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Third order modal exceptional degeneracy in waveguides with glide-time symmetry
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The dispersion of a three-way waveguide is engineered to exhibit exceptional modal characteristics. Two
coupled waveguides with parity-time (PT ) symmetry have been previously demonstrated to exhibit second order
exceptional points of degeneracy (EPDs). In this work, we introduce and investigate a particular class of EPDs,
applicable from radio frequency to optical wavelengths, whereby three coupled waveguides satisfy glide-time
(GT ) symmetry to exhibit a third order modal degeneracy with a real-valued wave number. GT symmetry
involves glide symmetry of lossless and gainless components of the waveguide in addition to changing the
sign of passive and active elements while applying a glide-symmetry operation. This GT -symmetry condition
allows three Floquet-Bloch eigenmodes of the structure to coalesce to a real-valued wave number at a single
frequency, in addition to having one branch of the dispersion diagram with a purely real wave number. The
proposed scheme may have applications including but not limited to distributed amplifiers, radiating arrays, and
sensors, from radio frequency to optics.
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I. INTRODUCTION

We propose and investigate a periodic three-way elec-
tromagnetic waveguide with a glide-time (GT )-symmetric
topology that exhibits a distinguished class of degeneracy con-
ditions based on the coalescence of three degenerate modes
with a real wave number. The concept presented in this paper
is based on applying concepts inspired by PT symmetry [1,2]
to a glide-symmetric waveguide [3]. We call this combination
GT symmetry. It is different from PT symmetry since the
waveguide does not possess parity symmetry. In this paper
we show that a waveguide with GT symmetry, i.e., with a
balanced condition of gain and loss, possesses an exceptional
point of degeneracy (EPD) of order 3, with a real-valued wave
number.

Exceptional degeneracies of order 2, 3, and 4 of eigen-
modes in periodic media have been previously investigated in
[4–10], demonstrating the existence of unique features associ-
ated with modal degeneracies; even though they did not name
them “exceptional points,” they provided the math and physics
associated with such degeneracy points. Exceptional points
and their perturbation have been studied previously in more
general terms [11–14] (note that the term “exceptional point”
had already been mentioned in the 1966 book by Kato [13],
Chap. 2). These degeneracies are not just in the eigenvalues
but also in the polarization states (eigenvectors).

The concept of EPD associated with the coalescence of
modes is relatively recent in the study of active devices. The
recent interest in this class of degeneracies was mainly mo-
tivated by their relevance in the study of parity-time (PT )
-symmetric systems in physics [1,2,15–25].

*Corresponding author: f.capolino@uci.edu

The GT -symmetric waveguide in this paper is imple-
mented by adding balanced gain and loss (it can be radiation
loss due to antennas radiation), to a glide-symmetric waveg-
uide. A periodic waveguide is said to possess glide (G)
symmetry if it remains invariant under the glide operation,
consisting of a translation by half of the geometrical period
d , followed by a reflection in the so-called glide plane [3,26–
33]. We define GT symmetry as regular glide symmetry of
lossless and gainless components of the waveguide, in addi-
tion to changing the sign of passive and active elements while
applying such glide-symmetry operation. In other words, it is
a combination of PT symmetry and glide symmetry.

Previously, different kinds of EPDs have been found in
lossless guiding structures in [4–6,20,34,35]. In particular, an
EPD of order 3 in a lossless waveguide, called the stationary
inflection point (SIP) has been demonstrated in [34,36–38],
whereas an EPD of order 4 in lossless waveguides, referred to
as the degenerate band edge (DBE), has been demonstrated in
multimode waveguides [7,39–44].

A third order EPD occurs when three eigenmodes of
the system coalesce in both their eigenvalues and eigenvec-
tors. EPD conditions (i.e., where the eigenvectors degenerate)
cannot be found when the associated matrix describing prop-
agation in the system is Hermitian. However, as described
previously in [4–7,9,38,41,42,45,46], the dynamics of the
fields in a waveguide that does not have loss or gain may still
be described using a non-Hermitian matrix, where such matrix
becomes similar to one that contains a nontrivial Jordan block;
this is the case for an SIP. A more precise description about
Hermiticity is provided in [47].

To clarify, a third order EPD that occurs in lossless and
gainless waveguides is often referred to as the stationary
inflection point (SIP) or frozen mode regime. The SIP is ob-
tained by the coalescence of three eigenmodes (in eigenvalues
and eigenvectors), where two eigenmodes are evanescent and
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one eigenmode is propagating to form a frozen mode that has
a vanishing group velocity at a particular frequency. When
the waveguide possesses gain and loss, the possibility to find
a mode with a purely real wave number and a degeneracy of
order 3 is not apparent; this paper shows that it is possible. We
use the more general term “third order EPD” rather than “SIP”
here to describe this third order eigenmode coalescence in the
presence of gain and loss. Therefore, the SIP is a special case
of a third order EPD. In other words, the SIP is a third order
EPD, but not all third order EPDs are SIPs.

At radio frequency (rf), the SIP was experimentally demon-
strated in a three-way waveguide made of three coupled
microstrips in [38]. The occurrence of the DBE has also been
experimentally demonstrated at rf in [41,42,47]. In [48], the
authors experimentally demonstrated a split band edge, which
is a degeneracy closely related to the DBE, in a metallic
circular waveguide loaded with anisotropic scatterers.

On the other hand, EPDs of order 2, 3, and 4 have been
demonstrated theoretically and experimentally in [2,49–55]
and [17,47,56,57], respectively, by proper balancing of the
loss and gain, using the concept of PT and anti-PT sym-
metry.

The general subject of this paper is the investigation of
third order modal degeneracy in a three-way waveguide with
balanced loss and gain, satisfying GT symmetry. For waveg-
uides made of three coupled transmission lines (i.e., three
ways) like the one we consider in this work, the allowed orders
of EPD are second, third, fourth, and sixth. The third order
EPD is the only one that does not have a stopband above or
below the EPD frequency (it is the only odd order) and has a
group velocity that does not change sign above and below the
EPD frequency. This makes the third order EPD beneficial for
amplifier applications. (For an amplifier application of an SIP,
i.e., a third order EPD without gain and loss, see [58].)

In the vicinity of third order EPDs, the dispersion diagram
of eigenmodes in a periodic waveguide satisfies (ω − ωe) ∝
(k − ke)3, where ωe is the angular frequency at which three
modes coalesce and ke is the real-valued Bloch wave number
at the degeneracy point. Note that ke �= π/d , meaning that the
EPD will not occur at the edge, or middle, of the Brillouin
zone. An illustration of an ideal dispersion relation exhibiting
a third order EPD is shown in Fig. 1(a), where only the
real branch of the ω−k dispersion diagram (where k is the
Bloch-wave number and ω is the angular frequency) is shown.
This kind of degeneracy obtained in a lossless waveguide has
been named SIP. Here, instead, we investigate the occurrence
of analogous third order EPDs in GT -symmetric waveguides,
i.e., where both gain and losses are present. The periodic set
of losses in the GT -symmetric waveguide in Fig. 1 represent
the radiation resistances of an array of antennas.

The fundamental concept offered here is potentially useful
for a variety of applications. Indeed, the use of the DBE
has been proposed already for low threshold oscillators with
a stable oscillation frequency [59–61]. Recently the DBE
oscillator has been experimentally demonstrated in [62]. Os-
cillators based on EPD with balanced loss and gain have been
proposed in [50,51,63,64] that are, in principle, able to radiate
high power.

The SIP application has been proposed for delay lines [37].
High efficiency, high gain amplifiers based on SIP have also

FIG. 1. (a) An example of dispersion relation of the mode with
purely real wave number in an infinitely long periodic waveguide
made of three coupled waveguides with loss and gain satisfying
GT symmetry. The third order EPD occurs at the angular frequency
ωe with real-valued Floquet-Bloch wave number ke, where three
eigenvectors (schematically represented by three vectors) coalesce.
(b) As an example, the three-way periodic waveguide with third
order EPD is made of three coupled microstrips over a grounded
substrate (in blue) with periodic gain and loss, shifted by half a
period. The structure in (b) can be seen in a more general way as two
transmission lines coupled through a third serpentine transmission
line. The three-way periodic waveguide supports three modes in each
longitudinal direction.

been proposed in [58] based on the concept of three-mode
synchronization, in traveling wave tubes.

The third order EPD studied here can be applied to the case
of distributed amplifiers interleaved with an array of antennas
for high power radiation, since, in principle, the EPD can be
designed with large gain balanced with large radiation loss.

The paper is organized as follows: in Sec. II, we introduce
and discuss the two kinds of unit-cell structures for the three-
way waveguide, where the transfer matrix of the unit cell is
modeled using coupled transmission lines (CTLs). The modal
dispersion of the periodic structure is investigated where we
demonstrate the existence of third order EPDs in the disper-
sion diagram for a few designs. We also provide a thorough
analysis of the power distribution for the semi-infinite struc-
ture as well as the engineering of the dispersion diagram to
have different characteristics by tuning the parameters of the
unit cell. Section III is dedicated to the finite length stud-
ies of the periodic structure with proper terminations where
we study the resonance behavior and stability through the S
parameters of the three-way waveguide. We also investigate
the power performance of the finite-length structure for a
distributed radiating amplifier application and its important
characteristic aspects such as stability analysis and radiating
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FIG. 2. (a) Unit cell of the three-way periodic microstrip struc-
ture that exhibits a third order degeneracy for case A (also used in
Secs. III and IV). The structure is composed of two uniform trans-
mission lines coupled through a third serpentine transmission line
in the middle, and two shunt conductances, gain and passive (e.g.,
a radiation resistance), added to the uncoupled sections with real
positive and negative values as shown. (b) Unit cell of an alternative
design (case B and case C) of the three-way periodic microstrip
structure where the shunt conductances (gain and loss) are added to
the coupled sections instead.

and load power gains. Throughout this paper, we implicitly
assume that the time dependence is in the form of e jωt .

II. THREE-WAY COUPLED WAVEGUIDE
WITH GT SYMMETRY

We define GT symmetry as the combination of two opera-
tors: the G glide symmetry, and the T time reversal symmetry
operators. In the modeling of an electromagnetic system, the
time reversal operators T makes the imaginary unit j → − j,
hence when applied to a refractive index, it implies that
n(x, z) → n∗(x, z), i.e., loss goes into gain and vice versa. The
glide-symmetry operators G makes a translation by half of the
geometrical period d , followed by a reflection in x. In terms
of refractive index, it implies that n(x, z) → n(−x, z + d/2),
The glide symmetry is considered a higher symmetry. The
combined GT operator leads to n(x, z) → n∗(−x, z + d/2).

In the following we investigate a three-way waveguide
that satisfies these properties. However, we focus on a metal-
dielectric structure with lumped loss and gain, which is
described in more detail in the next section.

The goal of this paper is to show that a structure that sat-
isfies GT symmetry has a third order EPD with a real-valued
wave number. The study of the spectrum of the GT operator
is left to future investigations.

A. Unit-cell design of the coupled serpentine
waveguide with gain and loss

We consider two distinct periodic waveguide geometries
in microstrip technology based on the three-way CTLs with
unit cells as shown in Fig. 2. The designs are modeled by two
uniform transmission lines that are coupled through a third
serpentine-shaped transmission line in the middle, similar to
the structure in [38]. In this paper, we have altered the struc-
ture by adding balanced gain and loss. This is implemented
using a set of periodic lumped line-to-ground admittances on
the first (top) microstrip with a conductance of –G (gain) and

another set of periodic lumped line-to-ground admittances in
the third (bottom) microstrip with the conductance of +G
(loss, or radiation loss) to achieve a GT -symmetric design
for the three-way microstrip structure. We find the degeneracy
condition of order 3 by selecting proper periodic loss and gain
values. The third order EPD is more general than the SIP that
is found in passive, lossless three-way waveguides. However,
the presence of lumped gain and loss elements makes the sys-
tem more complicated. In terms of applications, the periodic
gain provides amplification and losses may represent discrete
radiating elements (e.g., antennas). Therefore, this scheme can
be viewed either as a distributed radiating amplifier or as a
structure that may radiate and oscillate (i.e., lasing) at the
same time. Moreover, the degeneracy may bring advantages in
terms of low noise, enhanced coherency among the radiating
elements, etc.

We provide two potential implementations of such a GT -
symmetric structure: In Fig. 2(a), the discrete gain and loss
elements are located at the uncoupled sections of the CTLs
whereas in Fig. 2(b) they are located at the coupled sections.
We provide in Appendix A the design parameters for both
structures in Fig. 2. We assume that the conductance G has a
pure real value representing either loss or gain in the structure.
The three-way CTL supports three modes in each longitudinal
direction. Thus, the structure can exhibit a third order EPD by
tuning the microstrip geometry and admittances. In designing
the unit cell to attain the EPD, for the sake of simplicity, it is
assumed that all the transmission lines have the same width w,
same separation distance between the coupled lines s, and the
length of each unit cell is set to d . We used a substrate with a
relative dielectric constant of 2.2, no loss tangent [tan(δ) =
0], and height of hs = 1.575 mm. Also, the microstrip and
ground plane metal layers were assumed to be lossless. To
achieve the degeneracy condition at the desired frequency
( fe = 2 GHz), we fixed values for some of the dimensions in-
cluding w = 5 mm for the linewidths (corresponding to lines
with Z0 = 50 � characteristic impedance, when uncoupled)
and s = 0.5 mm for the distance between the lines. We then
tune other dimensions such as the length of the unit cell d ,
the height of the serpentine section h, and the value of the
conductance G, to search for the third order degeneracy at the
desired frequency. The optimization we have done to find a
third order EPD is based on tuning the prementioned param-
eters to minimize the coalescence parameter associated with
three eigenmodes in the system, as will be discussed later.

B. Transfer matrix formalism

We use a three-CTL transfer matrix formalism to construct
the total transfer matrix for a single unit cell, in analogy to
what was done in [38,47,51]. We will also use this transfer
matrix in our analysis of the finite-length periodic structure
composed of cascaded unit cells to model and investigate
the various aspects of the modal degeneracy under study.
The details of the transfer matrix formalism are provided in
Appendix B. Other related matrix-based approaches have pre-
viously been used to analyze systems under PT - and broken
PT -symmetry regimes in works such as [51,65–69].

In the investigation of the EPDs’ properties through
transfer matrix and eigenvalues for a six-port system, it is
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convenient to define the position-dependent state vector in the
form

�(z) = [V1, Z0I1, V2, Z0I2, V3, Z0I3]T, (1)

where voltages and currents are evaluated at z along the three-
way CTLs. The state vector describes the spatial evolution
of the eigenmodes as they propagate through the structure. A
transfer matrix, T(z2, z1), is used, which uniquely relates the
state vector �(z) between two points in the structure such that

�(z2) = T(z2, z1)�(z1), (2)

where we use the forward transfer matrix notation with z2 >

z1 along the z axis. The 6 × 6 transfer matrix T− U of a unit
cell shown in Fig. 2(a) is then defined as �(z + d ) = T− U �(z)
and is expressed and calculated in terms of the geometric and
electrical parameters of the unit cell using formulas found in
Appendix B. Accordingly, the unit-cell transfer matrix for the
waveguide in Fig. 2(a) is obtained by cascading the transfer
matrices of each segment of the unit cell:

TU = T−GTATCTBT+GTBTCTA. (3)

The expression for the unit-cell transfer matrix for Fig. 2(b)
is presented in Appendix B. For an infinitely long stack of
CTL unit cells, a pseudoperiodic solution for the state vector
�(z) exists in the Bloch form and the transfer matrix T− U

translates the state vector across a unit cell as the eigenvalue
equation of

T− U �(z) = e− jkd�(z), (4)

where k is the complex-valued Bloch wave number. The
eigenvalues of the transfer matrix and hence the Bloch wave
number are obtained as solutions of the characteristic equa-
tion,

Det(T− U − ζ I−) = 0, (5)

in which we define I− to be the 6 × 6 identity matrix. For the

CTL with three lines (6 × 6 transfer matrix) discussed in this
study, six eigenvalues, ζi = e− jkid , with i = 1, 2, . . . , 6, of the
T− U matrix are calculated from Eq. (5).

Note that, because of periodicity, each eigenvalue corre-
sponds to an infinite set of wave numbers ki + n2π/d , with
n = 0,±1,±2, . . ., called Floquet harmonics. In the follow-
ing, we show the dispersion diagrams with wave numbers in
the range 0 < Re(k) < 2π/d that we refer to as the funda-
mental Brillouin zone.

Because of the reciprocity of the system, the transfer matrix
satisfies Det(T− U ) = 1. Consequently, if ζ is an eigenvalue
of the system then ζ−1 is another eigenvalue. Therefore,
the modes supported by the structure have wave numbers
k1, k2, k3,−k1,−k2, and −k3. At the third order EPD studied
in this paper, three eigenvalues coalesce at ke while the other
three coalesce at −ke. Moreover, at the EPD, the transfer ma-
trix T− U cannot be diagonalized because the three eigenvectors
of (4) associated with each ke and −ke wave number coalesce,
as discussed in [38,43]. The coalescence of three eigenvectors
is a necessary and sufficient condition for a third order EPD
to occur. This means that the existence of an EPD can be
found by checking the coalescence of three eigenvectors. This
is the technique implemented in this paper to find the EPD

conditions while maintaining GT symmetry. At the EPD, only
two polarizations states, �e1 and �e2, are the eigenvectors of
the system. This implies that the geometric multiplicity of
each degenerate eigenvalue is equal to 1 while its algebraic
multiplicity is equal to 3; hence the transfer matrix T− U is not
diagonalizable and it is similar to a matrix containing two
Jordan blocks of dimensions 3 × 3, as explained in detail in
[43]. At the EPD, the transfer matrix T− U is represented as

TU = V

[
�

J,1
0

0 �
J,2

]
V−1, (6)

where �
J,1

and �
J,2

are two Jordan blocks,

�
J,1

=

⎡
⎢⎣

ζe 1 0

0 ζe 1

0 0 ζe

⎤
⎥⎦, �

J,2
=

⎡
⎢⎣

ζe
−1 1 0

0 ζe
−1 1

0 0 ζe
−1

⎤
⎥⎦,

(7)
and the similarity transformation matrix V is composed of
one degenerate eigenvector and two generalized eigenvectors,
associated with each of the eigenvalues ζe and ζe

−1.
The theory explained in [43] is for a lossless three-way

waveguide but there are many similarities with the waveguide
in this paper which has periodic gain and loss elements. Also
in this paper, we find a branch of the dispersion diagram that
corresponds to a purely real wave number (shown in Fig. 1),
while the other two branches in Figs. 3–5 represent waves with
complex wave numbers, as discussed in the next section.

C. Dispersion relation and coalescence parameter
featuring third order EPD

The periodic three-way microstrip in Fig. 2 can support a
third order degeneracy. We design three different CTLs (cases
A, B, and C) where the EPD occurs at an operating frequency
of 2 GHz. Our unit-cell designs have been determined by
using the fixed parameters provided in Appendix A, such as
the microstrip width, spacing between coupled microstrips,
substrate dielectric properties, and substrate thickness. We
then tuned the other parameters such as the length of the
unit cell d , the “height” h of the serpentine sections, and
the choice of lumped gain and loss conductances –G and G,
respectively, to obtain EPDs at a desired frequency. Both the
EPD frequency and the flatness of the dispersion curve in the
vicinity of the degeneracy condition can be altered by tuning
the dimensional and electrical parameters of the unit cell.

An EPD is represented by the coalescence of the eigen-
values (i.e., wave numbers) and by the coalescence of the
eigenvectors (i.e., polarization states). The coalescence of the
eigenvalues is necessary to have an EPD; however, the co-
alescence of the eigenvector guarantees the existence of an
EPD. In the following, we assess the occurrence of a third
order EPD by observing the coalescence of three eigenvectors.
Accordingly, we define a figure of merit to measure how close
the system is to an ideal third order degeneracy condition at
the frequency of interest, called the coalescence parameter
(CEPD). This concept was developed in [47] for a fourth or-
der degeneracy, and used also in [38] for an SIP; it is here
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FIG. 3. Case A: (a) complex wave numbers plotted in the com-
plex k plane varying frequency. This plot shows the existence of
the third order modal degeneracy condition and coalescence of the
three modes at two different EPD real-valued wave numbers, ke

and −ke + 2π/d . It also shows than one branch is purely real.
(b) Coalescence parameter plotted versus normalized frequency in
the vicinity of the EPD. (c), (d) Typical modal dispersion diagram
of the eigenmodes, showing both the real and imaginary parts of the
normalized complex Floquet-Bloch wave number k versus normal-
ized angular frequency around the EPD frequency ωe. The purely
real branches are shown in solid black. Dashed-line branches rep-
resent the modes with complex wave number and correspond to
the complex branches of (a). The arrows along each branch of (a)
indicate how the real and imaginary components of wave number
vary as frequency is increased. Besides the lumped elements, we have
assumed the three-way waveguide to be lossless for all the graphs
shown in this figure.

analogously defined for a third order EPD as

CEPD = 1

3

3∑
m=1,n=2

n>m

|sin (θmn)|, cos (θmn) = Re|(�m,�n)|
‖�m‖‖�n‖ ,

(8)

where θmn represents the angle between two eigenvectors �m

and �n in a six-dimensional complex vector space, with norms
‖�m‖ and ‖�n‖, and (�m,�n) is their inner product. The
coalescence parameter defined in Eq. (8) is always positive,
with small values indicating how well the eigenvectors of the
structure are close to each other in the frequency range of
interest. EPDs of third order occur when CEPD = 0. Using this
coalescence parameter as the error function to be minimized
at the EPD frequency of interest, an optimization algorithm
in MATLAB was used to select the conductance of the lumped
elements, serpentine height h, and period of our unit cell d to
make the device exhibit an EPD of third order.

We provide three examples of EPDs that occur in three-
way microstrip waveguides as in Fig. 2, denoted as cases A,
B and C. These cases were each found using the optimization
method discussed above.

Case A: In this example, the tuned unit-cell parameters
were found to have a conductance value of G = 0.1398 S

FIG. 4. Case B: The description is as in Fig. 3 but plots are for
case B.

(or equivalently R = 1/G = 7.15 �), serpentine height of h =
5.35 mm, and period of d = 54.15 mm. The active (gain) and
passive conductances in this case are located on the unit cell
as illustrated in Fig. 2(a).

Figure 3 shows the existence of third order degeneracy in
the dispersion diagram and the coalescence parameter. The
imaginary part of the dispersion diagram is plotted versus the
real part in Fig. 3(a) where it shows the existence of the third
order degeneracy condition and the coalescence of the three
modes at two different locations in the fundamental Brillouin
zone, at ke and −ke + 2π/d due to reciprocity. In other words,
we show an EPD in the region 0 < kd < π , in the dispersion
diagram of Fig 3(c). There are three coalescing branches, one
(in solid black) has a purely real wave number with positive
group velocity for frequencies around the EPD frequency, as
can be seen by the black curve on the left side of Fig. 3(c). The
second EPD is in the region π < − kd + 2π < 2π , where

FIG. 5. Case C: The description is as in Fig. 3 but plots are for
case C.

052230-5



YAZDI, MEALY, NIKZAMIR, MAROSI, AND CAPOLINO PHYSICAL REVIEW A 105, 052230 (2022)

there are three coalescing branches. One branch (solid black)
has a purely real wave number with negative group velocities
for frequencies around the EPD. Through the rest of the paper,
we consider the mode in the region 0 < ked < π as our EPD
of interest associated with forward waves in our dispersion
diagram.

In Fig 3(b), the coalescence parameter is plotted versus
normalized frequency around ωe (corresponds to 2 GHz) to
demonstrate how close we are to the third order degeneracy
condition in our design. Finally, in Figs. 3(c) and 3(d), we
plot the modal dispersion diagram of the infinite structure,
showing both the real and imaginary parts of the normalized
complex Floquet-Bloch wave number k versus normalized
angular frequency around the designed frequency ωe where
the third order behavior is observed. We used dashed lines in
Figs. 3(c) and 3(d) for wave numbers that are complex valued
to show different overlapping curves of real and imaginary
parts. In other words, the curves with dashed lines of different
colors represent two overlapping branches. We follow the
same scheme in Figs. 4 and 5.

The normalized dispersion relation around the desired third
order EPD can be approximated using the third order equation

(ω/ωe − 1) ≈ ζ (kd/π − ked/π )3, (9)

where ωe is the angular frequency at which three modes
coalesce and ke is the Floquet-Bloch wave number at the de-
generacy point. The nondimensional parameter ζ determines
the flatness of the normalized dispersion at the EPD which is
related to the third derivative of d3ω/dk3 around the degen-
eracy point. Lower values of the flatness factor ζ mean flatter
dispersion relations at the EPD which is an important factor in
designing a third order EPD for possible applications based on
the desired characteristics and properties. For case A shown in
Fig. 3 the flatness factor is calculated as ζA ≈ 2.1.

Case B: Using the same optimization method, we find ad-
ditional solutions which exhibit third order modal degeneracy.
The unit-cell design of case B differs from that of case A
in that the lumped elements are positioned in the center of
the coupled sections of the transmission line, as is illustrated
in Fig. 2(b). For this second solution, the tuned unit cell
was found to have the conductance value of G = 0.105 S
(or equivalently R = 1/G = 9.5 �), serpentine height of h =
6.36 mm, and period of d = 46.3 mm. Like the previous case,
the dispersion diagrams and coalescence parameter are plotted
in Fig. 4, where we show the existence of the EPD for the new
values and discuss its modal behavior. For the case B shown
in Fig. 4, the flatness factor is calculated as ζB ≈ 7.2 which
is higher than case A, meaning a narrower dispersion diagram
compared to the previous case (i.e., less flat).

Case C: To show the flexibility of our design we have
provided a third solution that exhibits third order modal
degeneracy in its dispersion diagram by again tuning the di-
mensions around initial values which seem appropriate for
a practical design and search for a new set of parameters
to achieve the third order EPD. The tuned unit-cell parame-
ters were found to be a conductance value of G = 0.0099 S
(or equivalently R = 1/G = 100.55 �), serpentine height of
h = 1.07 mm, and period of d = 48.08 mm. As in case B,
the lumped elements are centered in the CTL sections, as
illustrated in Fig. 2(b). The existence of the third order EPD

FIG. 6. Engineering of the dispersion diagram of the mode with
purely real k to exhibit different group velocities (different slopes)
around the EPD frequency. (a) By tuning the value of the R (or G) el-
ements for case A we observe a slightly positive slope for R = 5.27 �

and a slightly negative slope for R = 9.11 �, whereas the ideal case
with zero slope has R = 7.15 �. (b) By tuning the value of the h
(serpentine height) for case A we observe a slightly positive slope
for h = 4.748 mm and a slightly negative slope for h = 5.948 mm,
whereas the ideal case with zero slope has h = 5.948 mm. For all the
graphs shown above only the purely real branches of the dispersion
diagram are plotted and we have assumed the structure to be lossless.

for this case is shown in the results of Fig. 5, where we have
plotted the dispersion diagram and the coalescence parameter
in a fashion similar to the previous cases. For case C shown
in Fig. 5, the flatness factor is calculated as ζC ≈ 188 which
is much higher than the two previous cases A and B indicating
a more-narrow EPD in the dispersion diagram, as can be seen
from the results in Fig. 5.

These three different solutions show that our design to
achieve the third order modal degeneracy in the three-
way CTL is flexible, and the parameters of interest can
be tuned around some initial practical values based on the
application.

D. Engineering of the dispersion diagram

One of the interesting features of the designs that we pro-
pose, which exhibit a third order modal degeneracy around a
desired frequency, is that the slope of the dispersion diagram
can be tuned easily by altering one or more design parameters
of the unit cell. As a result, we can have a slightly positive lo-
cal slope (small positive group velocity) or a slightly negative
local slope (small negative group velocity) in proximity of the
EPD, rather than the ideal case of zero slope. In Fig. 6(a), we
show how the slope of the dispersion diagram for case A can
be engineered to be positive or negative in the vicinity of the
EPD by simply adjusting the value of R = 1/G, for both the
gain and radiation loss elements while still maintaining GT
symmetry in the system. We observe a slightly positive slope
for slightly lower values of R (R = 5.27 �) than the EPD one
of R = 7.15 �, shown in solid blue. We observe a slightly
negative slope for R = 9.11 �, i.e., slightly higher than the
EPD one, shown in dash-dotted red. The case with R = 7.15 �

that leads to the ideal third order EPD for case A with zero
slope is shown in dashed black in Fig. 6(a). In this figure, we
only show the branches with a purely real wave number; i.e.,
those with complex-valued k are not shown for simplicity.

Another method to alter the slope of the dispersion di-
agram in the vicinity of the third order degeneracy is by
tuning the height of the serpentine microstrip (h) as shown in
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Fig. 6(b). Note that by just altering h, the structure remains
GT symmetric. As observed from the results of Fig. 6(b),
by slightly lowering the height (h = 4.75 mm) we achieve
slightly positive slope (shown in solid blue) compared to
the dispersion diagram of case A, where the ideal EPD with
zero slope occurs for h = 5.35 mm (dashed black). Instead,
by slightly increasing the height (h = 5.95 mm), we can
also achieve a slightly negative slope (shown in dash-dotted
red).

The results of these dispersion engineering examples
demonstrate the flexibility of the proposed design for specific
applications where the group velocity can be tuned by varying
the design parameters about their nominal values. Increasing
the slope of the dispersion diagram around the EPD frequency
to reach a positive group velocity will potentially increase the
bandwidth of the resonance peak associated with an EPD,
which will be desirable for reaching higher bandwidth-gain
products in amplifier applications [58]. Alternatively, decreas-
ing the slope to negative values in the dispersion diagram
around EPD results in higher Q factors for the EPD res-
onance peak [58], which may be beneficial for oscillator
applications.

E. Power analysis based on modes around EPD

Exactly at the EPD (ω = ωe), where three modes coalesce
in their wave number k1 = k2 = k3 = ke, with ke purely real
[Im(ke) = 0], the eigenwaves propagating from unit cell to
unit cell do not exhibit exponentially growing or decaying
behavior. We checked this by using the single degenerate
eigenvector as input state vector in a semi-infinite structure,
i.e., �(z = 0) = �e. This investigation of the power flow in
the semi-infinite long periodic structure shows that at the EPD
the power over G and –G is balanced, meaning they both have
equal powers that cancel one another (i.e., P–G = –PG), as is
discussed later in this section.

The obtained dispersion diagrams, shown in Figs. 3–5, for
the proposed GT -symmetric structures show that, at frequen-
cies slightly lower or higher than the EPD frequency, the three
modes are slightly perturbed from the EPD, and they are no
longer coalescing. These three modes have one mode that
has a purely real wave number (black curves in Figs. 3–5),
k1, and the other two modes have wave numbers that are
complex conjugates of each other (red and green curves in
Figs. 3–5), k2 = k∗

3 . Another set of simulations was performed
for the same proposed structures but with asymmetric gain and
loss (broken GT symmetry) and we found that the dispersion
diagram did not exhibit the prementioned conjugate property
for the wave numbers k2 = k∗

3 .
Based on the prementioned conjugate property of the wave

numbers, the proposed GT -symmetric structures have two
modal complex wave numbers with Im(k2) = −Im(k3) which
means that one mode is growing whereas the other one is the
decaying mode along z. One (red curve) of those two modal
complex wave numbers has Im (k2) < 0 for ω < ωe whereas
it has Im(k2) > 0 for ω > ωe. For the purely real mode k1,
there is no growing or decaying behavior in the signal and the
power is balanced.

The mode with Im(k) > 0 has a growing behavior in the
signal over the unit cells moving along z. For this case, there is

more power provided by –G (gain) than the power consumed
by +G (loss). Thus, the total power carried by this mode
exiting a unit cell to the right is higher than the power entering
the unit cell from the left. On the other hand, the mode with
a negative imaginary part has a decaying behavior, and in
this case, there is more power consumed by +G (loss) than
the one provided by –G (gain). A graphical summary of this
investigation is presented in Fig. 7(a) where, for each of the
three modes associated with a perturbed third order EPD, the
propagating, growing, and decaying modes are shown. At
the EPD the three modes coalesce to form one degenerate
mode with a purely real k = ke.

To better understand the power distribution inside the unit
cells, we consider case A: In Fig. 7(b) the power over the
three lines of the semi-infinitely long periodic structure is
plotted versus normalized z, evaluated exactly at EPD fre-
quency and wave number such that 0 < ked < π . The plot
was obtained by assuming an input state vector at z = 0 is the
EPD degenerate eigenvector, �(z = 0) = �e, associated with
positive value ke with 0 < ke < π/d , and the degenerate state
eigenvector has been normalized such that ||�e|| = �T

e �∗
e =

2.31 V2. This eigenvector excites voltages and currents on
each of the three TLs. The other degenerate mode with –ke

has a different eigenvector; therefore the one used in this
simulation, �e, excites only the three degenerate modes with
positive ke.

In Fig. 7(c), the total power (summation of the powers
flowing in the three lines of the circuit, top, middle, and
bottom) is plotted versus normalized z. We observe two dif-
ferent jumps in the power in each period that are associated
with the power dissipation and contribution of the +G and
–G lumped elements to the circuit, respectively. Since this
power flow is evaluated exactly at the EPD condition, where
the three coalesced wave numbers are purely real, the power
entering each unit cell from the left is the same as the one
exiting to the right. Therefore, at the EPD the power over
+G and –G is balanced, with P–G = –P+G. The conservation
of the power is also verified in our numerical simulations by
directly calculating these two quantities [the plot in Fig. 7(c)
is obtained by summing the three powers] where we see that
the total power carried by this degenerate mode exiting any
unit cell to the right is equal to the power entering it from the
left.

We have selected case A for demonstration purposes in
Figs. 7(b) and 7(c), but the general concept of the power
analysis provided here is analogous with the other two cases
featuring third order EPDs. This study provides us with some
physical insight into how different modes behave and how the
signal and its power are propagating throughout the structure.
In the following section, we will provide more investigation of
the powers and gain for a finite-length and terminated periodic
structure.

III. FINITE-LENGTH STRUCTURE PROPERTIES

As discussed earlier, devices featuring EPDs may exhibit
special properties and enhanced characteristics which make
them potential candidates for applications. To provide an ex-
ample application of the regime presented in this paper, we
consider a finite-length three-way waveguide constructed by
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FIG. 7. (a) Graphical representation of how the power propa-
gates along the periodic structure in the +z direction, for three
different wave numbers: purely real k1, and complex wave number
with positive imaginary part (k2), and with negative imaginary part
(k3). (b) Power (in mW) over the three lines of the semi-infinite
long periodic structure plotted versus z evaluated exactly at EPD
frequency for the design of case A, for the EPD in the region
0 < ked < π . This plot exhibits how the power moves over the
structure for the specific degenerate eigenmode on each line of the
three-way waveguide. (c) Summation of the powers of the three
lines shown in part (b), plotted versus z for the semi-infinite periodic
circuit. The jumps in the power are associated with the +G and –G
contributions.

cascading the proposed GT -symmetric unit cells and adding
proper excitation and terminations to make a distributed
amplifier, with the –G as distributed gain and with the +G el-
ements as radiative loads (modeling antennas). In this section,
we first provide an investigation of the resonance behavior and
stability analysis of such finite-length three-way waveguide
and then show the amplification at the EPD frequency.

A. Resonance behavior and stability analysis

We consider the three-way waveguide structure of case A
in Fig. 2(a), consisting of N cascaded unit cells as depicted
in Fig. 8(a). We have omitted the rightmost –G element, as
shown, to make the terminated structure symmetric and help
to improve stability. We excite the middle line of the three
CTLs with terminations of Zs = ZL = 50 �. For the terminals
of the bottom line, we are assuming Zy = 50�, and for the
top line we are assuming short circuit terminations (Zx = 0 �)
as shown in Fig. 8(a). We have selected this loading scenario
based on the stability and gain performance of the three-way
structure. First, to check the stability and the resonance be-
havior, we check the S parameters. Based on [70], for two
port networks, oscillations are possible when either the input
or output port presents a negative resistance, which occurs
when |S11| > 1 or |S22| > 1 in our structure setup, treated as a
two-port network (because of symmetry, S11 = S22). To check
stability, we need to evaluate S11. For the design of case A, the
results for the S11 and S21 parameters, assuming N = 8 unit
cells and lossless structure (besides the lumped elements), are
provided in Fig. 8(b) over a wide frequency range. The struc-
ture is stable based on the S11 response shown in Fig. 8(b). For
other configurations or loading scenarios, stability could also
be reached by using impedance matching circuits (filters). The
S21 parameter plotted in Fig. 8(b) versus frequency shows a
sharp resonance peak denoted by ωr associated with the third
order EPD frequency of 2 GHz.

B. Gain evaluation

To evaluate the behavior of the proposed distributed ampli-
fier, we consider the power delivered to the loads (ZL and Zy)
as well as the power delivered to all the N passive elements
(+G) for different structure lengths. We calculate the load
power gain (GLoads) and radiation power gain (GRadiation). In
our analysis, the load gain is defined as GLoads = PLoads-total/Pin

in which PLoads-total is a summation of the power over ZL and
the two Zy, and Pin is the input power at the second (mid-
dle) line input. The radiation gain is defined as GRadiation =
PRadiation-total/Pin, in which PRadiation-total is the summation of
the powers delivered to the +G elements and Pin is the input
power at the second (middle) line input. All the other param-
eters are the same as previously discussed for case A.

In Fig. 8(c), the radiation gain and load gain are plotted
versus the length of the finite-length structure (N) at the
strong-peak resonance frequency nearest to the third order
EPD in case A, still assuming absence of losses in the sub-
strate, tan(δ) = 0, and in the metals. We observe high values
of radiation gain, significantly larger than the load gain. These
results are based upon the terminations of Zy = Zs = ZL =
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FIG. 8. (a) Finite-length three-way structure with period d made
by cascading N unit cells with the total length of L = Nd. (b)
Plot of |S11| and |S21| for the finite-length structure of case A with
N = 8 unit cells and substrate with tan(δ) = 0, around the EPD
frequency, fe = 2 GHz, where we observe that |S11| < 1 and hence
unconditional stability. (c) Radiation gain and loads gain (both in
linear scale) versus the length N of the finite structure of case A,
evaluated at the strong-peak frequency nearest to the EPD. For all
results shown above we have assumed Zy = Zs = ZL = 50 � for the
bottom and middle lines, and two short circuits for the top line
(Zx = 0 �).

50 � for the bottom and middle lines and two short circuits for
the top line (Zx = 0 �), similar to the previous section. The
result of Fig. 8(c) shows that, while being stable, for the case
of N = 8, we reach a radiation gain of GRadiation = 8.8 for the

passive radiating elements with +G, while the load gain has a
lower value of GL = 4.5 at the EPD resonance frequency. The
radiation gain increases significantly by increasing the radia-
tor’s length, which makes the proposed structure a potential
scheme for distributed amplifier applications.

IV. CONCLUSION

We have reported the existence of third order EPDs with
real-valued wave numbers in three-way waveguides with GT
symmetry. At the EPD, three eigenmodes coalesce at a desired
frequency and purely real wave number. Besides having a real-
valued wave number in the presence of gain and loss, there is
also one branch (solid black, Figs. 1 and 3–5) of the dispersion
diagram which has purely real wave numbers.

We have provided two different waveguide configurations
and demonstrated how the group velocity of the mode with
a purely real wave number can be slightly altered by tuning
the physical parameters, which may be beneficial for various
applications. A potential scheme using this third order EPD
could be in high-gain distributed amplifiers with distributed
power extraction. Indeed, the simultaneous presence of dis-
tributed gain and losses (modeling radiation conductances)
and the same slope sign of the propagating wave number
branch (black curves in Figs. 1 and 3–5) at frequencies below
and above the EPD frequency, paves the way to a new set of
applications of EPDs in high power radiating “apertures.” We
have briefly discussed such an application and provided the
radiation gain analysis for a finite-length array of antennas,
where each antenna is represented by a lumped “radiation re-
sistance.” The fundamental idea here presented is not limited
to the specific design shown in this paper but can be poten-
tially applied to a variety of periodic waveguide structures
implemented in different technologies, including EPD lasers
with distributed power extraction.

Importantly, the kind of third order EPD studied in this pa-
per is exhibited in the presence of periodic gain and antennas
(loss), so arrays of this kind can radiate high power if gain and
loss are designed to be large. This is very different from the
concept of an SIP (i.e., frozen mode) in a lossless and gainless
waveguide, where distributed gain was then introduced as in
[58]; in that case, the SIP is increasingly destroyed when
higher and higher gain is introduced in each unit cell, whereas
the third order EPD in this paper is fully maintained even
with large gain elements if properly designed, enabling very
high-power applications of EPDs. Examples of a second order
EPD in waveguiding structures that exists while high power
is continuously extracted along the waveguide are provided
in the oscillator concept shown in [51], and in the backward
oscillator concept presented in Refs. [50,63,64] leading to
high power and high efficiency. Analogously, the third order
EPD shown in this paper can be exploited for high-power
radiating oscillators, lasers with distributed power extraction,
and distributed amplifiers with distributed power extraction.
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APPENDIX A: PARAMETERS USED IN SIMULATIONS

In our simulations, we considered a periodic coupled three-
way waveguide composed of unit cells, each made of three
coupled TLs as in Fig. 2. For all the designs discussed in this
paper, the microstrip linewidths are fixed to have w = 5 mm
(i.e., with 50 � characteristic impedance) and s = 0.5 mm for
the distancing between the lines. The substrate is assumed to
have a relative dielectric constant of 2.2, loss tangent of 0
(lossless dielectric), and thickness of hs = 1.575 mm. Metal
layers are assumed to be lossless as well.

Case A: The tuned unit-cell parameters that led to an EPD
were found to have conductance values of G = 0.1398 S (or
equivalently R = 1/G = 7.15 �), serpentine height of h =
5.35 mm, and period of d = 54.15 mm.

Case B: For this case, the tuned unit-cell parameters have
a conductance value of G = 0.105 S (or equivalently R =
1/G = 9.5 �), serpentine height of h = 6.36 mm, and period
of d = 46.3 mm.

Case C: For this case, the tuned parameters have a con-
ductance value of G = 0.0099 S (or equivalently R = 1/G =
100.55 �), serpentine height of h = 1.07 mm, and period of
d = 48.08 mm.

APPENDIX B: TRANSFER MATRIX FORMALISM

1. Transfer matrices for CTLs

In order to construct the transfer matrix and tune the physi-
cal unit-cell dimensions to acquire a third order EPD, we have
divided the unit cell of the three-way microstrip waveguide
into smaller segments as shown in Fig. 9 and modeled each
segment to obtain the unit-cell transfer matrix. We built the
T-matrix of each segment using TL analytic formulas based
on quasistatic models in [71,72].

The transfer matrices of each smaller segment of the unit
cell shown in Fig. 1(a) are expressed and calculated in terms
of the parameters of the unit cell of the system (length, width,
height, separation). Finally, the transfer matrix for the whole
unit cell (without the added conductances and gain elements)
is obtained by the product of the transfer matrices for each
smaller segment of three CTLs inside the unit cell as

TU = TATCTBTBTCTA. (B1)

FIG. 9. Unit cell of the three-way periodic microstrip structure
over a grounded substrate used to obtain the EPD, divided into
smaller segments to construct the corresponding transfer function for
each segment in terms. The total transfer matrix of the unit cell is then
derived by multiplying the segment transfer matrices.

2. Transfer matrix for lumped conductances

We find the transfer matrices for the added conductance
and gain lumped elements in each unit cell. For the first
admittance added on the top line with the value of –G (active
device) we have

T− +G
=

⎛
⎜⎜⎜⎜⎝

1 0 0

GZ0 1 0

0 0 1

0−
3×3

0−
3×3

I−
3×3

⎞
⎟⎟⎟⎟⎠, (B2)

where G is the conductance value (assumed positive) of
the active gain device. For the second admittance added on
the bottom line with the value of G (passive device) we
have

T− −G
=

⎛
⎜⎜⎜⎜⎝

I−
3×3

0−
3×3

0−
3×3

1 0 0

0 1 0

0 −GZ0 1

⎞
⎟⎟⎟⎟⎠. (B3)

Therefore, the total transfer matrix for the unit cell of case
A shown in Fig. 2(a), including the added lumped radiation
conductance and gain device, is calculated as

TU = T−GTATCTBT+GTBTCTA. (B4)

The total transfer matrix for the unit cell of case B shown in
Fig. 2(b), including the added lumped radiation conductance
and gain device, is calculated as

TU = TGTATCTBT−GTBTCTA. (B5)
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