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Emergent decoherence induced by quantum chaos in a many-body system:
A Loschmidt echo observation through NMR
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In the long quest to identify and compensate the sources of decoherence in many-body systems far from the
ground state, the varied family of Loschmidt echoes (LEs) became an invaluable tool in several experimental
techniques. A LE involves a time-reversal procedure to assess the effect of perturbations in a quantum excitation
dynamics. However, when addressing macroscopic systems one is repeatedly confronted with limitations that
seem insurmountable. This led to the formulation of the central hypothesis of irreversibility stating that the
timescale of decoherence, T3, is proportional to the timescale of the many-body interactions we reversed, T2. We
test this by implementing two experimental schemes based on Floquet Hamiltonians where the effective strength
of the dipolar spin-spin coupling, i.e., 1/T2, is reduced by a variable scale factor k. This extends the perturbation
timescale, T� , in relation to T2. Strikingly, we observe the superposition of the normalized Loschmidt echoes for
the bigger values of k. This manifests the dominance of the intrinsic dynamics over the perturbation factors, even
when the Loschmidt echo is devised to reverse that intrinsic dynamics. Thus, in the limit where the reversible
interactions dominate over perturbations, the LE decays within a timescale, T3 ≈ T2/R with R = (0.15 ± 0.01),
confirming the emergence of a perturbation independent regime. These results support the central hypothesis of
irreversibility.
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I. INTRODUCTION

The last two decades have shown a growing interest on
the understanding of how the classical limit [1], thermal-
ization [2], and hydrodynamic behavior [3,4] emerge from
quantum dynamics in closed many-body systems [5–10]. This
interest is driven by new quantum technologies ranging from
heterostructures to cold atoms, nitrogen vacancy and P1 cen-
ters in diamond, Bose-Einstein condensates, and a number
of others [11–16]. All of them have quantum excitations,
“particles,” or qubits, the interactions of which can be manipu-
lated periodically to engineer new forms of synthetic quantum
matter away from its ground state. Such progress became
concatenated with the demands of quantum information and
computation, and a new theoretical and experimental drive
on many-body quantum chaos (MBQC). This last became a
condition to match quantum mechanics and gravity in the
chaotic proximity of a black hole [17,18]. MBQC would
ensure the fast scrambling of quantum information as char-
acterized through out-of-time order (OTO) commutators that
describe an exponential increase of quantum uncertainties.
Such growth could be traced back to chaotic instabilities al-
ready present in single-particle dynamics [19,20]. Since the
evaluation of these commutators requires OTO correlation
functions (OTOCs) that involve a time-reversal procedure,
Kitaev [21] and a number of authors [22–25] noted their
equivalence with a family of experiments known as Loschmidt
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echoes (LEs) [26–28]. These implement time reversal through
the sudden inversion of the Hamiltonian sign. Calculations
and experiments in different systems confirmed the scram-
bling phenomenon and dubbed it the quantum butterfly effect,
as initially localized information rapidly spreads and mixes
under a Hamiltonian dynamics [29–33].

Nevertheless, these works have not addressed some
related fundamental questions: To what degree do quantum-
mechanical predictions, repeatedly tested on fairly small
systems, remain valid when the number of involved parti-
cles increases substantially? Are hydrodynamic behavior and
equilibration just an illusion due to the coarse grained mea-
surement? Do the systems retain their memory of the initial
state, i.e., the quantum correlations that encode it? Most
physicists would give an emphatic affirmative answer. As
an example, one could invoke the widely discussed black-
hole information paradox [34] which, roughly, implies that
the Hawking radiation of a black hole contains some of
the information it had previously swallowed. However, our
physical intuition, and even common wisdom [35], hints at
the opposite view. We are more ready to admit that when a
thermodynamic limit is applicable [36], i.e., the number of
particles N → ∞ and then the “friction” or energy uncer-
tainty η → 0, quantum dynamics could manifest a sort of
phase transition as discussed by Anderson in his insightful
paper “More is different” [37,38]. Thus, quantum mechanics
would not be in question [39,40], but rather the flaw might
be in how it is used. The limited availability of computa-
tional resources and analytical tools could hide a possible
quantum dynamical phase transition towards intrinsic deco-
herence or irreversibility [37,38]. Our approach is to search
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for answers to those questions using specifically planned
experiments.

Once more, nuclear magnetic resonance (NMR) remains
at hand as a well-developed toolbox to test the fron-
tiers of quantum mechanics. Indeed, Feher’s electron-nuclear
double resonance on doped silicon yielded the puzzling ev-
idence [41] that led Anderson to propose the “absence of
spin diffusion” [36], the first quantum phase transition ever
recognized [42]. More recently, NMR was used, following
another hint of Anderson [43], to identify a quantum dynami-
cal phase transition induced by a spin environment [6]. It also
allowed the observation of quantum criticality [44,45] and sig-
natures of many-body localization on spin dynamics [46,47].
Furthermore, a combination of magnetic resonance and op-
tical techniques applied to impurities in diamond allowed
a record in coherence time [48]. They also allow one to
address the microscopic basis for spin diffusion [49,50] by
observing, in real time, the emergence of the hydrodynamic
behavior [3,4]. These works involved dynamical decoupling
and other forms of LEs.. The first LE was introduced by
Hahn [51] and Brewer and Hahn [52]. Their spin echo (SE)
reverts the precession of individual spins, and is limited by
T2, the timescale of multispin interactions that scramble a
local excitation in its neighborhood. Much later, magic echoes
(MEs) achieved the recovery of that SE decay [53]. The re-
lated multiple quantum coherences (MQCs) [54] constitute an
early NMR version of the OTOCs [31,55,56]. There, many-
body time-reversal procedures are repeated to quantify the
number of spins effectively coupled. A further step was the
polarization echo, in which a local excitation was injected and
observed to diffuse away before its partial recovery [26,57].
Simultaneously, we have learned to quantify the timescale T� ,
that characterizes the experimental errors and noncontrolled
interactions [58,59]. However, in spite of these impressive
successes we face a fundamental limitation already encoun-
tered by our predecessors [60,61]: many-body time reversal
fails lamentably already at rather short timescales. Further
experiments consistently showed that the reversibility time,
T3, was just a few times longer than T2 [26,55,59,62,63].
This seemed quite discouraging as this is the timescale of
multispin interactions that one claims to control up to a
reasonable precision of a few percent, i.e., 2η/h̄ ≈ 1/T� �
1/T2. Thus, reversibility timescale T3 seems to be unavoid-
ably tied to T2. We should remark that all these solid-state
NMR experiments involve a spin-lattice relaxation time T1 �
max(T�, T2), which ensures a fully quantum behavior. As
N ≈ 1023, our system is already infinite to all practical pur-
poses. Thus, the last step to take in the thermodynamic limit
is to sweep the system from T� < T2 towards T� � T2. This
is what we did by implementing a multipulse scaled dipolar
interaction (MPSDI) sequence that yielded a value of T3 con-
sistent with an emergent property [56]. One might still wonder
whether a lucky compensation of errors might have masked
the improvement of the MPSDI sequence used to yield a
universal scaling curve. This issue is what this paper brings
under definitive scrutiny by developing quite robust new tools
that combine novel [64] and traditional [65] techniques to
scale down the natural interactions while keeping T� constant.

With the stated purpose, we introduce two experimental
procedures to measure the LEs, of the magic echo type, that

use a continuous wave scaled dipolar interaction (CWSDI) ei-
ther in the backward or in the forward evolution. Each of them
allows one to change the relative importance of the Hamilto-
nian interactions with respect to the uncontrolled ones. This
is achieved by an off-resonance irradiation that induces a Flo-
quet effective Hamiltonian expressed as Magnus expansion.
Its zeroth-order term will be the target effective Hamilto-
nian with a reduced coupling constant, while the higher-order
terms constitute a perturbation [66,67]. More specifically, our
experiments rely on a previous implementation [64,68] that
showed how off-resonance continuous irradiation generates
a scaled effective Hamiltonian and, in some cases, cancels
it [59]. This becomes equivalent to multiplying the natural
dipolar Hamiltonian by a scaling factor k in the forward or
in the backward evolution periods during the time-reversal
sequence, while the elapsed time is adapted to obtain the
maximal echo condition. In many aspects, this procedure re-
sembles the ME [65] with the additional versatility of the k
factor. Our present experimental findings give further support
to the central hypothesis of irreversibility [38] stating that, for
unbounded systems at high temperature, there is an intrinsic
irreversibility timescale T3 proportional to the scrambling time
T2. As we will extensively discuss below, the LE decays as a
logistic function, which is consistent with our hypothesis that
MBQC drives a quantum dynamical phase transition towards
an emergent intrinsic irreversibility.

II. ECHOES FOR THE SCALED DYNAMICS

The system is a polycrystalline sample of adamantane con-
sisting in N ≈ 1023 nuclear spins-1/2, in presence of a strong
magnetic field B0 = B0ẑ that results in the Larmor frequency
ω0 = γ B0. At room temperatures, kBT � h̄ω0, the system
is in a Boltzmann thermal state, described by the density
operator ρ(0) = I/D + �ρ(0), with �ρ(0) ∝ Iz =∑

i I z
i and

D the dimension of the Hilbert space. As the identity does not
evolve or give rise to a signal we will be concerned only with
the deviation �ρ.

The secular dipolar Hamiltonian with quantization axis z
in the rotating frame is

Hz
d =

∑
i< j

di j
(
3Iz

i Iz
j − Ii · I j

)

=
∑
i< j

di j

(
2Iz

i Iz
j − 1

2
[I+

i I−
j + I−

i I+
j ]

)
, (1)

which in most theoretical papers is referred as XXZ . Here, the
dipolar coupling strengths are di j = (μ0/4π ) × (γ 2h̄) × [1 −
3 cos2 (ϑi j )]/(2r3

i j ), the internuclear vector is ri j , and the an-
gle between ri j and the direction of the external magnetic field
is ϑi j [69,70]. Iα = ∑

i Iα
i (with α = x, y, z) are the total spin

operators. These interactions define the “spreading” timescale
for the dipolar dynamics,

T2 = h̄/M2 with M2
2 = Tr

[
Hz

d , Iy
]2/

Tr[IyIy], (2)

from the second moment of the Hamiltonian (from now on,
h̄ = 1). After an initial pulse the system evolves, according
to the details provided in the next section, under an effective
Floquet Hamiltonian of the form kFHx

d during a forward time
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tF , and then under −kBHx
d during a backward time tB. Thus,

HF = kFHx
d + �kF and HB = −kBHx

d + �kB . (3)

The factors kF and −kB modulate the natural dipolar
Hamiltonian Hx

d in the quantization axis x, as presented in
Refs. [64,68], and �kF and �kB account for experimental im-
perfections and high-order truncation errors resulting from the
average Hamiltonian theory or can be neglected altogether
depending on the case.

The propagator of the spin system at the end of experimen-
tal time t = tF + tB has the form

ULE(t ) = exp(−itFHF ) exp(−itBHB). (4)

The NMR signal generated by the propagator of the form (4)
after a final rotation pulse is

M(t ) = Tr[exp(itBHB) exp (itFHF )Iz exp(−itFHF )

× exp(−itBHB)Iz]/Tr[IzIz]. (5)

If one could neglect the perturbation terms �kF and �kB one
would have a recovered signal:

M(t ) = Tr( exp
{[

iHx
d (tF kF − tBkB)

]}
Iz

× exp
[
iHx

d (tBkB − tF kF )
]
Iz

}
/Tr[IzIz]. (6)

The Loschmidt echo is obtained when the backward dy-
namics completely reverses the forward evolution, i.e., �kF =
�kB = 0. The condition to be satisfied is

kFtF − kBtB = 0. (7)

Only in this case the signal would result in the ideal con-
dition where �kF and �kB are both identically zero, M(t ) ≡ 1.
As the previous condition is not perfectly given in exper-
imental procedures, the measurement of M(t ), i.e., the LE
intensity, quantifies the effectiveness of the reversion process
and gives insights on the contributions of �kF and �kB to
decoherence. Then, the LE decay allows us to define a “deco-
herence” timescale T k

3 , as the time at which the LE is one-half,
M(T k

3 ) = 1/2, that quantifies the time-reversal imperfections
in the presence of the decoherent processes [56,71].

A. Scaling the Hamiltonian

To achieve the desired scaling factor k, we recall our
experimental development described in Refs. [64,68]. The
procedure involves the irradiation with a rf field in the off-
resonance condition, that is, there is a difference between
the Larmor and the rf frequencies. Here, � = γ b0 = ω0 − ω

accounts for the off-resonance, where ω is the frequency of the
rf field, which is applied with an intensity given by ω1 = γ B1

(in rad/s). The secular Hamiltonian in terms of the effective

frequency ωe =
√

ω2
1 + �2, in the tilted frame (X,Y, Z), is

HZ
0 = −ωeIZ + kθHZ

d . (8)

This (X,Y, Z) frame has the Z axis pointing in the direction
of the effective field Be = b0ẑ + B1x̂ that forms an angle θ

with B0 [68,69]. The angle θ determines the value of the scale
factor kθ :

kθ = 1
2 (3 cos2 θ − 1). (9)

FIG. 1. Experimental implementation to observe the polarization
Pkθ (t ) under the scaled dipolar Hamiltonian evolution. Schemati-
cally, the lower panel shows the directions of the magnetic fields
involved in the pulse sequence (irradiation, off-resonance, and ef-
fective). Each block irradiation time is incremented in multiples of
the stroboscopic Floquet time τe = 2π/ωe.

This factor can be varied experimentally by controlling
the rf intensity ω1 and the off-resonance �. Note that kθ

can vary continuously from 1 to −1/2, when θ ranges from
zero to π/2 [64]. The special case kθ = 0 is achieved for the
magic angle θm given by cos2 θm = 1/3, leading to an average
decoupling in that condition. To observe the spin dynamics
under the scaled dipolar Hamiltonian, kθHd during a time
t , we implement two successive blocks of off-resonance rf
irradiation with effective axis ±Z , surrounded by hard pulses
(β )y and (β )y, fulfilling |β| = 90◦ − θ (see Fig. 1).

Each block of duration t/2, a multiple of the Floquet time
τe = 2π/ωe, is described by a Hamiltonian shown in Eq. (8).
The inversion in the phase and off-resonance of the rf field
between the first and the second blocks swaps the direction
Z to −Z , leading to the reversion of the Zeeman evolution,
±ωeIZ . The effect of the ±β pulses is to produce a global
rotation onto the x axis, yielding a propagator governed only
by the dipolar term,

Ukθ
(t ) = exp

(−ikθHx
dt

)
, (10)

where Hx
d represents the dipolar Hamiltonian with the quan-

tization axis aligned with x axis of the rotating frame. The
evolution of the thermal state Iz under the scaled Hamiltonian
can be obtained as the signal measured by the sequence in
Fig. 1:

Pkθ (t ) = Tr
[
U†

kθ
(t )IzUkθ

(t )Iz
]
/Tr[IzIz]. (11)

The name kF denotes the value of kθ when the irradia-
tion angles satisfy 0 � θ � θm, leading to a positive scaling
factor in front of the dipolar Hamiltonian in the range [0,1].
For irradiation angles θm � θ � π/2, we denote kB = |kθ |,
leading to scaling factors kB in the range [0, 1/2] and adding
a minus sign in the backward Hamiltonian. In the following
the subindex θ will not appear, understanding that for a given
scaling factor the corresponding θ angle is set experimentally.
Note also that the extreme case θ = 0 with scaling factor
kF = 1 corresponds to the natural dipolar Hamiltonian (pulses
in scheme 1, Fig. 2), while the opposite extreme case θ = π/2
leads to a minus dipolar Hamiltonian with kB = 1/2 and a
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FIG. 2. Two experimental rf pulse sequences for the observation
of the Loschmidt echo Mk (te). The forward evolution was marked
with tF while backward evolution was marked with tB. Each block
of irradiation was incremented in multiples of the Floquet time τe =
2π/ωe. Scheme 1: Forward dynamics is set to kF = 1 and backward
dynamics is given by −kBHx

d for kB in the interval [0,0.5]. Scheme 2:
Forward evolution is given by kFHx

d for kF in the interval [0,1], and
backward evolution is set with on-resonance irradiation kB = 1/2.
The variable scale factor in scheme 1 is kB, while in scheme 2 it
is kF .

Z = x quantization axis (on-resonance irradiation), schema-
tized in Fig. 2, with ±x blocks of scheme 2 [53,65]. Both
extreme cases do not involve off-resonance irradiation, which
means less experimental error when implementing them.

B. Two complementary schemes for the echoes

We introduced the modulation of the dipolar dynamics with
scaling factors k in Ref. [68], with the purpose to evaluate the
corresponding LE decay, in a protocol dubbed proportionally
refocused Loschmidt (PRL) echo. That sequence used two
CWSDIs with identical factors k in the corresponding forward
and backward blocks. While the PRL echo allowed us to
evaluate MQCs and OTOCs [64], the concatenation of the
two CWSDIs showed uncontrolled limitations in the matching
of the off-resonance frequencies that prevented us from a
confident comparison of the LE timescales for different k.

In the present paper we introduce two different schemes for
the LE implementation (see Fig. 2) based on a single CWSDI
dynamics. Each of them serves as a test that rules out possible
errors of the LE from a MPSDI dynamics. Additionally, they
yield a better time resolution of the dynamics with much
shorter Floquet time. Both schemes also supersede the limita-
tions previously encountered with the PRL echo sequence. In
scheme 1 the forward evolution remains fixed as the natural
dipolar one, not scaled kF = 1, and thus has a negligible
truncation error. The backward evolution is given by −kBHx

d
for different choices of the value of kB ranging in the interval
(0,0.5]. The forward time is adapted to meet the condition
tF = kBtB. In scheme 2, the forward evolution is given by

kFHx
d for different choices of the value of kF belonging to the

interval (0,1) while the backward evolution is implemented
through on-resonance irradiation, which results in a fixed
kB = 1/2 and involves truncation errors of the order b2/ω1. In
this case the backward time is adapted to meet the condition
tB = 2kFtF . As the scaling factor can be varied in a wider
range, we can explore further possibilities than in the previous
experimental conditions where we used strictly identical scal-
ing and time for the forward and backward dynamics [56,68].
Both schemes can be considered as generalized ME pulse
sequences, in which time-reversal protocols adapt forward
and backward times. Indeed magic echo (forward dynamics
with a full dipolar Hamiltonian and backward dynamics with
half of the dipolar interaction achieved through on-resonance
irradiation) is reproduced in the extreme value kB = 1/2 for
scheme 1. The nature of the scaling factors, however, allows
us to explore different ratios between the controlled many-
body dynamics and experimental (or truncation) errors. For
these last we are able to obtain a clear experimental bound
by studying the LE decay for many-body dynamics when the
quantization frame rotates very close to the magic angle.

In each scheme, the Hamiltonian of interest is the one
associated to the variable scale factor, backward in scheme
1 and forward in scheme 2. Then, the discussion refers to
the scale factor k = kB or kF in scheme 1 or 2, respectively.
As time evolves, the scaled dipolar interaction connects the
spin system entangling the quantum state with an increasingly
complex character. This evolution time results in te = tB in
scheme 1 and te = tF in scheme 2. Then, Loschmidt echo
Mk (te) is analyzed in terms of the scale factor k.

Note that both schemes are the same in the case k = 0 (evo-
lution without average dipolar dynamic), where the adapted
time results in zero in both cases, that is, tF = kBtB = 0 for
scheme 1 and tB = 2kFtF = 0 in scheme 2. Then, when k = 0
the LE coincides with the measurement of the forward and
backward dynamics, Mk=0 = Pk=0.

C. Experimental procedure

The experiments were performed in a Bruker Avance II
spectrometer operating at 300-MHz Larmor frequency, with
a π/2 pulse time set at 4 μs. The sample temperature was
controlled throughout the experiments at 303 K. Additionally,
we did not observe appreciable heating effects produced by
the continuous rf irradiation.

Previous settings were carried out to obtain the desired
behavior in the different parts of the Loschmidt echo pulse
sequence. Important care was focused on setting the rf ir-
radiation fields and off-resonances to achieve accurately the
same effective field frequency ωe/2π = 79.8 ± 0.2 kHz for

all k factors. By fixing ωe =
√

ω2
1 + �2 and k through 2k+1

3 =
cos2 θ = �2

ω2
1+�2 the experimental parameters ω1 and � were

calculated for each k as

ω1 = ωe

√
1 − 2k

3
, (12)

� = ωe

√
2(k + 1)

3
. (13)

052232-4



EMERGENT DECOHERENCE INDUCED BY QUANTUM CHAOS … PHYSICAL REVIEW A 105, 052232 (2022)

Corrections to these values were obtained by performing
off-resonance nutations, for each ω1 and �, to obtain the
desired effective frequency. Indeed for a given k the pure
scaled Hamiltonian dynamics is obtained by implementing
two consecutive blocks of rf pulses with opposite phases
as depicted in Fig. 1. This procedure has the objective of
refocusing nondesired evolution with the effective Zeeman
Hamiltonian in the tilted frame (i.e., ∝ ωeIZ ) and attenuating
the effects of the rf inhomogeneity. Then special attention has
been put on experimentally setting the ±� values to obtain the
desired performance. In particular, rf power ranged between
20 and 79 kHz, while the off-resonance took values up to
77 kHz. Duration of β pulses to rotate the quantization axis
ranged between 0.70 and 3.36 μs. In all cases, the waiting
time before the lecture pulse was set to tw = 0.5 ms, to allow
unwanted transverse magnetization to decay.

Forward and backward dynamics were evaluated for fac-
tors ±k, including k = 0. Each block of irradiation was
incremented in multiples of τe = 12.53 μs to be consistent
with the average Hamiltonian theory [68], producing evolu-
tion times, in the range 25.06 μs to 1.9 ms.

Schemes 1 and 2 for quantifying Loschmidt echo were suc-
cessfully implemented for the different ±k values. In scheme
1, the backward Hamiltonian was scaled by factors k = kB =
0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, and 0.5, where
the special case kB = 0.5 corresponds to the magic echo [51].
In scheme 2, the forward Hamiltonian was scaled by factors
k = kF = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. In this
case, scaling factors are strictly less than 1, kF < 1. For both
schemes the experimental times were adapted in order to
fulfill Eq. (7).

III. DECAY RATES OF THE SCALED DYNAMICS

The transverse magnetization, Iy(t ), under the secular
dipolar Hz

d (XXZ) is obtained by measuring the free induction
decay (FID) after a π/2 pulse. In molecular solids such as
adamantane, this magnetization follows a dynamics that fits a
well-known model [72], the Abragam function:

P(t ) = sinc(wt ) exp[−(ht )2/2], (14)

which captures both the decay and the damped oscillation
arising from the unitary dynamics. The spreading timescale,
Eq. (2), and the second moment of the Hamiltonian, M2 =
(1/T2)2, can be evaluated from the fitted parameters, 1/T2 =√

h2 + w2/3.
The magnetization dynamics under the scaled Hamiltonian

was investigated by applying the protocol of Fig. 1. The
average Hamiltonian was quenched to kθHx

d and the total
polarization as a function of the experimental time Iz(t ) [as
expressed in Eq. (11)] was measured by recording the FID
after π/2 pulse. We explored the behavior of Pkθ (t ) for various
values of kθ in the range [−0.5, 1). One extreme of the inter-
val, kθ = −0.5, is achieved through on-resonance irradiation
(±x blocks in scheme 2, Fig. 2). The limiting value kθ = 1
is the free evolution under the secular dipolar Hamiltonian
pulses of scheme 1 in Fig. 2, without continuous irradiation.

Figure 3 displays, for example, the experimental points for
Pk=0.25(t ) together with the fitting to Eq. (14). The lower panel
of the same figure contains the values of 1/T k

2 vs kθ , obtained

FIG. 3. Upper panel: Experimental data of P(t ) and fitting to
Eq. (14) for kθ = −0.25. Lower panel: 1/T2 obtained from the fit-
tings to Eq. (14) for positive and negative values of kθ in the range
[−0.5, 1]. Linear fittings for both regions show the good performance
of the pulse sequence of Fig. 1.

from the fittings of Pkθ (t ) to Eq. (14). We observed a linear
tendency of 1/T2 vs kθ . Two different linear fittings for the
positive and negative values of kθ were performed. The slopes
were 23.0 ms−1 for kθ > 0 and 26.5 ms−1 for kθ < 0. These
linear curves confirm that the pulse sequence of Fig. 1 has
a very good performance in scaling the dipolar Hamiltonian.
Indeed for positive scale factors the interception of the linear
curve with the ordinates is at the origin, while for negative
scale factors this value is 1 ms−1. The second moment of the
scaled Hamiltonian is proportional to k as expected, showing
also the accuracy of the experimental value of k obtained.
The difference of 15% in both slopes indicates experimental
errors in the implementation leading to a small difference to
obtain positive and negative values of a given scale factor.
For negative values of k the interception with the y axis is
not at zero. This means that there is some remaining dipo-
lar evolution while approaching to k = 0 from the negative
side.

The inverse of the spreading times, 1/T k
2 , is used in the

following sections to analyze the behavior of decoherence vs
dynamics.

IV. LOSCHMIDT ECHOES

The behavior of Mk (te) divided by its maximum value as a
function of te can be observed in Fig. 4, showing a monotonic
slower decay as the k factor diminishes. This behavior has
been observed with another experimental setup that produced
a scaled dipolar Hamiltonian [56]. From these curves, the
values of the decoherence times T k

3 were obtained as the
half-height time, Mk (T k

3 ) = Mk (0)/2. Indeed, Mk (te) curves
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FIG. 4. Loschmidt echoes for selected values of the scaling fac-
tor, Mk (te). The plot displays the experimental points normalized
to the maximum value (dots), and the fittings to a logistic sigmoid
function (lines). T k

3 were extracted from Mk (T k
3 ) = Mk (0)/2. The

curves show a decay monotonically ordered with k.

follow a particular form of sigmoid, the logistic function
(Fermi function), with behavior of the form

M(te) = C/{1 + exp[λ(te − T3)]} with C ≈ 1. (15)

For the parameters of our system the inflection of the sigmoid
is roughly the half-height time te = T3, and Mk (0) = C/(1 +
exp[−λT3]) ≈ 1. From then on an exponential decay occurs,
with an exponent 1/λ ∝ T2, that can be associated with a
Lyapunov behavior that persists as long as the signal-to-noise
ratio is significant.

Figure 5 displays the normalized Loschmidt echoes ob-
tained by implementing schemes 1 (upper panel) and 2 (lower
panel). Both sets of curves were plotted as a function of the
scaled (or proper) time ts = kte. The scaling factors are in
the range [0.1,0.45] for scheme 1 and in the range [0.2,0.9]
for scheme 2. The natural choice for normalization should be
the k = 0 evolution M0(t ) = P0(t ). Nevertheless, the exper-
imental implementation for k = 0 has identical forward and
backward parts; in contrast, any nonzero k echo measurements
have different irradiation for forward and backward parts.
Then we have used for normalization the Loschmidt echo with
the lowest nonzero value of k available for each scheme, with
the practical effect of capturing better the basic underlying
experimental errors in each procedure, that is, Mref = M0.05

and M0.1 for schemes 1 and 2, respectively. The normalization
was performed by dividing for the reference at each time,
Mk (te)/Mref (te). Indeed, the reference curves give a measure
for the “perturbation” timescale Mref (T� ) = Mref (0)/2. The
normalized echoes are characterized by decays that are in-
herent to the coherent dynamics. This is evidenced by the
superposition of the normalized Loschmidt echoes in a com-
mon curve for all values of k, when displaying them as a
function of scaled time, as shown in Fig. 5. Significantly, the
same figure exposes that some points of Mk/Mref depart from
the common behavior at given times that depend on k. This
fact arises from the experimental errors that are accumulated
differently for each k and the use of different times of Mref .
Thus, the smaller the k values, the longer experimental times

FIG. 5. Normalized Loschmidt echoes as a function of the scaled
time, ts. Upper panel: Scheme 1. Lower panel: Scheme 2. Continuous
lines represent the logistic sigmoid fit.

te are needed to observe the echo at a given scaled time ts.
Then, there is a departure of the common behavior that occurs
monotonically with k, that gives a limit for the reliability
of the experiments as the signal fades within the statistical
noise.

V. DECOHERENCE VS PERTURBATION

Figure 6 presents the behavior of decoherence rates 1/T k
3

in terms of the perturbation rate 1/T� , through dimensionless
quantities obtained dividing by the spreading rate 1/T k

2 . This
exploration arises from the possibility to change the relative
importance between coherent system dynamics and distur-
bance factors. The results derived from the scaling factors
k implemented in each scheme were included in the figure,
circles for scheme 1 and squares for scheme 2. As it was
mentioned before, T k

3 is the inflexion point of the sigmoid
fittings to Mk (te) (see Fig. 4 curves), while T k

2 are derived
from the Abragam fitting function Pk (t ), displayed in Fig. 3.
Our evaluation of the perturbation rate 1/T� deserves special
mention. Our lower bounds for the times T� were measured
from the half-height time in the reference echoes Mref , i.e., the
LE when the Hamiltonian vanishes. The value of k selected
for reference depends on the experimental implementation, as
the smallest nonzero scale factor available for each scheme,
that is, k = 0.05 for scheme 1 and k = 0.1 for scheme 2. At
these angles the truncation error maximizes, while still having
a nontrivial dynamics.

Figure 6 shows that the experimental data T k
2 /T k

3 vs
x = T k

2 /T� follow a behavior of the form
√

A + x2 in both
schemes. Similar observation was found in Refs. [22,38]. The
fitting parameter results are A = (0.020 ± 0.001) for scheme
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FIG. 6. Decoherence rates 1/T k
3 in terms of the perturbation

rate 1/T� , both divided by the scrambling rates 1/T k
2 . Experimental

points belong to schemes 1 (circle) and 2 (square). A straight line
with slope 1 shows the asymptotic behavior. Fittings to

√
A + x2

were included for both schemes. Both schemes converge to the
same ordinate T2/T3 at the origin, in spite of substantially different
truncation errors in their natural Hamiltonian.

1 and A = (0.026 ± 0.001) for scheme 2. This means that
in the zone of small k when T� � T k

2 the noncontrolled
interactions dominate the intrinsic ones, and the experimen-
tal points fall on the line with unit slope, also shown in
the figure. That is, for small k one has T k

3 ≈ T� . In this
regime Mk=0(te) shows an initial quadratic (Gaussian) decay
that becomes an exponential indicative of Markovian pro-
cesses [58,73], where the best fit is obtained with an ad hoc
function proposed by Flambaum and Izrailev [74]. In the
opposite extreme, there is a region where reversible dynam-
ics is dominant, leading to an asymptotic tendency given by
T k

2 /T k
3 = √

A. Then, for scheme 1 the value
√

A = (0.141 ±
0.004) holds and for scheme 2

√
A = (0.161 ± 0.003), lead-

ing, in the limit of vanishing perturbation, to the universal
relation T2/T3 ≈ (0.15 ± 0.01) that expresses the relation be-
tween the timescale of irreversibility in terms of T2 and
the intrinsic timescale at which the many-body effect mani-
fests [75]. This value is common to both schemes, showing
a universal tendency. At this point a maximum Lyapunov
decay rate is reached at 1/λ = 1.7T2. The agreement with
our previous work, where the MPSDI was implemented, is
quite remarkable. As the experimental implementations of a
scaled dipolar Hamiltonian are based on completely different
principles, the magnitudes of the errors are also expected to
be different. In all cases, the T�’s were evaluated through
the decay of the Loschmidt echo for a nearly negligible dy-
namics [56], i.e., (T2/T� )2 � 1. Thus, by varying k from 0
to 1 (or 1/2), the Loschmidt echo decay rate changes from
the perturbation rate 1/T� to the intrinsic irreversibility rate
1/T3, by passing through the decoherence rates. This is par-
ticularly true in scheme 1, since the truncation imposed by
the Zeeman field is almost perfect, and decoherence occurs
only during the scaled backward evolution. Remarkably, the
lower k limit coincides for both schemes. Thus, the secular

dipolar interaction that yields the scrambling, in spite of being
reversed by the LE, also determines the intrinsic irreversibility
rate.

VI. CONNECTIONS WITH OTOCs AND QUANTUM CHAOS

A. How Loschmidt echoes provide a local observable

The local nature of the LE experiments was revealed by
the polarization echoes [26,57], where a rare 13C is a local
probe that injects polarization in the directly bonded 1H , i.e.,
through a SWAP gate [76]. It also detects the polarization
diffused away through the 1H network [77] in a timescale T2.
Since the excitation is a mixed state of local pseudopure states
Iy = ∑

n Iy
n (t ), where each term evolves independently [78],

one can focus on one of them, say Iy
0 . A forward dynam-

ics under a polarization conserving H is followed by the
backwards one under −(H + �). The propagator ULE(t ) con-
catenates both, but only the many-body state that reconstructs
the original Iy

0 can transfer its polarization back to its 13C
neighbor. Thus, M(t ) = Tr[Iy

0ULE(t )Iy
0U

†
LE(t )]/Tr[Iy

0 Iy
0 ]. The

quantum phase was confirmed by an interference between the
returning amplitude and that remaining at 13C, seen as high-
frequency oscillations or heteronuclear coherences [26,79].
For many decades the magic echo seemed to yield a different
physics than the polarization echo, because a local probe
is absent. Moreover, the polarization is not conserved, but
decays into multispin superposition, i.e., MQC [80]. Again,
the initial state is a sum of independent pseudopure states
as Iy

0 . After time reversal, only that multispin component
that reconstructs the local Iy

0 produces an observable signal.
Terms of polarization at sites other than zero have phases
changing wildly with time, and interfere destructively during
tw. This effect is confirmed by numerical simulations [81,82].
Thus, all the experiments dealing with a reversed polariza-
tion that is not conserved—ME, MQCs or OTOCs, and PRL
echoes—yield local information. This fact is crucial for our
discussion.

B. How OTOCs and MQCs exploit LEs

In general, LE experiments have a persistent “perturba-
tion” or Hamiltonian imprecision, �, during a whole period.
In an ideal MQC (or the various OTOCs), the perturbation
is just a pulse. Particularized by Swingle [83], an initial ex-
citation, say Iy

0 = W , evolves for a time t under the action
of a noncommuting H, producing a scrambled multispin su-
perposition. Only then a “perturbation” � acts for a very a
short period δt . A time-reversed evolution is imposed for a
new period t , producing exp[−iHt]VW (t )V † exp[iHt], used
to evaluate an observable W †. In an NMR MQC experi-
ment V is a global rotation V = exp[−iIzθ ] [56], or a field
gradient pulse [84]. Such perturbation labels with a phase
θn the participation of a superposition state the total spin
projection of which differs in n. Technically, one measures
the total in-plane polarization D = Ix. However, as only the
component of the multispin state that has returned to the orig-
inal site, i.e., Iy

0 , contributes to the observed signal, Mθ (t ) =
Tr[W †(t )V †(0)W (t )V (0)]. This OTOC, if normalized prop-
erly, is 1 for t = 0 and then has a decay [18,19,21,56,85]
related to the increase of |[V (0),W (t )]|2. In a MQC
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experiment, one uses the Mθ (t ) dependence on θ to evaluate
|[Iy

0 (t ), Iy
0 (0)]|2. This, in turn, encodes the number of spins that

became entangled by the dynamics [21,54,56,86]. Time rever-
sal is just a tool to evaluate the information scrambling. Some
unavoidable errors or Hamiltonian imprecision � produce
the signal decay without affecting the scrambling quantifier,
i.e., the θ dependence, as one can always normalize with
the LE, Mθ (t )/M0(t ), at a given time. In contrast with other
OTOCs [87], MQCs do not depend on decoherence [88], as
it is only limited to the time range with significant signal-to-
noise ratio [89].

C. Quantum chaos as the dynamical instability under a
perturbed time reversal

A first hint at the manifestation of a Lyapunov classical
instability in the quantum realm came in the pioneering work
of Larkin and Ovchinnikov [19] and Laughlin [20]. They
considered a semiclassical wave packet with wavelength λF

and velocity vF that describes the conductivity of metals. The
regime of “quantum chaos” [90,91] of short scattering time
τo, as in a random array of antidots of size a � √

λT vF τo,
was loosely characterized by a single Lyapunov exponent λ,
manifested through a diffusion coefficient D ∝ v2

F /λ, up to a
logarithmic factor ln[vF τo/a]. Thus, the exponential growth of
an OTO commutator is a Lyapunov growth of quantum uncer-
tainties, at least up to the Ehrenfest time tE = λ−1| ln[a/λF ]|,
justifying the name “quantum butterfly effect” [24,83]. Nev-
ertheless, the LE approach involved a radically new concept,
since quantum dynamics of classically chaotic systems [92]
and spin-1/2 systems [93] are stable towards changes in the
initial conditions. The dynamical instability manifests under
a steady perturbation [26,27,38,62]. For a weak perturba-
tion, the LE decays with Fermi’s “golden rule” in a time
T� . However, systems with a classically chaotic correspon-
dence show a LE displaying an exponential decay with rate
1/T3 = min[1/T�, λ], where λ is the Lyapunov exponent of
the classical system. That is, above a small �c, the classi-
cal and quantum LE decays coincide. Differently from an
OTO commutator growth, this exponent still shows up beyond
the Ehrenfest time [94,95]. For high energies �c becomes
negligible, which corresponds to the classical limit [91]. In
many-spin systems, the lack of a classical counterpart pre-
vents a direct extrapolation of these results. Nevertheless, high
temperatures correspond to high energies and the perturbation
independent decay is expected if � exceeds a small �c. This is
consistent with spectral and dynamical signatures of quantum
chaos [2,96,97] shown by XXZ Hamiltonians. Our experi-
mental LE decay, Eq. (15), was first found in Ref. [98]. It also
appeared in the LE of hard disk gas [99], defined as the prob-
ability that one disk returns to its initial neighborhood under
the effect of a weak perturbation. T3 depends on the strength
of the perturbation, while λ is the Lyapunov exponent [100].
Equation (15) was observed for LEs in interacting fermions
and Bose-Einstein condensates [101]. Again, λ did not depend
on the perturbation strength but on the Hamiltonian. Addition-
ally, T3 decreases with the logarithm of the perturbation or the
system size, indicating an emergent behavior in the thermody-
namic limit. These antecedents justify our identification of λ

as a Lyapunov exponent.

VII. CONCLUSIONS: MANY-BODY QUANTUM CHAOS
LEADING TO IRREVERSIBILITY

In the present paper we have been able to evaluate the LE
irreversibility timescale T3, by varying the ratio T2/T� be-
tween the timescale of the controlled many-body Hamiltonian
and that associated with the Hamiltonian imperfections. These
timescales are usually disguised, but scaling down the interac-
tion allows its full disclosure as T k

2 /T k
3 → T k

2 /T� as k → 0
when (T k

2 /T� )2 � 1. In the opposite regime, (T k
2 /T� )2 �

1, we approach the thermodynamic limit, and the asymp-
totic perturbation independent T3 manifests the emergence
of an intrinsic irreversibility in the many-body dynamics.
The quantum chaos is expressed in the LE exponential de-
cay when irreversibility becomes intrinsic, T3 � 6.7T2. Since
the perturbations are local, one needs the development of
nonlocal superposition states before the intrinsic decoherence
arises [102]. From then on, the LE decays exponentially with
λ−1 � 1.7T2 = 0.25T3, which can be identified as a Lyapunov
time. This situation confirms the validity of the results ob-
served with the MPSDI sequence [56], where the nature and
strength of the perturbation are different from those that ap-
pear here. This indicates a universal characteristic of the XXZ
Hamiltonians. Also the fact that schemes 1 and 2 coincide
definitely rules out the possibility that the truncation of the
Hamiltonian could be the main source of irreversibility ob-
served in the various forms of Loschmidt echoes. This is
because, while in scheme 2 the truncation of the backward
evolution is the result of the limited rf strength, in scheme 1
the decoherent perturbations are limited only to the backward
CWSDI portion. Furthermore, our present results are decisive
to conclude that the scaling function is not based on an ex-
perimental artifact of the MPSDI sequences. On the basis of
this, we may recommend the evaluation of T3 by using any of
the variants of MPSDI for the backward dynamics, together
with a forward part in absence of irradiation. Additionally,
MPSDI could be used in biological systems without the risk
of heating.

We recall that we have also implemented a Floquet double
quantum (DQ) Hamiltonian in the same crystal, obtaining
λ−1 ≈ 0.23T3. In that case the scrambling is much faster and
the number of entangled spins grows exponentially [46,103]
instead of diffusively as occurs for XXZ [56,64]. The “ballis-
tic” behavior of the DQ is more clear in a linear topology [98],
showing a wavefront propagating as prescribed by the Lieb-
Robinson bound [79,104–106]. The dependence of the DQ
dynamics on perturbation has not yet been reported, but a
multiple pulse implementation is in progress. However, this
more reversible dynamics manifests in fact that the signal
only fades away after reaching 104 entangled spins [46,64],
which largely exceeds the 102 of the dipolar case. We also
may compare our present results with the LE of the polar-
ization echo type under an XXZ Hamiltonian. There, the
LE decay remains Gaussian as long as the signal-to-noise
ratio is significant. In this case, different experiments with a
number of ratios between the Hamiltonian and perturbation
strengths hint at an emergent T3 of about 4T2 [38,58,62].
As a whole, these results show that the specific decay laws
and their proportionality factors depend on the particularities
of the system, like the topology of interactions network, on
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the specific Floquet effective Hamiltonian, and of course on
the nature of the excitation. Thus, in spite of numerical sup-
port [100,101], one should be careful not to attribute excessive
universality to the observed decay laws. It is beyond the scope
of our present paper to rule out the existence of integrable
many-body systems that manifest a perturbation independent
irreversibility. Nevertheless, we accumulated two decades of
experimental and theoretical antecedents on spin systems far
from equilibrium in regimes that can be identified as many-
body quantum chaos. Their general feature is that a small,
but global, perturbation is amplified to allow the full irre-
versibility. The irreversibility timescale, while proportional to
the spreading time, is an intrinsic property of the experiment.

On the conceptual side, our experiments may inspire
specific procedures to store and spread information. The un-
derstanding of the timescales involved could prevent strategies
doomed to failure in favor of more viable alternatives. It is
now clear that the original magic echoes experiments were al-
ready done in a nearly optimal regime where errors were small
enough. This sets the echo decay in the perturbation inde-
pendent regime, where the central hypothesis of irreversibility
holds. Thus, there was not much room to improve the magic
echo reversibility as its decay was determined by the intrinsic
chaotic instability of the many-body system. This explains the
failure of the long quest of Waugh to improve the magic echo
experiments [52,61]. In contrast, the initial flat region of the
Loschmidt echo opens the possibility to apply quantum error
correction protocols while they are still effective [107], which
seems consistent with the announced plans to use over 1 × 106

qubits to control the performance of 100 qubits [108].
On a more fundamental aspect, our experiments cannot

represent a valid model of a quantum system that satisfies
the AdS-CFT correspondence. This is because the Lyapunov
exponent we found, λ ∝ d/h̄ � kBT /h̄, is too small to satisfy
the Maldacena bound [18] of λ � kBT/h̄. This quite excep-
tional condition is satisfied by the Sachdev-Ye-Kitaev model,
especially devised with this purpose [21], but not by our XXZ
Hamiltonians. Nevertheless, our results could provide a solu-
tion to the black-hole information paradox and to the origin of
the arrow of time. Indeed, we perceive time to move only to-
wards the future. Yet, quantum dynamics, like other basic laws
of physics, works equally well forward or backward in time.

How is this apparent contradiction solved? The more accepted
view is that to account for it we have to delve into the initial
conditions after the big bang. Indeed, Maldacena noted that “a
black hole singularity is somewhat similar to the singularity
at the beginning of the Universe, just it is time reversed” [34].
This analysis seems reinforced by the new experiments that
found that time reversal is not affected by chaos, interpreted as
the quantum butterfly noneffect [109,110]. There, the authors
implement a sequence of operations on a qubit that could
be equivalent to classical chaos. The OTOC of the quantum
version, implemented in a five qubit IBM quantum processor,
showed a fine stability towards changes in the initial condi-
tion. Indeed, there is no problem with these results, which are
consistent with our early predictions for one-body quantum
chaos [27,94]. Our present experiments, in contrast, consider
a huge number of interacting qubits, of which a few hundred
become entangled. However, errors, though quite small, act at
every time step. The fact that we find an intrinsic irreversibil-
ity or decoherence time adds evidence in favor of the idea that
an actual chaotic many-body system far from its ground state
contains irreversibility as an emergent property of the thermo-
dynamic limit. The importance of such a result needs further
validation that is beyond present computational possibilities.
As Feynman pointed out, the most immediate task for quan-
tum computers is to simulate quantum systems [111,112].
Since this is not foreseen as an easy task, it might challenge
researchers that master other quantum information techniques
to implement simulators of many-body LEs. These should
focus on models, probably similar to our XXZ Hamiltonian,
that could test the emergence of intrinsic irreversibility in the
thermodynamic limit.
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