 r)n+1, (3.6)

where the polylogarithm function is defined as

Lin(z) ≡
∞∑

k=1

zk

kn
= z

1n
+ z2

2n
+ z3

3n
+ · · · , (3.7)

FIG. 3. The variation of coherence in a noninertial frame of
reference is studied for a GHZ state under the variation of (a) the
acceleration parameter r and (b) the generalization parameter θ .

the total coherence of a GHZ state when one of the qubits is
in a noninertial frame can be expressed as

C(ρ̂ ) = 2 sin θ cos θ
Li−1/2(tanh2 r)

sinh2 r cosh r
. (3.8)

When Charlie’s qubit is not accelerated (i.e., the r → 0
limit) the corresponding quantum coherence is

C(ρ̂) = 2 cos θ sin θ. (3.9)

The variation of quantum coherence as a function of the
acceleration parameter r is shown in Fig. 3(a) for different θ

values. From the plot for any given value of θ we notice that
quantum coherence has a maximum value when r = 0, cor-
responding to the situation where Charlie’s qubit has not yet
been accelerated. The coherence then decreases with increase
in r and saturates to a finite value. The decrease in coherence
due to uniform acceleration is because some part of it be-
comes inaccessible as it lies in a causally disconnected region.
The saturation value depends on the value of coherence in
the inertial frame (r = 0). Hence, the higher the value of the
coherence in the inertial frame, the higher the saturation value
of coherence in the noninertial frame.

In Fig. 3(b), we study the change of the quantum coherence
as a function of the generalization parameter θ for differ-
ent values of the acceleration parameter r. The coherence
is maximum at θ = (2n + 1)π/4 where n ∈ Z and is zero
at θ = nπ/2, but the maximum value depends on the value
of r.

To study the situation, when more than one party is under
acceleration, we consider the setting where both Bob’s and
Charlie’s qubits are being accelerated. The quantum state
when two qubits are accelerated is

|GHZ〉 = 1

cosh r1

1

cosh r2

∞∑
n,m=0

tanhn r1 tanhm r2

[
cos θ |0〉|m〉I

× |m〉II|n〉I|n〉II +
√

m + 1

cosh r2

√
n + 1

cosh r1
sin θ

× |1〉|m + 1〉I|m〉II|n + 1〉I|n〉II

]
, (3.10)

where the pairs (r2, m) and (r1, n) are the acceleration param-
eter and mode corresponding to Bob’s and Charlie’s qubits,
respectively. To construct the density matrix we first trace out
the contributions from the causally disconnected Rindler II
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mode

ρ̂ = 1

cosh2 r1 cosh2 r2

∞∑
n=0

∞∑
m=0

tanh2n r1 tanh2m r2

[
cos2 θ |0〉|m〉|n〉〈0|〈m|〈n| +

√
m + 1

√
n + 1

cosh r1 cosh r2
cos θ sin θ

× (|0〉|m〉|n〉〈1|〈m + 1|〈n + 1| + |1〉|m + 1〉|n + 1〉〈0|〈m|〈n|) + (m + 1)(n + 1)

cosh2 r1 cosh2 r2
sin2 θ

× |1〉|m + 1〉|n + 1〉〈1|〈m + 1|〈n + 1|
]
, (3.11)

From the density matrix in Eq. (3.11) and using the �1-
norm measure we can determine the total quantum coherence
of the GHZ state when both Bob’s and Charlie’s qubits are
accelerated

C(ρ̂) = 2 sin θ cos θ
Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
,

(3.12)

where we find to be a product of two polylogarithm functions,
one each corresponding to Bob’s and Charlie’s qubits. If Bob
and Charlie have the same acceleration, which would translate
to r1 = r2 = r, the coherence would then be

C(ρ̂ ) = 2 sin θ cos θ

[
Li−1/2(tanh2 r)

sinh2 r cosh r

]2

. (3.13)

The variation of quantum coherence with the parameters
r1 and r2 corresponding to Bob’s and Charlie’s acceleration is
shown through the contour plots in Fig. 4. The contour plots
Figs. 4(a), 4(b), and 4(c) correspond to θ of π/4, π/5, and
π/6, respectively. We find that, with the increase in r1 and
r2, the coherence decreases and saturates to a finite value.
The maximal value and saturation value of coherence are
dependent on the value of θ the parameter generalizing the
GHZ state.

In the literature, the most commonly discussed GHZ state
is (|000〉 + |111〉)/

√
2, corresponding to the generalized GHZ

state with θ = π/4, which has quantum coherence

C(ρ̂) = Li−1/2(tanh2 r)

sinh2 r cosh r
,

C(ρ̂) = Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
. (3.14)

FIG. 4. The variation of quantum coherence of GHZ state with
both r1 and r2 is shown for (a) θ = π/4, (b) θ = π/5, and (c) θ =
π/6, respectively.

Finally, we note that the two-qubit-reduced density matri-
ces corresponding to the GHZ state are diagonal in nature and
hence are incoherent. Thus all the coherences in the GHZ state
are genuinely multipartite in nature and the loss of even one
qubit removes all the coherence in the system.

In Ref. [31], the authors considered a two-qubit system of
which one qubit is moving with a constant acceleration. The
entanglement of the bipartite system vanished in the infinite
acceleration limit. It is well known that entanglement is just
one of the different types of quantum correlations. Out of the
different quantifiers of quantum correlations, quantum discord
measures the total quantum correlations in the system. A study
of quantum discord in a relativistic system [54] shows that
the total quantum correlations does not vanish in the infinite
acceleration limit. Hence a bipartite system in the infinite
acceleration limit has quantum correlations beyond the en-
tanglement type. An investigation on accelerating tripartite
systems was carried out in Ref. [75], where the GHZ and
W states were characterized using the π -tangle measure of
entanglement. The entanglement of the tripartite system did
not go to zero in the infinite acceleration limit, rather it showed
a decrease initially and then attained a saturation value. This is
in stark contrast to the behavior of the bipartite entanglement.
In Ref. [75] it was suggested that the incomplete definition of
π tangle could be the reason as to why the tripartite entangle-
ment shows a different qualitative behavior when compared to
the bipartite entanglement as measured in Ref. [31]. Through
the present work we observe that the quantum coherence of
the GHZ state is qualitatively similar to the change in its
tripartite entanglement. But here the saturation is due to the
nonvanishing behavior of local quantum correlations. How-
ever, for quantum coherence, the �1 norm measures the entire
quantum coherence and the saturation value is a physical fea-
ture of the system. In the case of entanglement, the saturation
value may not be an actual physical feature since π tangle is
inadequate to measure entanglement.

Next we can consider the three-qubit GHZ state given in
Eq. (2.2) in which two qubits are under uniform acceleration.
The GHZ state can be rewritten as (|00〉 + |11〉)/

√
2, where

|0〉 = |00〉 and |1〉 = |11〉 are redundantly encoded logical
qubits. Since the GHZ state can be written in terms of the Bell
state, we would expect the coherences of both these states to
be equal. However, the coherence of the GHZ state when the
logical qubit is accelerated is,

C�1 = [Li−1/2(tanh2 r)/(sinh2 r cosh r)]2, (3.15)

which implies that C(|ψBell〉) 	= C(|ψGHZ〉) is a relativis-
tic system. This is because in the GHZ state, the logical
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noninertial qubit is bigger than the regular qubit considered in
the Bell state. So we find that the quantum coherence coupled
with uniform acceleration helps in distinguishing between
Bell states and GHZ states.

B. W class

The W states exhibit nonmaximal multipartite entangle-
ment, which is not locally equivalent to GHZ-type entangle-
ment, and may therefore be considered a distinct entanglement
class. Unlike GHZ states, W states with large numbers of
qubits are highly robust against qubit loss. The generalized
form of the tripartite W state is

|W 〉g = sin θ cos φ|100〉 + sin θ sin φ|010〉 + cos θ |001〉,
(3.16)

where θ = [0, π ] and φ = [0, 2π ) are the parameters gener-
alzing the W state.

First, let us consider the situation when only one qubit
is in a noninertial frame of reference. Towards this end, we
consider the situation when Charlie’s qubit is in a noniner-
tial frame while Alice and Bob’s qubits are in an inertial
frame. Naturally the Minkowski modes of Charlie’s qubit are
replaced by their corresponding Rindler modes. It is well
known that the Minkowski region can be divided into two
causally disconnected Rindler modes. So we trace out the
second Rindler region from the quantum state since it is in-
accessible for measurement. The total quantum coherence is
then measured using the �1 norm of coherence

C(ρ̂ ) = 2 sin θ cos θ (sin φ + cos φ)
Li−1/2(tanh2 r)

sinh2 r cosh r

+ 2 sin2 θ sin φ cos φ. (3.17)

To understand the relativistic effects on a quantum state
with bipartite distribution, we compute the reduced density
matrices corresponding to the W state. Here, we can trace
out either Alice or Bob’s qubit and the quantum coherence
corresponding to the reduced state is

C(ρ̂BC ) = C(ρ̂AC ) = 2 sin θ cos θ sin φ
Li−1/2(tanh2 r)

sinh2 r cosh r
.

(3.18)

The reduced density matrix obtained after tracing out Char-
lie’s qubit does not have any effects of noninertial nature and
the coherence of the joint state of Alice and Bob is

C(ρ̂AB) = 2 sin2 θ sin φ cos φ, (3.19)

which is the expected standard result. The most common form
of the three-qubit W state is the tripartite state of the form
|W 〉 = 1√

3
(|001〉 + |010〉 + |100〉), and of all the generalized

W states it has the maximum amount of coherence and entan-
glement. In addition, the total coherence and entanglement are
distributed in a symmetric manner. The quantum coherence of
a tripartite system when Charlie’s qubit is accelerated is

C(ρ̂ ) = 4 Li−1/2(tanh2 r)

3 cosh r sinh2 r
+ 2

3
. (3.20)

In the r → 0 limit (inertial limit), it reduces to the standard
value of C(ρ̂ ) = 2. The change in coherence of the tripartite

FIG. 5. The variation of quantum coherence as a function of r for
fixed values of θ and φ is given for (a) the tripartite generalized W
state and (b) the two-qubit reduced systems ρAB, ρBC , and ρAC . Here
the notation W (ρAB ) means the reduced state ρAB corresponding to
the symmetric W state.

generalzed W state is given as a function of the acceleration
parameter r for different values of θ and φ in Fig. 5(a). From
the plots we notice that the quantum coherence is initially
maximum at r = 0 and then it decreases and reaches a satu-
ration value at large values of r. The decrease in coherence
is due to the bifurcation of the Minkowski mode into two
Rindler modes, of which one is disconnected from the rest
of the system. Any coherence due to this mode is inaccessible
to measurements. The saturation value is the amount of acces-
sible coherence, which can never be lost to relativistic motion.
The maximal value and saturation value are dependent on
the generalization parameter. The |W 〉 = 1√

3
(|001〉 + |010〉 +

|100〉) state has the maximal coherence at r = 0 and also has
the maximal saturation value. The quantum coherence of the
reduced density matrices of the generalized W state is shown
in Fig. 5(b). The quantum coherence of the reduced state ρ̂AB

is a constant since the accelerated qubit C has already been
traced out. In the case of ρ̂BC we find that the coherence
is maximal at r = 0 and saturates to a finite value at large
accelerations. The curve represents the coherence of ρ̂BC and
the dashed lines denote the coherence in the state ρ̂AB. In Fig. 6
the contour plot shows the variation of quantum coherence
as a function of the generalization parameter θ and φ for the
acceleration parameters r = 0.01 and r = 4.0.

Next we look at the case where two qubits, the ones corre-
sponding to Bob and Charlie, are being accelerated. Adopting
a similar procedure of replacing the Minkowski states by
Rindler modes and tracing out the Rindler second mode, we
measure the total quantum coherence of the system. The quan-
tum coherence of the tripartite system is

C(ρ̂ ) = 2 sin θ cos θ sin φ

× Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

Li−1/2(tanh2 r2)

sinh2 r2 cosh r2

+ 2 sin θ cos θ cos φ
Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

+ 2 sin2 θ sin φ cos φ
Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
. (3.21)

From Eq. (3.21) we notice that the quantum coherence is
a sum of three terms. The first contains the noninertial deco-
herence from both Bob’s and Charlie’s qubit. The noninertial
contributions from Bob and Charlie appear in the second and
third terms, respectively. At the bipartite level, there are two
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FIG. 6. Contour plot of the quantum coherence C(ρ ) as a func-
tion of θ and φ of the generalized W state when one qubit is in a
noninertial frame is shown for (a) r = 0.01 and (b) r = 4.0.

possibilities, namely: (i) when Alice’s qubit is traced out; (ii)
when either Bob’s qubit or Charlie’s qubit is traced out. The
quantum coherence corresponding to these different situations
are

C(ρ̂BC ) = 2 sin θ cos θ sin φ
Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

× Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
, (3.22)

C(ρ̂AC ) = 2 sin θ cos θ sin φ
Li−1/2(tanh2 r1)

sinh2 r1 cosh r1
, (3.23)

C(ρ̂AB) = 2 sin2 θ sin φ cos φ
Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
. (3.24)

Here Eq. (3.22) refers to the situation where Alice’s qubit is
traced out and in the resulting bipartite system both the qubits
are in noninertial frames. When Bob’s qubit is traced out
the total quantum coherence is given through Eq. (3.23), and
similarly when Charlie’s qubit is traced out Eq. (3.24) gives
the quantum coherence of the resulting bipartite state. For
the W state of the form 1√

3
(|001〉 + |010〉 + |100〉) when both

FIG. 7. In the generalized W state when both Bob’s and Charlie’s
qubits are accelerated, the variation of quantum coherence as a func-
tion of the acceleration parameters r1 and r2 is given for (a) W state;
(b) θ = π/5, φ = π/5; (c) θ = π/6, φ = π/6; and (d) θ = π/3,
φ = π/6.

Bob’s and Charlie’s qubits are accelerated the total quantum
coherence of the system is

C(ρ̂ ) = 2

3

Li−1/2(tanh2 r1)

sinh2 r1 cosh r1

Li−1/2(tanh2 r2)

sinh2 r2 cosh r2

+ 2

3

Li−1/2(tanh2 r1)

sinh2 r1 cosh r1
+ 2

3

Li−1/2(tanh2 r2)

sinh2 r2 cosh r2
. (3.25)

Equation (3.25) reduces to the standard value of C(ρ̂) = 2
for r1, r2 → 0 and the single-qubit acceleration limit when
either r1 or r2 tends to zero. In the contour plot shown in
Fig. 7 we analyze the variation of the quantum coherence as a
function of r1 and r2 namely Charlie’s and Bob’s acceleration
parameter for different values of the generalization parameters
θ and φ. We find that coherence is maximum when r1 and r2

are zero and decreases with increase in their value.
A very interesting limiting case of the generalized W state

occurs when θ = π/2 and φ = π/4. The generalized W state
corresponding to this value is (|100〉 + |010〉)/

√
2. We can

observe that this quantum state is of the biseparable form
AB-C, where the AB pair is entangled and C is separable.
In this state Charlie’s qubit is accelerated, the total quantum
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coherence is C = 1. This is because the only coherence contri-
bution in the system comes because of the correlation between
Alice and Bob’s qubit. On the contrary, when Bob is in a
noninertial frame of reference, the total quantum coherence
in the system is

C(ρ̂ ) = Li−1/2(tanh2 r)

sinh2 r cosh r
. (3.26)

When both Bob and Charlie are in noninertial frames, the
resulting coherence is the same as when Bob is in a noninertial
frame. This is because Charlie’s qubit does not contribute to
the coherence in the system.

For the W state, the tripartite entanglement measured by
the π tangle saturates at a finite value [75]. This is in stark con-
trast with the results obtained for the bipartite entanglement
in Ref. [31]. This is again due to the insufficiency in using π

tangle as a measure of entanglement. For a W state, the vari-
ation of the quantum coherence due to uniform acceleration
is similar to the change in the entanglement of the system.
However, the �1 norm measure of coherence is a complete
measure, unlike the π -tangle measure of entanglement used
in Ref. [75]. The saturation nature of quantum coherence is
due to the presence of nonclassical correlations at relativistic
velocities. This result holds for single qubit as well as two-
qubit accelerated systems.

IV. SEPARABLE STATES

The SLOCC class of classification applies to entangled
states. However, in general quantum states may not be entan-
gled. An example of a separable state is |000〉 and for this state
ρ̂ = ρ̂d in the computational basis, and so it is an incoherent
state. Here we would like to mention that one of the crucial
properties of quantum coherence is that it is a basis-dependent
quantity. Hence studying a separable quantum state | + ++〉
where |+〉 = (|0〉 + |1〉)/

√
2 in the σ z basis we find quantum

coherence in the system. To find the relativistic effects, we ac-
celerate either one or two of these qubits. For the accelerated
qubits we replace the Minkowski states by their corresponding
Rindler modes. We already know that there are two causally
disconnected Rindler modes, so we trace out one of the modes
and compute the quantum coherence of the rest of the system.
Here, when only Charlie’s qubit is accelerated, the quantum
coherence computed using the �1-norm measure is

C(ρ̂ ) = 3 + 4 Li−1/2(tanh2 r)

cosh r sinh2 r
. (4.1)

In the r → 0 limit, the inertial value of the �1-norm coherence
of the system is recovered. When both Charlie’s and Bob’s
qubit are accelerated the quantum coherence is,

C(ρ̂ ) = 1 + 2 Li−1/2(tanh2 r1)

cosh r1 sinh2 r1
+ 2 Li−1/2(tanh2 r2)

cosh r2 sinh2 r2

+ 2 Li−1/2(tanh2 r1)

cosh r1 sinh2 r1

Li−1/2(tanh2 r2)

cosh r2 sinh2 r2
. (4.2)

From this result, in the appropriate limiting conditions, we
can recover the single-qubit result as well as the inertial value.

The coherence measured in the GHZ state, W state, and the
separable | + ++〉 state is the total amount of quantum coher-

ence present in the states. However, the type of coherence in
the GHZ and W states is fundamentally different from the type
of coherence present in the | + ++〉 state. In the GHZ and
W states, the coherence arises due to the correlation between
the qubits. Meanwhile the coherence in the | + ++〉 state is
because of the superposition between the levels within each
qubit. These two fundamentally different forms of coherences
were identified in Ref. [14]. The coherence arising due to the
correlation between the qubits is the global coherence of the
system and the coherence resulting from the superposition of
the levels within a qubit are called local coherence. These
two forms of coherences are complementary to each other
in a sense that the increase in the global coherence causes
a decrease in the local coherence and vice versa. With an
increase in the acceleration the quantum coherence decreases
and it saturates at a finite value. To understand this for the
| + ++〉 state, we can consider the single-qubit |+〉 system
which we can write as

|+〉 =
∞∑

n=0

tanhn r√
2 cosh r

(
|n〉I|n〉II +

√
n + 1

cosh r
|n + 1〉I|n〉II

)
.

(4.3)

Here we can observe that the initial superposition between
two levels is spread out between the four modes. Of these two
modes corresponding to Rindler region II are traced out and
hence there is a loss of superposition and consequently a loss
of coherence. This loss is the inaccessible coherence when the
system undergoes uniform acceleration.

The GHZ and W states represents one extreme where the
global coherence is maximum with zero local coherence and
the | + ++〉 denotes the other extreme where the local coher-
ence is maximum with no global coherence. However, there
are some pure quantum states in which both these types of
coherence coexist. For such states we can quantify the global
and local coherence using the formula

CG = ‖ρ̂ − π (ρ̂)‖l1 , (4.4)

CL = ‖π (ρ̂ ) − [π (ρ̂)]d‖l1 . (4.5)

Here π (ρ̂) = ρ̂1 ⊗ · · · ⊗ ρ̂N is the product state of the
density matrix ρ̂ where the reduced density matrix ρ̂1 =
Tr(2,...,N ) ρ̂. The quantum state [π (ρ̂)]d is the decohered den-
sity matrix corresponding to π (ρ̂) the product state. The total
quantum coherence of the system CT measures coherence con-
tributions from correlations as well as local superpositions.
In Ref. [14] a trade-off was observed between the global
coherence and local coherence.

V. TRIPARTITE PURE STATES WITH LOCAL
AND GLOBAL COHERENCE

In this section we study the noninertial effects when both
local and global coherences are present in the system. Towards
this end, we analyze the quantum coherence of tripartite WW̄
and star states. The WW̄ state is a symmetric tripartite state
with both local and global coherence. On the contrary the
star state is an asymmetric state with both local and global
coherences.
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FIG. 8. A plot of the total coherence (CT ), global coherence (CG), and local coherence (CL ) for (a) the WW̄ state, (b) star state when the
central qubit is accelerating and (c) star state when the peripheral qubit is accelerating.

A. WW̄ state

The three-qubit WW̄ state [76] is a linear superposition of
the tripartite W state and the W̄ state as shown below

|WW̄ 〉 = 1√
2

(|W 〉 + |W̄ 〉),

|W 〉 = 1√
3

(|001〉 + |010〉 + |100〉),

|W̄ 〉 = 1√
3

(|011〉 + |101〉 + |110〉). (5.1)

First, we consider the situation where a single qubit is in a
noninertial frame, that is to say only Charlie’s qubit is being
accelerated. After tracing out one of the Rindler region, the
total quantum coherence of the resulting density matrix is

CT (ρ̂ ) = 2 + 3 Li−1/2(tanh2 r)

cosh r sinh2 r
. (5.2)

In the r → 0 limit the quantum coherence recovers the inertial
limit.

The single-qubit reduced density matrices of the WW̄ state
in Eq. (5.1) are

ρ̂A = ρ̂B = ρ̂C =
(

1
2

1
3

1
3

1
2

)
. (5.3)

From the reduced density matrix we notice that the single-
qubit state has a finite amount of quantum coherence.
Consequently, the product state ρ̂A ⊗ ρ̂B ⊗ ρ̂C will also have
some coherence which is the local coherence of the system.
Using Eqs. (4.4) and (4.5) we find the global and local coher-
ence when one of the qubits is in noninertial frame

CG(ρ̂ ) = 2

9
+ 31 Li−1/2(tanh2 r)

27 cosh r sinh2 r
, (5.4)

CL(ρ̂) = 16

9
+ 50 Li−1/2(tanh2 r)

27 cosh r sinh2 r
. (5.5)

The behavior of the total coherence, global coherence, and
local coherence are shown in Fig. 8(a). From the plots we
find that all the different forms of coherences show identi-
cal behavior, and they decrease with increase in acceleration
and attain a saturation value at higher values of acceleration.
The results show that both global and local coherence have
similar decoherence properties. Hence Unruh decoherence

cannot distinguish between the two forms of coherence viz
the one arising due to the correlations between the qubits and
the quantumness due to the superposition between the levels
within a qubit.

To study the relativistic effects when two qubits are in
noninertial frames, we uniformly accelerate both Bob’s and
Charlie’s qubits. The total quantum coherence of the WW̄
state in this scenario is

CT (ρ̂) = 4

6
+ 8 Li−1/2(tanh2 r1)

6 cosh r1 sinh2 r1
+ 8 Li−1/2(tanh2 r2)

6 cosh r2 sinh2 r2

+ 10 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

6 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.6)

The total coherence is present as both global coherence
arising from interqubit correlations and also as local coher-
ence coming from intraqubit superpositions. The measured
values of the global and local coherence of the system are

CG(ρ̂) = 2 Li−1/2(tanh2 r1)

9 cosh r1 sinh2 r1
+ 2 Li−1/2(tanh2 r2)

9 cosh r2 sinh2 r2

+ 25 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

27 cosh r1 sinh2 r1 cosh r2 sinh2 r2
, (5.7)

CL(ρ̂) = 2

3
+ 10 Li−1/2(tanh2 r1)

9 cosh r1 sinh2 r1
+ 10 Li−1/2(tanh2 r2)

9 cosh r2 sinh2 r2

+ 20 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

27 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.8)

We find that the total coherence, global coherence, and
local coherence reduce to their respective inertial values when
r1, r2 → 0. Also we find that the total coherence is a sum of
the global and local coherence for the �1 norm of coherence.

B. Star state

A star state is an asymmetric quantum state [77,78], so
called because a central qubit is entangled with the peripheral
qubits collectively, but upon tracing out the central qubit the
peripheral ones have a separable form

ρ̂B,C = trA(|S〉A,B,C 〈S|A,B,C ) = ρ̂B ⊗ ρ̂C . (5.9)

In the tripartite star state we have a central qubit A which is
entangled to other qubits B and C individually. The qubits B
and C are not entangled with each other and are referred to as
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peripheral qubits. The form of the tripartite star state is

|S〉 = 1
2 (|000〉 + |100〉 + |101〉 + |111〉). (5.10)

When the central qubit A is accelerated, the total quantum
coherence in the system is

CT (ρ̂) = 1 + 2 Li−1/2(tanh2 r)

cosh r sinh2 r
. (5.11)

The star state has both global coherence and local coherence
and they are

CG(ρ̂) = −1

4
+ 7 Li−1/2(tanh2 r)

8 cosh r sinh2 r
, (5.12)

CL(ρ̂ ) = 5

4
+ 9 Li−1/2(tanh2 r)

8 cosh r sinh2 r
. (5.13)

When the peripheral qubit B is being accelerated, the to-
tal coherence of the system calculated using the �1 norm of
coherence is

CT (ρ̂) = 3

2
+ 3 Li−1/2(tanh2 r)

2 cosh r sinh2 r
. (5.14)

The corresponding global of the system is

CG(ρ̂) = 1

4
+ 3 Li−1/2(tanh2 r)

8 cosh r sinh2 r
. (5.15)

The local coherence of the system on accelerating the
peripheral qubit is the same as the local coherence when the
central qubit is under acceleration, the expression for which
is given in Eq. (5.13). In both the cases, namely when the
central qubit and the peripheral qubit are in the r → 0 limit,
the results corresponding to the inertial frame are recovered.
For the star states, the variation of quantum coherence is qual-
itatively similar when both the central and peripheral qubits
are accelerated. The global local and total coherence have
a maximum value in the inertial frame and decrease with
acceleration and attain a saturation value for large values of
the acceleration, as shown in Fig. 8. From the analysis of the
two different situations where either the central qubit or the
peripheral qubit is being accelerated, we find that both global
and local coherence have similar decoherence properties. This
shows that Unruh decoherence affects all kinds of quantum-
ness equally.

Next we look at the situation where two qubits are in non-
inertial frames of reference. Due to the asymmetry of the star
states, there are two possibilities for this situation viz: (i) when
a peripheral qubit and a central qubit are accelerated; (ii) when
both the peripheral qubits are accelerated. The first situation
can be analyzed when both Bob’s and Charlie’s qubits are
simultaneously accelerated. The total coherence of the system
in this case is

CT (ρ̂ ) = 1

2
+ Li−1/2(tanh2 r1)

cosh r1 sinh2 r1
+ 1

2

Li−1/2(tanh2 r2)

cosh r2 sinh2 r2

+ Li−1/2(tanh2 r1)

cosh r1 sinh2 r1

Li−1/2(tanh2 r2)

cosh r2 sinh2 r2
. (5.16)

Under the same conditions the global and local coherence
of the star state are

CG(ρ̂) = 1

2
+ 1 Li−1/2(tanh2 r1)

4 cosh r1 sinh2 r1
− 1 Li−1/2(tanh2 r1)

4 cosh r2 sinh2 r2

+ 5 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
, (5.17)

CL(ρ̂) = 1

2
+ 3 Li−1/2(tanh2 r1)

4 cosh r1 sinh2 r1
+ 3 Li−1/2(tanh2 r2)

4 cosh r2 sinh2 r2

+ 3 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.18)

In the second case, when Alice and Bob’s qubits are being
accelerated, the total coherence of the system is

CT (ρ̂) = 1

2
+ Li−1/2(tanh2 r1)

cosh r1 sinh2 r1
+ Li−1/2(tanh2 r2)

cosh r2 sinh2 r2

+ 1

2

Li−1/2(tanh2 r1)

cosh r1 sinh2 r1

Li−1/2(tanh2 r2)

cosh r2 sinh2 r2
. (5.19)

The corresponding global and local coherences are

CG(ρ̂) = Li−1/2(tanh2 r1)

4 cosh r1 sinh2 r1
+ Li−1/2(tanh2 r2)

4 cosh r2 sinh2 r2

+ Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
, (5.20)

CL(ρ̂) = 1

2
+ 3 Li−1/2(tanh2 r1)

4 cosh r1 sinh2 r1
+ 3 Li−1/2(tanh2 r2)

4 cosh r2 sinh2 r2

+ 3 Li−1/2(tanh2 r1) Li−1/2(tanh2 r2)

8 cosh r1 sinh2 r1 cosh r2 sinh2 r2
. (5.21)

All the different quantum coherences attain their inertial
values in the limit r → 0. From the expressions of the total,
global, and local coherence we find that the CT = CG + CL for
all the different cases of star states.

In the tripartite systems like WW̄ states and star states,
the total coherence in the system is distributed as global and
local coherence. Here, by the word global coherence, we mean
coherence arising due to all the types of nonclassical correla-
tions (both local and entanglement type) between the qubits.
Hence the global coherence does not fall to zero in the infinite
acceleration limit and rather saturates to a finite value due to
the presence of local correlations. The effect of noninertial
motion on local coherence has not been investigated before.
From our results we can see that the intraqubit superpositions
do not completely vanish in the infinite acceleration limit,
which is a very interesting result. In the tripartite systems
when either one or two of the parties are in noninertial frames
of reference, the accelerated qubits get split into two modes
corresponding to the two Rindler regions. The degradation of
quantum coherence is because part of the coherence becomes
inaccessible to experimental measurement. Both the global
and local coherence decay at the same rate. Hence we find that
the acceleration affects the interqubit and intraqubit properties
in the same manner.
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VI. APPLICATIONS

A. Relativistic effects on multipartite state
distributed over a network

Let us consider a network of satellites sharing a multipar-
tite quantum state. An important study could be about the
effect of acceleration on the quantum coherence of the mul-
tipartite system. To understand this, we measure the quantum
coherence of the N-partite GHZ and W state. In the N-partite
state, we have n number of uniformly accelerated qubits. First
let us consider an N-partite GHZ state

|GHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ). (6.1)

The total quantum coherence is C�1 (ρ̂) = 1 for this state. Out
of the N qubits if n qubits undergo acceleration, the quantum
coherence of the state is

C(ρ̂ ) =
n∏

k=1

Li−1/2(tanh2 rk )

sinh2 rk cosh rk
. (6.2)

Let Ck (ρ̂) be the quantum coherence of the N-partite sys-
tem when only the kth qubit is being accelerated. Using this
the coherence of the N-partite system with n accelerating
qubits can be written as

C(ρ̂ ) =
n∏

k=1

Ck (ρ̂). (6.3)

When all the satellites have the same acceleration, the
quantum coherence simplifies to C(ρ̂ ) = [Ck (ρ̂)]n. From this
result we can see that the quantum coherence of the N-partite
GHZ state falls exponentially with the increase in the number
of accelerating satellites. This exponential fall is a manifesta-
tion of the genuinely multipartite form of quantum coherence
where the loss of even a single qubit makes the state com-
pletely incoherent. Hence a small acceleration of each of the
m qubits leads to a huge loss of coherence in the entire system.
To put this into a numerical perspective let us consider an 11-
qubit GHZ state without any of the qubits under acceleration.
The quantum coherence of such a system is C�1 (ρ̂ ) = 1, and
let us consider r = 2.0 for each of the qubit. The coherence
when only one qubit is accelerating is C�1 (ρ̂) = 0.8988. Now
when ten qubits start accelerating, we can see that the total co-
herence reduced to C�1 (ρ̂) = (0.8988)10 = 0.3439. For very
large values of n, the quantum coherence C�1 → 0. Since the
reduction of quantum coherence depends on its distribution in
a multipartite system, the results obtained here might hold for
entanglement as well. This is because coherence and entan-
glement are distributed in a similar manner. So we can expect
entanglement to fall exponentially similarly to quantum co-
herence. Hence when quantum information is shared between
a network of satellites, the quantum coherence is a function
of the number of accelerating satellites and the amount of
acceleration.

Next we consider the N-partite W state

|W 〉 = 1√
N

(|00 · · · 01〉 + |00 · · · 10〉 + · · · + |10 · · · 00〉).

(6.4)

In the nonrelativistic scenario the total quantum coherence of
this state in the noninertial frame of reference is C�1 (ρ̂) = N −
1. Here if n qubits start accelerating, the quantum coherence
of the N-partite state changes to

C�1 (ρ̂) = 2

N

∑
1�i, j�n

i< j

Li−1/2(tanh2 ri)

sinh2 ri cosh ri

Li−1/2(tanh2 r j )

sinh2 r j cosh r j

+ 2

N
(N − n)

N∑
i=1

Li−1/2(tanh2 ri )

sinh2 ri cosh ri

+ (N − n)[N − (n + 1)]

N
. (6.5)

In the large N limit, when n ≈ N , the first term which
is a product of two polylog functions dominates over the
second and the third terms. Hence we would see the quantum
coherence falling as a polynomial function of second order.
When n � N in the large N limit, the third term dominates
over the first and second terms. Consequently, the decrease
of quantum coherence due to the relativistic effects will be
minimal under such situations. If acceleration is the same for
all the satellites then we have

C�1 (ρ̂ ) = 2

N

n(n − 1)

2

[
Li−1/2(tanh2 ri )

sinh2 ri cosh ri

]2

+ 2

N
(N − n)n

[
Li−1/2(tanh2 ri )

sinh2 ri cosh ri

]

+ (N − n)[N − (n + 1)]

N
. (6.6)

Since the quantum coherence of the N-partite W state is
(N − 1), it is not possible to compare it with the coherence
loss of the GHZ state. To make a comparison between the
coherence loss of the GHZ and W states we define

CN
�1

(ρ̂) = CR
�1

(ρ̂ )

CNR
�1

(ρ̂ )
, (6.7)

where CN
�1

is the normalized amount of quantum coherence,
CR

�1
is the amount of relativistic coherence, and CNR

�1
is the

quantum coherence of the no-relativistic state. For the GHZ
state CNR

�1
= 1 and so CN

�1
(ρ̂ ) = CR

�1
(ρ̂). In the case of the W

state, for r = 2.0, CR
�1

(ρ̂) = 8.2430, and CNR
�1

= N − 1. The
normalized amount of quantum coherence in the system when
10 out of 11 qubits are being accelerated is CN

�1
= 0.8243.

Hence, for the same number of quantum states and accel-
eration, we find that the quantum coherence of the W state
is more robust to Unruh decoherence when compared with
the GHZ state. This implies that, in a multipartite system,
sharing quantum coherence in a bipartite manner protects it
from decoherence due to relativistic effects.

Figures 9(a) and 9(b) depict the relativistic quantum coher-
ence of the system. In Fig. 9(a) we plot the change in quantum
coherence with r for both GHZ and W states. Here we con-
sider two situations where one qubit is being accelerated or
ten qubits are being accelerated. In the first case, where one
qubit is under acceleration, the loss of coherence is minimal.
Compared to the first case, we find that the coherence loss is
much higher when ten qubits are accelerated. Also we find that
among these states, the W state with increasing accelerating
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FIG. 9. A plot of the variation of the normalized decoherence
(a) with the acceleration parameter r and (b) with the number of
accelerated qubits n for a fixed values of r = 1.5 and r = 2.0. The
total number of qubits in the system is N = 11.

qubits is more robust to decoherence. In Fig. 9(b) we plot the
coherence as a function of the number of accelerating qubits.
We find that the loss of coherence is higher with the increase
in the number of accelerating qubits. Also, for a given number
of accelerating qubits, the GHZ states experience a higher loss
of coherence.

B. Coherence degradation at infinite acceleration

The entanglement degradation in the highly relativistic sit-
uation was explained in Ref. [31] in the context of a bipartite
systems. In Ref. [31], the authors considered the two-qubit
case where Alice is an inertial observer and Bob being nonin-
ertial with uniform acceleration. In the infinite acceleration
limit, noninertial Bob is close to the Rindler horizon, see
Ref. [31], which can be considered as the event horizon from
the perspective of a black hole. It is well known that a spher-
ical nonrotating static black hole can be described using a
Schwarzchild space-time. This can be approximated by the
Rindler coordinate in Minkowski space-time in the infinite
acceleration limit [79]. Hence, in the existing scenario, we
consider Alice and Bob to be close to the event horizon, such
that inertial Alice falls into a static black hole and accelerating
Bob close to the event horizon escapes from falling into it.

Similarly, our work investigates the quantum coherence
degradation in tripartite systems due to relativistic effects.
Here we consider three qubits, one each in the possession of
Alice, Bob, and Charlie. Degradation of quantum coherence
was observed when either a single qubit or two qubits were
being accelerated. From our results in Sec. III, for both GHZ
and W states we notice a decrease in quantum coherence, but
the coherence freezes at a finite amount in the infinite accel-
eration limit. The entire coherence in the GHZ and W state is
due to the correlations between the qubits. In a similar context
to understand the relativistic effects on local coherence we
study the | + ++〉 separable state. The qualitative behavior
of the local coherence in the | + ++〉 state is similar to that
of the global coherence of the GHZ and W states. Hence we
conclude that, when an inertial observer falls into a black hole,
the quantum correlations and quantum superposition shared
with the noninertial observer does not vanish completely.

VII. RESULTS AND DISCUSSION

The relativistic effects on the quantum coherence of a
multipartite system is investigated using the �1-norm measure
of coherence. Initially, all the qubits are in an inertial frame

and can be described using Minkowski space-time coordi-
nates. When some of the qubits are under acceleration, the
Minkowski space corresponding to them is divided into two
causally disconnected regions. From the Minkowski modes,
the Rindler modes can be obtained via the Unruh modes.
When we consider a Gaussian Minkowski smearing function
it can be approximated by a single Unruh mode. Under the
monochromatic approximation we can describe the states us-
ing Rindler coordinates in the Minkowski space-time. Hence
the quantum coherence initially present in the Minkowski
coordinates is distributed between the two Rindler coordinates
of which only one is experimentally accessible. The coherence
which can be measured in the accessible Rindler region is
called the accessible coherence. The coherence corresponding
to the other Rindler region is called the inaccessible coherence
since it cannot be experimentally measured.

First we investigate the tripartite quantum systems. Based
on the SLOCC classification, the tripartite states are classified
into the GHZ class and the W classes. For both the GHZ and
W states we find that the quantum coherence decreases with
the increase in acceleration and attains a saturation value for
very high accelerations. Here we note that coherence can exist
due to correlations between qubits, which is known as global
coherence. Also, coherence may arise due to superposition
between the levels within a qubit, referred to as local coher-
ence. The global coherence is the only coherence present in
the GHZ and the W states.

Next we consider a separable state of the form | + ++〉
to understand the relativistic effects on local coherence. The
local coherence also decreases with the increase in accelera-
tion and saturates at higher acceleration. The local coherence
and the global coherence are complementary to each other
and the total coherence is a combination of these two types
of coherences. Some tripartite quantum states have both lo-
cal and global coherence. As an example we consider two
such quantum states, namely WW̄ and star states. In the WW̄
state, the global coherence is distributed equally between the
three qubits. There is an asymmetric distribution of quantum
coherence in the star states. For both these states, all the
different forms of coherence, namely the global, local, and
total coherence, decreases with an increase in acceleration.

The entanglement of the bipartite system decreases due to
relativistic effects and reaches zero in the infinite acceleration
limit [31]. However, the tripartite entanglement measured in
Ref. [75] using the π tangle does not go to zero for higher
values of acceleration. Due to relativistic effects the quantum
discord of a system also does not go to zero in the infinite
acceleration limit [54]. For the tripartite entanglement, the
nonvanishing nature is because the π tangle is not a complete
measure of entanglement. However, for the quantum discord
this is a fundamental feature of the underlying quantum cor-
relations. From our work we find that there is a qualitative
relationship between the total quantum correlations and the
quantum coherence of a relativistic quantum system.

In quantum information theory, it is not possible to dis-
tinguish between Bell states and the GHZ states through an
estimation of entropy. However, we can calculate the quantum
coherence of these two states when they are in an inertial
frame of reference. Here we again find that C(|ψBell〉) =
C(|ψGHZ〉) and so we will not be able to distinguish between
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FIG. 10. A schematic illustration of the bifurcation of the Bell
state, which displays linear loss of coherence into two extreme
classes of states viz. GHZ class with exponential loss of coherence
and W class with polynomial loss of coherence.

these two states. This is because the GHZ state 1√
2
(|000〉 +

|111〉) can be rewritten as an equivalent Bell state 1√
2
(|00〉 +

|11〉) where |0〉 = |00〉 and |1〉 = |11〉 are redundantly en-
coded logical qubits encoding the same quantum information.
Next we consider the situation where part of the system is
moving with constant acceleration. When the single qubit in
GHZ and Bell states moves with constant acceleration it is not
possible to distinguish between them. On the contrary when
the logical qubit of the GHZ state is in an accelerated motion,
then we have C(|ψBell〉) 	= C(|ψGHZ〉) and the reason for this
is that the size of the logical qubit under uniform acceleration
is bigger than that of the regular qubit of the Bell state.
This result is very interesting from a quantum information
theory perspective where, in general, we cannot distinguish
between Bell and GHZ states or between multipartite GHZ
states with a different number of qubits. Nevertheless, a mea-
surement of quantum coherence combined with relativistic
motion can differentiate them. Thus the coherence measure-
ment of accelerated systems can be used in quantum-state
discrimination.

Next we consider an N-partite GHZ state and W state
and estimate the quantum coherence when n < N qubits are
accelerated. The GHZ and W states represent the two ex-
tremes of coherence sharing. In the GHZ state, the coherence
is present in a maximally entangled multipartite manner such
that the loss of a single qubit destroys the entire coherence
in the system. We find that in a GHZ state with the number
of accelerating qubits n increases, thus the coherence falls
exponentially. The coherence in a W state is shared in a local
bipartite fashion. Here in the case of the W states we observe
that the coherence falls polynomially with the increase in the
number of accelerating qubits. In Fig. 10, through a flow chart
style, we illustrate the quantum coherence decrease as we
move from n = 2 to n > 2 quantum system.

The Bell states describe the maximally entangled states
in a two-qubit system. When one of the qubits becomes
noninertial, then the coherence of the Bell state is given by
C�1 = Li−1/2(tanh2 r)/(sinh2 r cosh r). There is only one way
to entangle or correlate in a bipartite state. When we move to
multipartite systems, there is more than one way to correlate
the states. The GHZ and W states denote the two extreme

forms of correlation sharing where it is shared in a multipartite
fashion in the first case and in a bipartite manner in the later
one. When more than one qubit is accelerated, the coherence
falls exponentially in the GHZ state and polynomially in the
W state. As we move from the bipartite to the multipartite
case, the linear fall of coherence observed in Bell-type states
changes to an exponential fall for the GHZ states and polyno-
mial decrease for the W state. Hence the Bell-type maximally
entangled state clearly bifurcates into two extreme classes
of entangled states with exponential fall (GHZ class) and
polynomial fall (W state) of coherence. This also proves that
the W -state is more robust to Unruh decoherence compared
to the GHZ state. This is because the coherence is shared in a
genuinely multipartite manner in a GHZ state, but in a W state
it is shared only in a bipartite way. For a large N W state, the
loss of a few qubits results in a W -like state. This result might
be useful for satellite-based quantum communication, where
some of the satellites are moving with very high velocities.
In Ref. [80] the quantum coherence of multipartite W states
for the Dirac field was calculated in terms of the Kruskal
modes in certain limiting cases. But in our work, we consider
multipartite W states of bosonic modes and compute quantum
coherence in a very general setting where an arbitrary number
of qubits are being accelerated. In our method the Minkowski
modes are converted into Rindler modes in the noninertial
frame.

A spherical nonrotating black hole is described by a
Schwarzchild space-time. In the infinite acceleration limit,
the Schwarzchild space-time can be approximately described
by Rindler coordinates in Minkowski space-time. Hence our
investigation in the infinite acceleration limit can be used to
analyze quantum coherence in the context of black holes.
Our study shows that when Alice falls into a black hole, she
might still share quantum coherence with Bob and Charlie
who are escaping from the black hole. Hence we conclude that
quantum correlations and the quantum superposition present
in a system do not completely vanish in the relativistic limit.

In our work we use the single-mode approximation where
we use single frequency global modes. This can be experi-
mentally realized using localized sources and detectors. Some
proposals towards this end might include the use of localized
projective measurements [33], homodyne detection [36], and
accelerated cavities [81,82]. Here we note that, for a pure
state, the l1-norm measure of coherence is equal to the ro-
bustness of coherence [72], which can be directly estimated
using the interference of fringes. A possible method is the use
of the Berry-phase atomic interferometry experiment [83,84],
in which one of the arms of the interferometer is under non-
inertial motion. The phase difference between the inertial and
noninertial arms can give us the change in coherence due to
the noninertial motion. Hence an experimental verification of
the relativistic effects on quantum coherence might be an in-
teresting future work. On the theoretical side, an investigation
on the quantum coherence effects in curved space-time is also
an interesting topic to explore.

Note added. Recently, we became aware of the work of
the authors of Ref. [85], which independently derived similar
results.
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