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Class of Bell-diagonal entanglement witnesses in C4 ⊗ C4: Optimization and the spanning property
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Two classes of Bell-diagonal indecomposable entanglement witnesses in C4 ⊗ C4 are considered. Within
the first class, we find a generalization of the well-known Choi witness from C3 ⊗ C3, while the second one
contains the reduction map. Interestingly, contrary to the C3 ⊗ C3 case, the generalized Choi witnesses are no
longer optimal. We perform an optimization procedure of finding spanning vectors that eventually gives rise
to optimal witnesses. Operators from the second class turn out to be optimal, however, without the spanning
property. This analysis sheds light onto the intricate structure of optimal entanglement witnesses.
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I. INTRODUCTION

Quantum entanglement is arguably the most peculiar fea-
ture of quantum theory that also demarcates it from the
classical one [1–3]. It is a crucial ingredient in quantum
information processing applications, such as (entanglement-
based) quantum cryptography [4], quantum dense coding [5],
quantum teleportation [6], measurement-based computation
[7], and so on. However, despite tremendous progress in the
understanding of entanglement, we still lack its full charac-
terization, especially in terms of entanglement detection, i.e.,
methods that can faithfully discriminate between entangled
and separable states. Indeed, a wealth of various operational
entanglement criteria for bipartite quantum states already exist
in the literature, in particular, the partial transposition cri-
terion [8,9], the majorization criterion [10], the cross-norm
or realignment criterion [11–13], and the covariance matrix
criterion [14,15] to name a few. However, due to a very
rich structure of entanglement, most of the currently avail-
able techniques are either only sufficient in characterization
or restricted to a narrow class of states [1–3]. Therefore, it
is of paramount importance to have robust ways of entan-
glement detection, in particular operational (i.e., measurable)
tools are of special interest. One such method is based on the
notion of entanglement witness (EW), an observable that is
capable of detecting entangled states [9,16–18]. The central
concept of EWs is based on the ideas of the Hahn-Banach the-
orem on normed linear spaces [19]. A special subclass of EWs
called optimal entanglement witnesses (OEWs) is considered
the gold standard for measurable entanglement detection since
the observables that are OEWs allow to detect the largest set
(in terms of its cardinality) of entangled states [20–22]. Thus,
making them a suitable choice for investigation.

In addition to this, a few experiments were performed in
the last two decades on whether a certain quantum state is
entangled or separable. The authors of Ref. [23] proposed

a procedure for measuring the entanglement of an unknown
state by successively measuring witness operators, which
was experimentally realized in Ref. [24]. The authors of
Ref. [25] described a new method to detect the entangle-
ment of quantum states, about which nothing is known except
the dimension, using random local measurements. Moreover,
the authors of Ref. [26] experimentally demonstrated the
detection of entanglement polytopes in a four-qubit system.
Additionally, quantum entanglement was extensively stud-
ied in terms of quantum resources [27–29], in particular,
as a crucial ingredient for quantum computation [7,30,31],
where multipartite entanglement is exploited (see, for exam-
ple, the case of variational quantum algorithms [32,33]). The
multipartite case is substantially more complex to analyze,
however, some approximate methods already exist, even ones
that are based on the extension of EWs. These extensions
can be measured in quantum computing hardware [34] and
allows to asses if this quantum resource is exploited in the
computation, despite the detrimental effects of noise.

In this paper, we analyze a family of EWs in C4 ⊗ C4,
which are Bell diagonal and covariant w.r.t. the maximal
commutative subgroup of the unitary group U(4). This is a
highly symmetric family that can be analyzed in detail [35].
We consider a class of EWs in C4 ⊗ C4 displaying a charac-
teristic circular structure. Such a class of circulant witnesses
in C3 ⊗ C3 without any connection to entanglement theory
was proposed in Ref. [36] as a generalization of a seminal
indecomposable positive map of Choi [37]. Further analysis
was provided in Refs. [38–40]. In particular, it was shown that
these witnesses are optimal [38,40].

In our paper, we show that the corresponding class of cir-
culant witness C4 ⊗ C4 splits into two subclasses: one class
provides a generalization of the Choi witnesses in C3 ⊗ C3

and the other contains the witness corresponding to the reduc-
tion map. Interestingly, contrary to C3 ⊗ C3 the generalized
Choi witnesses are no longer optimal. Following a general
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framework [20,21] (see also Ref. [22] for a slightly different
approach) we perform an optimization procedure which even-
tually gives rise to optimal witnesses satisfying the spanning
property. Due to the symmetry of the considered class, the
optimization procedure can be performed analytically. We
show that the witnesses from the second class are optimal,
however, without the spanning property. We believe that our
analysis in C4 ⊗ C4 sheds a new light into the structure of
optimal entanglement witnesses and can find applications in
experimental entanglement detection.

This paper is organized as follows. In Sec. II, we briefly
introduce the theory of the optimal entanglement witness. In
Sec. III, we present the covariant Bell-diagonal entanglement
witnesses in Cn ⊗ Cn and also describe the corresponding
entanglement witness in C3 ⊗ C3 and C4 ⊗ C4. The main
results on the optimality of the introduced classes is given in
Sec. IV. Finally, in Sec. V we provide concluding remarks.

II. PRELIMINARIES

The most general approach to discriminate between separa-
ble and entangled states of a quantum composite system living
in HA ⊗ HB is based on the notion of positive (but not com-
pletely positive) maps or equivalently entanglement witnesses
(EWs) [2,3,9,16–18,41–43]. A state represented by a density
operator ρ in HA ⊗ HB is separable iff it can be represented
as a mixture of product states ρ = ∑

k pkρ
(k)
A ⊗ ρ

(k)
B , with

ρ
(k)
A and ρ

(k)
B being density operators of subsystems A and B,

respectively [44]. Recall, that a Hermitian operator W acting
on HA ⊗ HB is an EW [17,18] if 〈ψ ⊗ φ|W |ψ ⊗ φ〉 � 0 but
W is not a positive operator (cf. also Refs. [45,46] for the
concept of the ultra EW and mirror EW, respectively). A state
ρ is entangled if and only if there exists an EW W such
that Tr(W ρ) < 0. Equivalently, a bipartite state ρ living in
HA ⊗ HB is entangled iff there exists a positive map � such
that (1lA ⊗ �)ρ is no longer a positive operator (1lA denotes an
identity map acting on subsystem A).

In the qubit-qubit or qubit-qutrit case the situation is fully
solved: a state ρ is separable if and only if it is PPT, i.e., its
partial transposition is positive [ρ� = (1lA ⊗ T )ρ � 0] [8,47].
However, in general the so-called separability problem is
notoriously hard, that is, there exist PPT states which are en-
tangled (they belong to the class of so-called bound entangled
states [2]).

Recall, that an EW W is decomposable if

W = A + B�, (1)

where A, B � 0 and � denotes the partial transposition. It is
clear from the definition that a decomposable EW is unable to
detect an entangled PPT state. Therefore, it is more interesting
to examine EWs that are of indecomposable form, i.e., they
fail to be represented in the form of Eq. (1). Equivalently, a
linear positive map � is decomposable if � = �1 + �2 ◦ T ,
where �1,�2 are completely positive and T denotes transpo-
sition.

Given an EW, one may define a set of entangled states DW

detected by W , that is, DW = {ρ | Tr(W ρ) < 0}. It is straight-
forward that if DW ⊃ DW̃ , then W is more effective than W̃
since it detects more entangled states than W̃ does. Following
the authors of Refs. [20,21], an entanglement witness W is

optimal if there is no other EW W ′ such that DW ⊂ DW ′ .
Therefore, the knowledge of optimal EWs is sufficient for the
full characterization of separable or entangled states.

In this regard, the following sufficient condition for opti-
mality was provided in Ref. [20]: if a set of product vectors
|ψk ⊗ φk〉 satisfying

〈ψk ⊗ φk|W |ψk ⊗ φk〉 = 0, (2)

span HA ⊗ HB, then W is optimal. Therefore, one can say
that such W has the spanning property. Several examples
of EWs satisfying (2) (hence optimal) already exist in the
literature [38,48–53] (cf. also review papers [54,55]). Since
the condition (2) is only sufficient, one may identify optimal
EWs without the spanning property. In Ref. [56], the authors
provided such an example for a decomposable case.

III. COVARIANT BELL-DIAGONAL ENTANGLEMENT
WITNESSES IN Cn ⊗ Cn

Let us consider an n-dimensional Hilbert space. By fixing a
computational basis {|0〉, . . . , |n − 1〉}, we introduce a family
of Weyl unitary operators Umk defined via [57–59]

Umk|�〉 = ωm�|� + k〉 (mod n), (3)

with ω = e2π i/n. The Weyl operators (matrices) satisfy

Uk�Urs = ωksUk+r,�+s, (4)

together with U ∗
k� = U−k�, U †

k�
= ωk�U−k,−�, and

Tr(Uk�U †
rs) = n δkrδ�s (with all index summations being

modulo n). One can define the generalized Bell states in
Cn ⊗ Cn via

|ψk�〉 = 1ln ⊗ Uk�|ψ+
n 〉, (5)

where |ψ+
n 〉 = 1/

√
n
∑n−1

k=0 |k ⊗ k〉 stands for the canonical
maximally entangled states. A bipartite operator X in Cn ⊗
Cn is Bell diagonal if

X =
n−1∑

k,�=0

xk�Pk�, (6)

where Pk� = |ψk�〉〈ψk�|. Consider now a maximal commuta-
tive subgroup of U(n)

T (n) = {U ∈ U(n) | U =
n−1∑
k=0

eiφk |k〉〈k|}, (7)

with φk ∈ R. Moreover, a bipartite operator X is said to be
T ⊗ T ∗ covariant whenever

U ⊗ U∗X (U ⊗ U∗)† = X, (8)

for any U ∈ T (n). Actually, any covariant operator has the
following structure

X =
n−1∑

k,�=0

Akl |k〉〈k| ⊗ |�〉〈�| +
n−1∑

k �=�=0

Bkl |k〉〈�| ⊗ |k〉〈�|, (9)

with complex parameters Ak� and Bk�. In this paper we are
going to analyze the Hermitian Bell-diagonal operators which
are T ⊗ T ∗ covariant. It turns out [58–60] that for such op-
erators the Hermitian matrix Ak� is circulant, i.e., Ak� = αk−�
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for some real vector (α0, α1, . . . , αn−1). Moreover, all Bkl are
constant, i.e., Bk� = β ∈ R.

Now the following Proposition provides the sufficient con-
dition for the circulant matrix Ak� and the parameter β that
guarantee that Eq. (9) defines a legitimate entanglement wit-
ness.

Proposition 1. If the circulant matrix Ak� satisfies the fol-
lowing constraints [61]

α0 + α1 + . . . + αn−1 = n − 1, (10)

together with

AAT = I + (n − 2)J , (11)

where Jk� = 1, then

W =
n−1∑

k,�=0

αk−l |k〉〈k| ⊗ |�〉〈�| −
n−1∑

k �=�=0

|k〉〈�| ⊗ |k〉〈�|, (12)

defines an EW.
Introducing the following projectors

�k = Pk0 + Pk1 + . . . + Pk,n−1, (13)

for k = 0, 1, . . . , n − 1, formula (12) can be rewritten in the
compact form as

W = (α0 + 1)�0 + α1�1 + . . . + αn−1�n−1 − nP+
n , (14)

where P+
n = |ψ+

n 〉〈ψ+
n | stands for the projector onto the

canonical maximally entangled state.

A. EWs in C3 ⊗ C3

For n = 3 let us use the following notation a = α0, b =
α1, c = α2 and hence the circulant matrix Ak� has the struc-
ture

A =
⎛
⎝a b c

c a b
b c a

⎞
⎠. (15)

Conditions (10) and (11) imply

a + b + c = 2, (16)

a2 + b2 + c2 = 2, (17)

ab + bc + ca = 1, (18)

which, after simple algebra, gives rise to

a + b + c = 2, a2 + b2 + c2 = 2, (19)

or equivalently [36]

a + b + c = 2, bc = (a − 1)2. (20)

The corresponding EW (14) reads as follows:

W [a, b, c] = (a + 1)�0 + b�1 + c �2 − P+
3 . (21)

Hence the above class may be parameterized by a single
parameter φ ∈ [0, 2π ) [39,62]

a = 2
3 (1 + cos φ),

b = 1
3 (2 − cos φ −

√
3 sin φ),

c = 1
3 (2 − cos φ +

√
3 sin φ). (22)

One proves [38] (see also Ref. [40] for another proof) that
if a � 1, then W [a, b, c] defines an optimal EW. Moreover,
if a < 1, then W [a, b, c] enjoys spanning property [38,40].
However, for a = 1, two EWs correspond to Choi maps
W [1, 1, 0] and W [1, 0, 1] for which there are only seven vec-
tors |ψk ⊗ φk〉 satisfying 〈ψk ⊗ φk|W [a, b, c]|ψk ⊗ φk〉 = 0.

B. EWs in C4 ⊗ C4

For n = 4, one has the corresponding circulant matrix

A =

⎛
⎜⎝

a b c d
d a b c
c d a b
b c d a

⎞
⎟⎠, (23)

where d = α3. Conditions (10) and (11) imply

a + b + c + d = 3, (24)

a2 + b2 + c2 + d2 = 3, (25)

ac + bd = 1, (26)

(a + c)(b + d ) = 2. (27)

Simple algebra provides two solutions: class I is characterized
by the following condition

a + c = 2, b + d = 1, bd = (1 − a)2, (28)

whereas class II is characterized by the following condition

a + c = 1, b + d = 2, ac = (1 − b)2. (29)

The corresponding EW has the following form:

W [a, b, c, d] = (a + 1)�0 + b�1 + c �2 + d �3 − P+
4 .

(30)
In the next section, we provide the detailed analysis of these
two classes of EWs.

IV. OPTIMALITY

The key question we address in this section is whether or
not EWs constructed in the previous section for n = 4 are
optimal.

A. Class I

For the class defined by Eq. (28), we introduce the follow-
ing parametrization:

a = 1
2 (2 − sin θ ),

b = 1
2 (1 + cos θ ),

c = 2 − a,

d = 1 − b, (31)

with θ ∈ [0, π ]. With this parametrization of θ , we express
the corresponding entanglement witness for this class I as
WI (θ ). Here θ = 0 corresponds to W [1, 1, 1, 0] which is the
generalization of the Choi EW from M3(C). Note that M3(C)
denotes a set of 3 × 3 complex matrices. Similarly, for θ = π ,
we get another Choi-like witness W [1, 0, 1, 1]. It is important
to mention here that the witness W [a, b, c, d] is decomposable
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only if b = d [60], which is equivalent to θ = π/2. To check
the optimality of the entanglement witness WI (θ ) for θ �= π

2 ,
let us look for a family of vectors |ψk ⊗ φk〉 satisfying Eq. (2).
For that purpose, we introduce a vector |ψ〉 ∈ C4 given by

|ψ〉 =
3∑

k=0

eiβk |k〉, (32)

for arbitrary (real) phases βk , and we observe that

〈ψ ⊗ ψ∗|W [a, b, c, d]|ψ ⊗ ψ∗〉 = 0. (33)

One has the following
Proposition 2. The vectors |ψk ⊗ ψ∗

k 〉 ∈ Cn ⊗ Cn with

|ψk〉 =
n−1∑
�=0

eiνk� |�〉 , (34)

with real νkl , span n2 − (n − 1)-dimensional space in
Cn ⊗ Cn.

For n = 4, it gives, therefore, 13 vectors. To have a
spanning property, one still needs three additional linearly
independent vectors satisfying Eq. (2). Interestingly, for θ = 0
and θ = π , i.e., for Choi-like witnesses, we found only these
13 vectors that satisfy Eq. (2). This is in a full analogy with
the property of Choi witnesses for n = 3: in that case one has
only 32 − 2 = 7 linearly independent vectors [38,40]. Now
we study the region θ ∈ (0, π ), for which a < 1 and b > 0.
Introducing the following vectors

|ψ14〉 =
√

sin(θ/2) |0〉 +
√

cos(θ/2) |1〉,
|ϕ14〉 =

√
cos(θ/2) |0〉 +

√
sin(θ/2) |1〉,

|ψ15〉 =
√

sin(θ/2) |1〉 +
√

cos(θ/2) |2〉,

|ϕ15〉 =
√

cos(θ/2) |1〉 +
√

sin(θ/2) |2〉,
|ψ16〉 =

√
sin(θ/2) |2〉 +

√
cos(θ/2) |3〉,

|ϕ16〉 =
√

cos(θ/2) |2〉 +
√

sin(θ/2) |3〉, (35)

one can show that

〈ψk ⊗ ϕk|W [a, b, c, d]|ψk ⊗ ϕk〉 = 0,

for k = 14, 15, 16. However, these 16 vectors span only 15-
dimensional space in C4 ⊗ C4. There exists no other linearly
independent vectors in this subspace. We will show it by
subtracting an amount of the projector onto its orthogonal
complement and still obtaining an entanglement witness.
Summarizing, for class I we have 15 linearly independent
vectors for 0 < θ < π and 13 linearly independent vectors for
θ = 0, π . Recall that, if n = 3, then for the Choi witness, we
have only 7 (= n2 − n + 1) linearly independent vectors.

B. Optimization for the class I

It turns out that EWs from class I are not optimal. Note that
WI (π/2) is decomposable. Precisely, for this case, we obtain
the following decomposition

WI

(
π

2

)
= W

[
1

2
,

1

2
,

3

2
,

1

2

]
= 2P + A�, (36)

where P = |�〉〈�| is a rank-1 projector onto the maximally
entangled state in C4 ⊗ C4 with

|�〉 = 1

2

3∑
j=0

(−1) j+1| j ⊗ j〉, (37)

and A is a positive-definite matrix

A = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . .

. 1 . . −1 . . . . . . . . . . .

. . 3 . . . . . −3 . . . . . . .

. . . 1 . . . . . . . . −1 . . .

. −1 . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . 1 . . −1 . . . . . .

. . . . . . . 3 . . . . . −3 . .

. . −3 . . . . . 3 . . . . . . .

. . . . . . −1 . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . 1 . . −1 .

. . . −1 . . . . . . . . 1 . . .

. . . . . . . −3 . . . . . 3 . .

. . . . . . . . . . . −1 . . 1 .

. . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (38)

where we replaced all zeros by dots. It is therefore clear that
WI ( π

2 ) is not optimal since we can subtract a positive operator
2P, that is,

WI

(
π

2

)
− 2P = A�,

is an EW. Let us observe that |�〉 defined in Eq. (37)
is orthogonal to 15-dimensional subspace spanned

by

{|ψk ⊗ ψ∗
k 〉, |ψ� ⊗ ϕ�〉},

for k = 1, . . . , 13 and � = 14, 15, 16. Hence, following
Refs. [20,21] one may try to optimize WI (θ ) subtracting a
fraction of the projector P.
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Theorem 1. The following operator

WI
′(θ ) = WI (θ ) − λP, (39)

with P = |�〉〈�| satisfying Eq. (37) and θ ∈ [0, π ], is an
entanglement witness if and only if λ � 2. Moreover, for
λ = 2, the witness is optimal.

The proof is provided in Appendix A. Interestingly, the
optimal witness Wopt (θ ) = WI (θ ) − 2P has the spanning prop-
erty for θ ∈ (0, π ). Indeed, we provide the full set of spanning
vectors given in Eqs. (A39) to (A43) in Appendix A.

Now below by considering an example of a family of PPT
states, we show that there are regions where these states are
detected by optimal entanglement witness WI

′, but not by WI .
The (unnormalized) state is in the following form:

ρε =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . . 1 . . . . 1 . . . . 1
. ε . . 1 . . . . . . . . . . .

. . 1 . . . . . 1 . . . . . . .

. . . 1
ε

. . . . . . . . 1 . . .

. 1 . . 1
ε

. . . . . . . . . . .

1 . . . . 1 . . . . 1 . . . . 1
. . . . . . ε . . 1 . . . . . .

. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . 1 . . 1
ε

. . . . . .

1 . . . . 1 . . . . 1 . . . . 1
. . . . . . . . . . . ε . . 1 .

. . . 1 . . . . . . . . ε . . .

. . . . . . . 1 . . . . . 1 . .

. . . . . . . . . . . 1 . . 1
ε

.

1 . . . . 1 . . . . 1 . . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (40)

with ε > 0. One can easily verify

Tr(WIρε ) = Tr(WI
′ρε ) = 4

(
a + c + εb + 1

ε
d − 3

)
. (41)

Let us find the critical value of ε satisfying Tr(WIρε ) = 0,
which are ε± = 1±cos θ

1+cos θ
. Take any point between these ε− and

ε+, e.g., ε∗ = 1
2 (ε+ + ε−) = 1

1+cos θ
. One finds for ε = ε∗

Tr(WIρε ) = −2 cos2 θ < 0, (42)

that is, ρε is detected both by WI and W ′
I . Now we consider a

noisy state

ρ̃ε,γ = ρε + γ I4 ⊗ I4, (43)

with γ > 0. Again, ρ̃ε,γ is not normalized. For this state one
finds

Tr(WI ρ̃ε,γ ) = 2(6γ − cos2 θ ),

Tr(WI
′ρ̃ε,γ ) = 2(5γ − cos2 θ ). (44)

Therefore, in the region 1
6 cos2 θ < γ < 1

5 cos2 θ , we have
Tr(WI ρ̃ε,γ ) > 0 and Tr(WI

′ρ̃ε,γ ) < 0. Hence, a noisy state is
still detected by the optimal witness W ′

I but it is not detected
by the original one WI . It clearly shows that W ′

I provides more
efficient tools in the considered class.

C. Class II

In class II, obeying the condition (29), we have the follow-
ing parametrization

a = 1
2 (1 + cos θ ),

b = 1
2 (2 − sin θ ),

c = 1 − a,

d = 2 − b, (45)

for θ ∈ [0, π ]. Similarly to class I, we express the correspond-
ing entanglement witness with θ parametrization for this class
II as WII (θ ). Note that for θ = π , we find

WII (π ) = W [0, 1, 1, 1], (46)

which recovers the EW corresponding to the reduction map.
This witness is optimal having the spanning property, that
is, 〈φ ⊗ φ∗|W (π )|φ ⊗ φ∗〉 = 0 for any |φ〉 ∈ C4 and these
vectors span the whole 16-dimensional space. For θ = 0, we
get another decomposable witness

WII (0) = W [1, 1, 0, 1], (47)

with the following decomposition

W [1, 1, 0, 1] = B� + 2(P1 + P2), (48)
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where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . .

. 1 . . −1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . 1 . . . . . . . . −1 . . .

. −1 . . 1 . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . 1 . . −1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . −1 . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . 1 . . −1 .

. . . −1 . . . . . . . . 1 . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . −1 . . 1 .

. . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

and Pk = |�k〉〈�k|, k = 1, 2 with

|�1〉 = 1√
2

(|0 ⊗ 0〉 − |2 ⊗ 2〉), (50)

|�2〉 = 1√
2

(|1 ⊗ 1〉 − |3 ⊗ 3〉). (51)

Hence W [1, 1, 0, 1] is not optimal.
Next we investigate what happens when θ > 0.
Proposition 3. The expectation value of WII (θ ) vanishes

on a product vector iff it is of the form |ψ∗ ⊗ ψ〉, where

|ψ0| = |ψ2|, |ψ1| = |ψ3|. (52)

We prove this proposition in Appendix B. Moreover, we
show that such vectors span 14-dimensional subspace of
C4 ⊗ C4.

Theorem 2. The witness WII (θ ) with θ ∈ (0, π ) is optimal
[with only 14 vectors satisfying Eq. (2)].

We provide a proof of this theorem in Appendix C. In
summary, the class II consists of optimal EWs WII (θ ) for
θ ∈ (0, π ], where we have the spanning property only for
θ = π .

Now for the sake of the completeness of the paper, we con-
sider the same example of a family of PPT states ρε defined in
Eq. (40), and show that there are completely disjointed region
in which these states are detected by the two witnesses, WI and
WII from the first and second classes, respectively. We already
showed in Sec. IV B that Tr(WIρε ) = 0 [see Eq. (41)] implies
the two roots of ε, which are ε± = 1±cos θ

1+cos θ
. In a similar way, for

the second class, we obtain the roots from Tr(WIIρε ) = 0, and
these are ε± = 2±sin θ

2−sin θ
. Therefore in the region θ ∈ (0, π/2),

it is evident that for class I, 0 � ε± � 1 and for the class II,
1 � ε± � 3. This implies that for θ ∈ (0, π/2), these two sets
of ε± from class I and II are disjointed except 1. Therefore
we can say that if Tr(WIρε ) < 0, then Tr(WIIρε ) > 0 and vice
versa.

V. CONCLUSION

In this paper, we considered two one-parameter classes
of the entanglement witnesses in C4 ⊗ C4 that are

diagonal in the Bell basis. Additionally, observables from
these classes are covariant w.r.t. a maximal commutative sub-
group of U(4). The investigated classes are a natural extension
of a well-studied construction in C3 ⊗ C3 of optimal wit-
nesses described by a single parameter. Interestingly, the later
case contains paradigmatic examples of EWs that are inde-
composable Choi witnesses and the witness corresponding to
the reduction map. Now in C4 ⊗ C4, the situation is different:
instead of a single class, one has two classes which display
distinct properties and can serve as a playground for investi-
gation of various features of entanglement witnesses.

Class I contains only EWs which are not optimal. This
shows that a straightforward generalization of the Choi wit-
ness from n = 3 to n = 4 does not preserve optimality. Let
us recall that for n = 3 the Choi witness is not only optimal,
but even extremal [37,38]. Moreover, all EWs from this class
posses 15 linearly independent vectors satisfying condition
(2). The only exception is provided by Choi-like witnesses for
which one has only 13 vectors. Following the optimization
technique developed in Refs. [20,21], we showed that all
EWs from class I can be optimized by subtracting a single
projector. Interestingly, the optimized entanglement witnesses
possess the spanning property [again with an exception of
Choi-like witnesses for which we have now 14 vectors sat-
isfying Eq. (2)].

Class II contains optimal EWs [with one exception WII (0),
i.e., at θ = 0]. However, these EWs do not have the spanning
property [again with one exception W (π ) corresponding to the
reduction map]. This result is quite unexpected since it shows
that in the limit θ → 0 one obtains nonoptimal witness WII (0)
out of optimal EWs WII (θ ).

It should be stressed that checking for optimality of a given
EW is, in general, a difficult problem. This analysis sheds light
into the structure of optimal entanglement witnesses. We show
that two classes of EWs displaying the same symmetry posses
very different properties: one is optimal and the other is not.
Moreover, due to the symmetry of the problem, we were able
to performed the full optimization procedure [20,21]. It would
be interesting to find a general characterization for arbitrary
n. Another interesting problem is the issue of extremality. For
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n = 3 it is known that the considered class is already extremal.
For n > 3 the problem is open.
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APPENDIX A: PROOF OF THEOREM 1

Due to the Choi-Jamiołkowski isomorphism, any entangle-
ment witness W in Cn ⊗ Cn corresponds to a positive map
� : Mn(C) ⊗ Mn(C) via the following relation:

W =
n−1∑

i, j=0

ei j ⊗ �(ei j ), (A1)

where ei j = |ei〉〈e j |, {e0, e1, . . . , en−1} denotes an orthonor-
mal basis in Cn. The map corresponding to Eq. (14) has the

following form:

�(eii ) =
n−1∑
j=0

ai je j j,

�(ei j ) = ei j, i �= j, (A2)

where ai j = αi− j � 0. One can easily find the inverse relation,
which is

�(|χ〉〈χ |) = Tr1((|χ〉〈χ |)T ⊗ In W ), (A3)

where the transposition is performed with respect to
{e0, e1, . . . , en−1}. Now, to show the optimality of the The-
orem 1, i.e., the entanglement witness W ′

I (θ ) = WI (θ ) − 2P
in first class, our idea is to find the 16 linearly independent
vectors satisfying the spanning criteria for the EW W ′

I (θ ). For
that purpose, we act with the corresponding map � on an
arbitrary vector |ψ〉 = {ψ0, ψ1, ψ2, ψ3} ∈ C4 and get

�(|ψ〉〈ψ |) = diag{y0, y1, y2, y3} − |ψ〉〈ψ | − 2D ◦ |ψ〉〈ψ | df= A − B − C, (A4)

where ◦ denotes the Hadamard product

D = 1

4

⎛
⎜⎝

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎞
⎟⎠, (A5)

and

y0 =
(

1 + 2 − sin θ

2

)
|ψ0|2 + 1 + cos θ

2
|ψ1|2 + 2 + sin θ

2
|ψ2|2 + 1 − cos θ

2
|ψ3|2, (A6)

y1 =
(

1 + 2 − sin θ

2

)
|ψ1|2 + 1 + cos θ

2
|ψ2|2 + 2 + sin θ

2
|ψ3|2 + 1 − cos θ

2
|ψ0|2, (A7)

y2 =
(

1 + 2 − sin θ

2

)
|ψ2|2 + 1 + cos θ

2
|ψ3|2 + 2 + sin θ

2
|ψ0|2 + 1 − cos θ

2
|ψ1|2, (A8)

y3 =
(

1 + 2 − sin θ

2

)
|ψ3|2 + 1 + cos θ

2
|ψ0|2 + 2 + sin θ

2
|ψ1|2 + 1 − cos θ

2
|ψ2|2. (A9)

Its determinant is equal to

det[�(|ψ〉〈ψ |)] = det[A0|A1|A2|A3] − det[B0|A1|A2|A3] − · · · − det[A0|A1|A2|B3] − det[C0|A1|A2|A3]

− · · · − det[A0|A1|A2|C3] + det[B0|C1|A2|A3] + det[C0|B1|A2|A3] + . . .

+ det[C0|A1|A2|B3] + det[B0|A1|A2|C3]. (A10)

This determinant is a multilinear function on columns, hence
we obtain 43 summands, but most of them are zero; in each
summand, there can be at most one column from B and at
most one column from C (each of the two columns of B are

linearly dependent and then the summand would be zero, the
same holds for C). If one column from B and one column from
C enter the summand, they have to be neighbors to produce a
nonzero summand. Proceeding in this way, we get

det[�(|ψ〉〈ψ |)] = y0y1y2y3 − 3

2
|ψ0|2y1y2y3 − · · · − 3

2
|ψ1|2y2y3y0 + 2|ψ0|2|ψ1|2y2y3 + 2|ψ1|2|ψ2|2y3y0 + 2|ψ2|2|ψ3|2y0y1

+ 2|ψ3|2|ψ0|2y1y2

= y0y1y2y3

[
1 − 3

2

3∑
i=0

|ψi|2
yi

+ 2

( |ψ0|2
y0

+ |ψ2|2
y2

)( |ψ1|2
y1

+ |ψ3|2
y3

)]
. (A11)
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Now, we will show that the second factor in the above is
nonnegative. Denoting

z0 = |ψ0|2
y0

+ |ψ2|2
y2

, (A12)

z1 = |ψ1|2
y1

+ |ψ3|2
y3

. (A13)

We have the following condition:

1 − 3
2 (z0 + z1) + 2z0z1 � 0 ⇒ (4z0 − 3)(4z1 − 3) � 1,

(A14)

where

4z0 − 3 = − (x0+ + 3x1+)(3x0+ + x1+) + [(5 + 3s)x0− − 3cx1−][(1 − s)x0− + cx1−]

(3x0+ + x1+)2 − [(1 − s)x0− + cx1−]2 , (A15)

4z1 − 3 = − (x0+ + 3x1+)(3x0+ + x1+) + [(5 + 3s)x1− + 3cx0−][(1 − s)x1− − cx0−]

(3x1+ + x0+)2 − [(1 − s)x1− − cx0−]2 . (A16)

Note that we denote here sin θ and cos θ as s and c, respectively, and also

x0± = |ψ0|2 ± |ψ2|2, (A17)

x1± = |ψ1|2 ± |ψ3|2. (A18)

Using Eqs. (A15) and (A16) in Eq. (A14), we obtain

2(1 − s)(x0+ + 3x1+)(3x0+ + x1+)
(
x2

0− + x2
1−
) + (1 − s)

[
c
(
x2

1−−x2
0−
)−2sx0−x1−

]
[(5 + 3s)x0−−3cx1−][(5 + 3s)x1− + 3cx0−]

� −(1 − s)(3x0+ + x1+)2[(1 − s)x2
1− − 2cx0−x1− + (1 + s)x2

0−
]2 − (1 − s)(3x1+ + x0+)2

× [
(1 − s)x2

0− + 2cx0−x1− + (1 + s)x2
1−
]2 + (1 − s)2

[
c
(
x2

1− − x2
0−
) − 2sx1−x0−

]2
, (A19)

which implies

2
(
x2

0− + x2
1−
)
(x0+ + x1+)2 + s

(
x2

0− − x2
1−
)(

x2
0+ − x2

1+
) − c

(
2x0−x1−

)(
x2

0+ − x2
1+
)

+ c(1 + 4s + 2s2)
(
2x0−x1−

)(
x2

1− − x2
0−
) − s(1 + s)2(2x0−x1−)2 − c2(2 + s)

(
x2

1− − x2
0−
)2 � 0,

⇒ 2
(
x2

0− + x2
1−
)
(x0+ + x1+)2 − [

s
(
x2

1− − x2
0−
) + c2x0−x1−

](
x2

0+ − x2
1+
)

− [
c
(
x2

1− − x2
0−
) − s2x0−x1−

][
c(2 + s)

(
x2

1− − x2
0−
) − (1 + s)22x0−x1−

]
� 0, (A20)

Clearly here x0+, x1+ � 0 and x0− ∈ [−x0+, x0+], x1− ∈
[−x1+, x1+]. Now we convert our system into the polar co-
ordinates (see Fig. 1) and rewrite the above equation in these
new coordinates.

FIG. 1. The polar coordinates representation. Here φ ∈ [0, 2π ).

In the new coordinate system, R ∈ [0, min { x0+
| cos φ| ,

x1+
| sin φ| }],

and therefore the inequality (A20) can be written as

R2
[
2(x0+ + x1+)2 − sin(2φ − θ )

(
x2

0+ − x2
1+
)]

− R4 cos(2φ − θ )[sin 2φ + (2 + sin θ ) cos(2φ−θ )] � 0,

(A21)

and this equation has to be satisfied for all R mentioned in the
above range. Hence

cos(2φ − θ )[sin 2φ + (2 + sin θ ) cos(2φ − θ )]

× min

{
x2

1+
sin2 φ

,
x2

0+
cos2 φ

}

� 2(x0+ + x1+)2 − sin(2φ − θ )
(
x2

0+ − x2
1+
)
. (A22)

First, we consider the scenario when
x2

1+
sin2 φ

� x2
0+

cos2 φ
. There-

fore,

cos(2φ − θ )[sin 2φ + (2 + sin θ ) cos(2φ − θ )]x2
1+

� sin2 φ
[
2(x0+ + x1+)2 − sin(2φ − θ )

(
x2

0+ − x2
1+
)]

.

(A23)
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Ordering the terms, we get

x2
0+ sin2 φ[2 − sin(2φ − θ )] + 4 sin2 φ x0+x1+

+ x2
1+[sin2 φ(2 + sin(2φ − θ )] − cos(2φ − θ ) sin 2φ

− (2 + sin θ ) cos2(2φ − θ )] � 0. (A24)

It is equivalent to say that the quadratic function

x0+
x1+

�→ sin2 φ[2 − sin(2φ − θ )]

(
x0+
x1+

)2

+ 4 sin2 φ
x0+
x1+

+ {sin2 φ[2 + sin(2φ − θ )]

− cos(2φ − θ ) sin 2φ − (2 + sin θ ) cos2(2φ − θ )},
(A25)

has to be positive in the range [| cot φ|,∞). As the function is
increasing for positive arguments, it is equivalent to check its
positivity at the end point, i.e., at the point | cot φ|

[2 − sin(2φ − θ )] cos2 φ + 4| sin φ cos φ|
+ sin2 φ[2 + sin(2φ − θ )] − cos(2φ − θ ) sin 2φ

− (2 + sin θ ) cos2(2φ − θ ) � 0. (A26)

After simplification, we arrive at

2 + 2| sin 2φ| − sin(4φ − θ ) − (2 + sin θ ) cos2(2φ − θ )

� 0. (A27)

To show that this inequality holds, it suffices to consider
φ ∈ [0, π/2] due to the periodicity of the left-hand side. And
therefore one can remove the modulus from the above inequal-
ity. Decomposing the coeffiecients of the above inequality in
the following way:

sin(4φ − θ ) = sin(2φ) cos(2φ − θ ) + cos(2φ) sin(2φ−θ ),
(A28)

sin(θ ) = sin(2φ) cos(2φ − θ ) − cos(2φ) sin(2φ − θ ),
(A29)

and organizing terms, one can rewrite the above inequality
(A27) as

sin2(2φ − θ )[2 − cos(2φ) sin(2φ − θ )]

+ sin 2φ[2 − cos(2φ − θ ) − cos3(2φ − θ )] � 0. (A30)

This inequality obviously holds, as all factors in both sum-
mands are nonnegative. One can clearly see that the inequality
is saturated iff 2φ = θ , hence it is saturated for four values of
φ if θ ∈ [0, π ] due to periodicity. Additionally, this inequality
will never be saturated if θ ∈ (π, 2π ) because, in this range of
θ , φ > π/2 which implies we are already out of our domain.

Now, we consider the other scenario, i.e.,
x2

1+
sin2 φ

� x2
0+

cos2 φ
.

Then

cos(2φ − θ )[sin 2φ + (2 + sin θ ) cos(2φ − θ ]x2
0+

� cos2 φ
[
2(x0+ + x1+)2 − sin(2φ − θ )

(
x2

0+ − x2
1+
)]

.

(A31)

By ordering the terms, we obtain

cos2 φ[2 + sin(2φ − θ )]x2
1+ + 4 cos2 φ x0+x1+

+ {cos2 φ[2 − sin(2φ − θ )] − cos(2φ − θ ) sin 2φ

− (2 + sin θ ) cos2(2φ − θ}x2
0+ � 0. (A32)

It is equivalent to say that the quadratic function

x1+
x0+

�→ cos2 φ[2 + sin(2φ − θ )]

(
x1+
x0+

)2

+ 4 cos2 φ
x1+
x0+

+ {cos2 φ[2 − sin(2φ − θ )]

− cos(2φ − θ ) sin 2φ − (2 + sin θ ) cos2(2φ − θ )},
(A33)

has to be positive in the range [| tan φ|,∞). As the function is
increasing for positive arguments, it is equivalent to check its
positivity at the point | tan φ|:

sin2 φ[2 + sin(2φ − θ )] + 4| cos φ|| sin φ|
+ cos2 φ[2 − sin(2φ − θ )] − cos(2φ − θ ) sin 2φ

− (2 + sin θ ) cos2(2φ − θ ) � 0. (A34)

Simplifying the above inequality, we obtain again the same
inequality (A27), which has been proven already.

The inequality (A30) is saturated if θ ∈ [0, π ] and φ =
θ
2 + k π

2 . We obtained Eq. (A30) putting x0+ = | sin φ|, x1+ =
| cos φ|, and hence R = 1. The inequality (A20) is satisfied in
the following four points:

x0+ = cos
θ

2
, x1+ = sin

θ

2
, x0− = cos

θ

2
, x1− = sin

θ

2
, (A35)

x0+ = sin
θ

2
x1+, = cos

θ

2
, x0− = − sin

θ

2
, x1− = cos

θ

2
, (A36)

x0+ = cos
θ

2
, x1+ = sin

θ

2
, x0− = − cos

θ

2
, x1− = − sin

θ

2
, (A37)

x0+ = sin
θ

2
, x1+ = cos

θ

2
, x0− = sin

θ

2
, x1− = − cos

θ

2
. (A38)

Additional solutions are for R = 0. Then x0− = x1− = 0 and x0+, x1+ are arbitrary. The additional solution exists for the whole
range of θ . It corresponds to

|ψ0|2 = cos
θ

2
, |ψ1|2 = sin

θ

2
, |ψ2|2 = 0, |ψ3|2 = 0, (A39)
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|ψ0|2 = 0, |ψ1|2 = cos
θ

2
, |ψ2|2 = sin

θ

2
, |ψ3|2 = 0, (A40)

|ψ0|2 = 0, |ψ1|2 = 0, |ψ2|2 = cos
θ

2
, |ψ3|2 = sin

θ

2
, (A41)

|ψ0|2 = sin
θ

2
, |ψ1|2 = 0, |ψ2|2 = 0, |ψ3|2 = cos

θ

2
, (A42)

|ψ0|2 = t, |ψ1|2 = 1 − t, |ψ2|2 = t, |ψ3|2 = 1 − t . (A43)

For such vectors |ψ〉 with the arbitrary choice of phases, the determinant of �(|ψ〉〈ψ |) is zero. Therefore, the kernel of
�(|ψ〉〈ψ |) is spanned by, respectively,

ker �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

√
cos θ

2√
sin θ

2 eiφ

0
0

⎤
⎥⎥⎥⎥⎦
[√

cos θ
2

√
sin θ

2 e−iφ 0 0
]
⎞
⎟⎟⎟⎟⎠ = span

⎡
⎢⎢⎢⎢⎣

√
sin θ

2 eiφ√
cos θ

2

0
0

⎤
⎥⎥⎥⎥⎦, (A44)

ker �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0√
cos θ

2√
sin θ

2 eiφ

0

⎤
⎥⎥⎥⎥⎦
[
0

√
cos θ

2

√
sin θ

2 e−iφ 0
]
⎞
⎟⎟⎟⎟⎠ = span

⎡
⎢⎢⎢⎢⎣

0√
sin θ

2 eiφ√
cos θ

2

0

⎤
⎥⎥⎥⎥⎦, (A45)

ker �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

0
0√

cos θ
2√

sin θ
2 eiφ

⎤
⎥⎥⎥⎥⎦
[
0 0

√
cos θ

2

√
sin θ

2 e−iφ
]
⎞
⎟⎟⎟⎟⎠ = span

⎡
⎢⎢⎢⎢⎣

0
0√

sin θ
2 eiφ√

cos θ
2

⎤
⎥⎥⎥⎥⎦, (A46)

ker �

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

√
sin θ

2 eiφ

0
0√

cos θ
2

⎤
⎥⎥⎥⎥⎦
[√

sin θ
2 e−iφ 0 0

√
cos θ

2

]
⎞
⎟⎟⎟⎟⎠ = span

⎡
⎢⎢⎢⎢⎣

√
cos θ

2

0
0√

sin θ
2 eiφ

⎤
⎥⎥⎥⎥⎦, (A47)

ker �

⎛
⎜⎜⎝
⎡
⎢⎢⎣

√
t√
1 − teiα√
teiβ√
1 − teiγ

⎤
⎥⎥⎦[√t

√
1 − te−iα

√
te−iβ

√
1 − te−iγ

]
⎞
⎟⎟⎠ = span

⎡
⎢⎢⎣

√
t√
1 − teiα√
teiβ√
1 − teiγ

⎤
⎥⎥⎦. (A48)

Therefore we can say that for θ < π , the last family (A43)
along with arbitrary phases spans the 14-dimensional sub-
space and the additional solutions (A39), (A40), (A41), and
(A42) spans the whole 16-dimensional space. Hence our en-
tanglement witness W ′

I (θ ) is optimal. It completes the proof.

APPENDIX B: PROOF OF PROPOSITION 3

In this section, we will prove Eq. (52). For that purpose, let
us consider the local contraction of the witness WII (θ ) of the
second class satisfying Eq. (45) with the projector |ψ〉〈ψ | in
the second subsystem, and we get

Wψ (θ ) = Tr2(I ⊗ |ψ〉〈ψ |WII (θ ))

= diag{y0, y1, y2, y3} − |ψ∗〉〈ψ∗|, (B1)

where

y0 = 3 + c

2
|ψ0|2 + 2 − s

2
|ψ1|2 + 1 − c

2
|ψ2|2 + 2 + s

2
|ψ3|2,

(B2)

y1 = 3 + c

2
|ψ1|2 + 2 − s

2
|ψ2|2 + 1 − c

2
|ψ3|2 + 2 + s

2
|ψ0|2,

(B3)

y2 = 3 + c

2
|ψ2|2 + 2 − s

2
|ψ3|2 + 1 − c

2
|ψ0|2 + 2 + s

2
|ψ1|2,

(B4)

y3 = 3 + c

2
|ψ3|2 + 2 − s

2
|ψ0|2 + 1 − c

2
|ψ1|2 + 2 + s

2
|ψ2|2,

(B5)
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with s := sin θ and c := cos θ . The determinant of Wψ (θ ) is given by

det[Wψ (θ )] = y0y1y2y3 − |ψ0|y1y2y3 − |ψ1|y2y3y0 − |ψ2|y3y0y1 − |ψ3|y0y1y2

=
[

(X0 + X1 + X2 + X3)2 −
(

1 + c

2
(X0 − X2) − s

2
(X1 − X3)

)2][
(X0 + X1 + X2 + X3)2

−
(

1 + c

2
(X1 − X3) + s

2
(X0 − X2)

)2]
−
[

(X0 + X1 + X2 + X3)2 −
(

1 + c

2
(X0 − X2)

− s

2
(X1 − X3)

)2][
(X1 + X3)2 − 1 + c

2
(X1 − X3)2 + (X1 + X3)(X0 + X2)

− s

2
(X1 − X3)(X0 − X2)

]
−
[

(X0 + X1 + X2 + X3)2 −
(

1 + c

2
(X1 − X3) + s

2
(X0 − X2)

)2]
·

×
[

(X0 + X2)2 − 1 + c

2
(X0 − X2)2 + (X1 + X3)(X0 + X2) + s

2
(X1 − X3)(X0 − X2)

]

= S1 + S2 + S3, (B6)

where

S1 =
(

1 + c

2

)2( s

2
(X0 − X2)2 − s

2
(X1 − X3)2 + c(X0 − X2)(X1 − X3)

)2
,

S2 =
(

1 + c

2
(X0 − X2) − s

2
(X1 − X3)

)2[
(X1 + X3)(X0 + X1 + X2 + X3)

− (X1 − X3)

(
1 + c

2
(X1 − X3) + s

2
(X0 − X2)

)]
,

S3 =
(

1 + c

2
(X1 − X3) − s

2
(X0 − X2)

)2[
(X0 + X2)(X0 + X1 + X2 + X3) − (X0 − X2)

(
1 + c

2
(X0 − X2) − s

2
(X1 − X3)

)]
.

(B7)

We introduce the following notation Xi := |ψi|2, for i =
0, 1, 2, 3. We observe that S1 � 0. Moreover,

∣∣∣∣(X1 − X3)

(
1 + c

2
(X1 − X3) + s

2
(X0 − X2)

)∣∣∣∣
� (X1 + X3)(X0 + X1 + X2 + X3), (B8)

hence S2 � 0. Similarly, we show that S3 � 0.
If θ = π , then 1+c

2 = s
2 = 0, and the contraction is always

singular because then the witness corresponds to the reduction
map. In another case, i.e., θ ∈ [0, π ), the inequality (B8) is
never saturated, and the only way to have zero determinant
is X0 = X2 and X1 = X3. For such |ψ〉, we have Wψ (θ ) =
I|ψ |2 − |ψ∗〉〈ψ∗| and its kernel is spanned by {|ψ∗〉}. Hence
the vectors |ψ∗ ⊗ ψ〉 are the only product vectors for which
the expectation value of WII (θ ) vanishes.

One can observe that the vectors in Eqs. (50) and (51) are
orthogonal to all |ψ∗ ⊗ ψ〉 satisfying Eq. (52). Hence

dim{ψ∗ ⊗ ψ : 〈ψ∗ ⊗ ψ |WII (θ )|ψ∗ ⊗ ψ〉 = 0

∧ |ψ0| = |ψ2| ∧ |ψ1| = |ψ3|} � 14. (B9)

Taking 14 random vectors from the above subspace, one easily
checks that the above inequality is saturated.

APPENDIX C: PROOF OF THEOREM 2

To show optimality of the entanglement witness WII (θ ) in
class II we show that for any vector |�x,y〉 = x|�1〉 + y|�2〉,
with |�1〉 and |�2〉 defined in Eqs. (50) and (51), respectively,
the following operator

WII (θ ) − λ|�x,y〉〈�x,y|, (C1)

is not an EW whenever λ > 0. Consider the corresponding
linear map defined in Eq. (A3), that is,

�θ,λ,x,y(X ) := �θ (X ) − λDx,y ◦ X, (C2)

where

Dx,y =

⎛
⎜⎜⎝

|x|2 xy∗ −|x|2 −xy∗

yx∗ |y|2 −yx∗ −|y|2
−|x|2 −xy∗ |x|2 xy∗

−yx∗ −|y|2 yx∗ |y|2

⎞
⎟⎟⎠. (C3)

Now, our idea is to show that the determinant of
�θ,λ,x,y(|ψ〉〈ψ |) is negative for appropriately chosen |ψ〉, if
λ > 0 and x, y are arbitrary. Hence we claim that no rank-1
projector (hence no positive operators) can be subtracted from
the EW WII (θ ) in this class and this witness is optimal without
having the spanning property for θ ∈ (0, π ).
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For this purpose, let us consider the following vector:

|ψλ,k〉 =

⎛
⎜⎜⎜⎝

0
1√

2k sin θ
2 λ

1 + k cos θ
2 λ

⎞
⎟⎟⎟⎠, (C4)

with the correction λ and arbitrary small parameter k > 0. The
action of the positive map on the projector onto this vector is

�θ (|ψλ,k〉〈ψλ,k|) − λDx,y ◦ |ψλ,k〉〈ψλ,k|. (C5)

Now, we show that the determinant of the above operator is
negative. To do so, we consider its determinant as a series of
powers of λ. The leading power is 3 and the corresponding
coefficient reads

8k2

(
k sin

θ

2
cos2 θ

2
− |x|2 sin2 θ

2

)
. (C6)

Now it is clear that for any value of θ and for any nonzero
value of x one can choose k small enough to make the leading
coefficient negative, hence the determinant is negative for
small enough λ. Clearly here we cannot exclude the correction
for x = 0, y = 1 in this way. However, in this case the correc-
tion can be excluded by considering the same vector (C4), but
with permuted entries. This ends the proof.
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