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Error-disturbance uncertainty relations in Faraday measurements
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We examine error-disturbance relations in the quantum measurement of spin systems using an atom-light
interface scheme. We model a single spin-1/2 system that interacts with a polarized light meter via a Faraday
interaction. We formulate the error and disturbance of the model and examine the uncertainty relations. We
find that, for the coherent light meter in pure polarization, both the error and disturbance behave like the cyclic
oscillations due to the Faraday rotation in both the light and spin polarizations. We also examine a class of
polarization-squeezed light meter, where we apply the phase-space approximation and characterize the role of
squeezing. We derive the error-disturbance relations for these cases and find that the Heisenberg-Arthurs-Kelly
uncertainty is violated while the tight Branciard-Ozawa uncertainty always holds. We note that, in the limit of
weak interaction strength, the error and disturbance come to obey the unbiasedness condition and hence the
Heisenberg-Arthurs-Kelly relation holds. The work contributes to our understanding of the quantum measure-
ment of spin systems under the atom-light interface framework and may hold potential applications in quantum
metrology, quantum state estimation, and control.
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I. INTRODUCTION

Quantum measurements play a crucial role in charac-
terizing physical systems, which elucidate hidden quantum
properties to the classical world [1]. Moreover, many mea-
surements come with more than just one observable that does
not commute, and thus have an enormous impact from the
fundamental verification such as the Bell nonlocality and en-
tanglement [2–4], quantum steering [5], quantum metrology
[6,7] to quantum information technologies including quantum
key distribution [8], quantum dense coding [9–12], quan-
tum cryptography [9,13], and nonlocal quantum measurement
[14–16].

An important intrinsic property of quantum measurements
is the uncertainty relation in which it is unfeasible to mea-
sure incompatible observables with arbitrary precision. This
is the fundamental restriction in the attainable precision of
quantum measurements. In the early stage of quantum me-
chanics, Heisenberg [17] first formulated such an uncertainty
relation between the position measurement and the distur-
bance of the momentum that satisfies εqηp ≈ h̄/2, where
ε◦ and η� represent the root-mean-square error and root-
mean-square disturbance, respectively. The study then was
paraphrased under the form of the standard deviations by Ken-
nard [18], Weyl [19], and later Robertson [20], for a general
pair of operators A and B, which reads σAσB � CA,B, where
CA,B = |〈ψ |[A, B]|ψ〉|/2 and σ� =

√
〈�2〉 − 〈�〉2 represents

the standard deviation of �, with 〈�〉 = 〈ψ |�|ψ〉 as the ex-
pectation value for a pure quantum state |ψ〉, and � ≡ A or
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B. However, this mathematical relation in the form of stan-
dard derivation has no direct connection to the limitation on
measurements and thus could not cover Heisenberg’s interpre-
tation uncertainty. Preferably, Arthurs and Kelly [21] provided
an error-disturbance relation, which was then generalized to
[22,23]

εAηB � CA,B, (1)

which states that if the measurement of an observable A with
an error εA then it also disturbs an observable B with a dis-
turbance ηB, satisfying such a relation. So far, it is known
that this relation is not universally valid (see, for example,
Ref. [24].) Hereafter, we call Eq. (1) the Heisenberg-Arthurs-
Kelly uncertainty.

Ozawa theoretically derived a universal error-disturbance
relation [25,26] through an indirect measurement following
the von Neumann paradigms [27]. The measurement consists
of an interaction between a quantum system and a meter. A
measurement of A in the system was done indirectly via a
measurement of M in the meter. At the same time, this process
reflects back to the system, and thus it disturbs the subsequent
measurement of observable B in the system. According to
Ozawa, the error-disturbance relation for any input state |ψ〉
is expressed by [25,26]

εAηB + εAσB + ηBσA � CA,B. (2)

This relation was experimentally confirmed recently by us-
ing a state-preparation method [28–32], weak probe method
[33–36], continuous-variable entangled states [37,38], and
others [39,40].

Subsequently, Branciard [41,42] and Ozawa [43] consid-
ered a rigorous relation that reads

ε2
Aσ 2

B + σ 2
Aη2

B + 2εAηB

√
σ 2

Aσ 2
B − C2

A,B � C2
A,B, (3)
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which claimed to be tighter than relation (2) and was exper-
imentally verified [31,36–38]. Hereafter, we call Eq. (3) the
Branciard-Ozawa uncertainty. Recently, numerous alternative
approaches were used to revisit the uncertainty relation theo-
retically and experimentally [39,44–67].

Recently, the Faraday measurements of spin based on an
atom-light interface framework were actively studied [68–78].
This has contributed to our understating of quantum measure-
ment and has various applications in the quantum metrology
of atomic ensemble [79], quantum information processing
[80], strongly correlated systems [81], and many-body sys-
tems [82]. The Faraday effect causes the rotation of polarized
light via the interaction with the spin system and thus allows
indirect measurement of the spin system through the polar-
ized light meter. Such a measurement contains fundamental
limits in the sensitivity caused by the quantum nature of light.
Likewise, the back-action of the polarized light meter perturbs
the spin state, which causes a disturbance on the subsequent
measurements of the spin system.

Recently, the uncertainty relation in the Faraday mea-
surementwas studied by examining the relation between
preparation (prediction) and postselection (retrodiction) [75],
where the authors considered the Kennard-Weyl-Robertson
relation for the approximate canonical position and momen-
tum of the spin of atoms. However, the obtained relation
cannot be considered as the error-disturbance relation. Also,
the approximate canonical observables used there are only
applicable in the case of weak interaction and unbiased mea-
surements. Thus, a more precise and appropriate analysis of
the error-disturbance uncertainty relation in the Faraday mea-
surement is necessary.

In this paper, we formulate an atom-light interface scheme
in the Faraday measurement and evaluate the error, distur-
bance, and their uncertainty relations. We consider an atom
as a single spin-1/2 particle interacting with a polarized light
meter. We first consider a classical coherent polarized light
as the light meter. Without approximation, we derive the er-
ror and disturbance and their trade-off relation as functions
of the interaction strength. Next, we investigate the case of
polarization-squeezed light using the canonical phase-space
approximation for the light meter, where the squeezing pa-
rameter is regarded as one of the parameters that defines
the measurement strength. We also examine the case of
weak interaction strength, where the error and disturbance
satisfy the joint unbiasedness, i.e., the condition in which
the Heisenberg-Arthurs-Kelly uncertainty holds. We further
formulate the error-disturbance relations in these cases and
provide that the Heisenberg-Arthurs-Kelly uncertainty [21]
can be violated while the tight Branciard-Ozawa uncertainty
for the qubit system [41] always holds. Our analysis would
contribute to the understanding of the effect of error and dis-
turbance as well as their uncertainty relations in the quantum
measurement under the atom-light interface framework.

This paper is organized as follows. We introduce the
concept of the atom-light interface in Sec. II. In Sec. III,
we derive the error and disturbance under the atom-light
interface framework for classical coherent light meter and
polarization-squeezed light meter. The error-disturbance rela-
tions are provided in Sec. IV. We give a brief summary and
outlook in Sec. V.

II. MEASUREMENT PROCESS

We consider a measurement model in which a spin-
1/2 system interacts with a polarized light meter based on
the Faraday interaction under the standard von Neumann
paradigm [27]. The spin system is a single-particle character-
ized by Pauli matrices σ i, with i = x, y, z, while the polarized
light meter is given by the Stokes operators Si [83]. For light
propagating along the z direction, we explicitly have

S0 = a†
H aH + a†

V aV = nH + nV , (4)

Sx = a†
H aH − a†

V aV = nH − nV , (5)

Sy = a†
H aV + aH a†

V , (6)

Sz = −i(a†
H aV − aH a†

V ), (7)

where H and V stand for the light modes of horizontal and
vertical linear polarizations, respectively, aH,V (a†

H,V ) are the
annihilation (creation) operators in the corresponding polar-
ization modes, and n = a†a the photon number operator. The
Stokes operators obey the angular momentum commutation
relation [Sx, Sy] = 2iSz, and cyclic permutations.

The unitary evolution of the Faraday interaction is given by

UT = e−igA⊗Sz , (8)

where g = ∫ T
0 g(t ) dt is the interaction strength over the time

interval T . Here A is the observable being measured in the
system. Under such an atom-light interface, the polarization
state of the light meter rotates through the Faraday effect by
an amount proportional to A, and thus allows the indirect
measurement of A. Likewise, under the back-action effect,
the system state is rotated around the z axis by an amount
proportional to Sz, and thus disturbs the system.

Assume that the spin system is prepared in state |ψ〉 and
the light meter state is |ξ 〉. They are initially uncorrelated,
so that |�〉 = |ψ〉 ⊗ |ξ 〉. The unitary operator UT in Eq. (8)
describes the time evolution of the joint system meter during
the interaction time. After the interaction, the joint state is
given by |� ′〉 = UT |�〉, and the measuring expectation value
of an observable M in the meter will be

〈(I ⊗ M)〉 = 〈� ′|(I ⊗ M)|� ′〉
= 〈�|U†

T (I ⊗ M)UT |�〉. (9)

Let us choose M = Sy, and in the Heisenberg picture, we
consider (I ⊗ Sy)T = U†

T (I ⊗ Sy)0UT is the time-dependent
operator after the interaction. Particularly, for A2 = I, as in the
Pauli operators, using the Baker-Campbell-Hausdorff (BCH)
formula [84], we obtain (see Appendix A)

(I ⊗ Sy)T = (I ⊗ Sy)0 cos(2g) + (A ⊗ Sx )0 sin(2g). (10)

The subscripts T and 0 stand for the time dependent on the
times T and 0, respectively. Equation (10) means that the
Stokes operators rotate about the z axis with the angle 2g,
i.e., the Faraday rotation. The rotation direction is determined
by the sign of A; note that the eigenvalues of A are ±1
since A2 = I. Then, we measure the expectation value of the
meter 〈(I ⊗ Sy)T 〉 that provides the information of an indirect
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measurement performed on the system. In our model, the
expectation value gives

〈(I ⊗ Sy)T 〉 = 〈Sy〉ξ cos(2g) + 〈A〉ψ 〈Sx〉ξ sin(2g). (11)

Here and hereafter, the bra-ket symbol 〈· · · 〉 means
〈�| · · · |�〉 = 〈ψ |〈ξ | · · · |ψ〉|ξ 〉 whereas 〈· · · 〉ψ stands for
〈ψ | · · · |ψ〉 and 〈· · · 〉ξ for 〈ξ | · · · |ξ 〉. We omit the subscript
0 in the right-hand side (R.H.S.) without confusion. Here,
the mean value of the meter’s observable will shift from the
initial value by an amount proportional to the mean value
of the system’s observable 〈A〉ψ . Without loss of general-
ity, we can choose the initial mean of the meter is zero,
i.e., 〈Sy〉ξ = 0. We thus can indirectly measure the value
of the system operator A via a calibrated meter operator
MT = (I ⊗ Sy)T /〈Sx〉ξ sin(2g). The calibration is designed
so that MT is unbiased, i.e., 〈MT − (A ⊗ I)0〉 = 0 irrespec-
tive of |ψ〉, given that 〈Sy〉ξ = 0. The calibration factor
1/〈Sx〉ξ sin(2g) can be determined independently in practical
experiments.

In this scenario, to measure A of the system before the
interaction, we measure Sy of the meter after the interaction.
If these two observables are perfectly correlated in any given
system state |ψ〉, the measurement is said to be accurate
[33,85]. However, in general, they would not be perfectly
correlated and thus become inaccurate because of the possible
noise and error in the measurement process. Moreover, when
another observable B in the system is measured after the
measurement of A, it would be disturbed by the back-action
effect caused by the prior interaction in the A measurement.
In the following, we will consider the error and disturbance in
our measurement model.

III. ERROR AND DISTURBANCE

A. Exact solution for classical coherent light meter

In the following, we will consider the measurements of
A = σz and B = σx in a single spin system. In the joint space,
we denote

A0 = (σz ⊗ I)0, and B0 = (σx ⊗ I)0, (12)

for the operators at the time 0. We denote the measurement
operators at time T as

MT = (I ⊗ Sy)T

〈Sx〉ξ sin(2g)
, and BT = (σx ⊗ I)T . (13)

We get [see Eqs. (B1) and (B8) in Appendix B]

MT = (I ⊗ Sy)0 cot(2g)

〈Sx〉ξ + (σz ⊗ Sx )0

〈Sx〉ξ , (14)

BT = [σx ⊗ cos(2gSz )]0 − [σy ⊗ sin(2gSz )]0. (15)

The error can be evaluated by the error operator Nσz , and
the disturbance is defined through the disturbance operator
Dσx as follows:

Nσz = MT − A0, and Dσx = BT − B0. (16)

Then, the square error and the square disturbance are given by
[25,26,86],

ε2
σz

= 〈
N2

σz

〉
, and η2

σx
= 〈

D2
σx

〉
. (17)
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FIG. 1. The plot of the square error and square disturbance as
functions of interaction strength g for some values of amplitude
|α|2 as shown in the figure. The square error is large for small
g and reaches the minimum when g = π/4 and increases again
for g increases to π/2. The procedure is repeated when continu-
ously increasing g. Similarly, the square disturbance increases along
with g and reaches the maximum of 2, then it reduces to 0 as g
increases to π .

In the following, we choose the initial system state |ψ〉 =
1√
2
(|0〉 + i|1〉), an eigenstate of σy that maximize the R.H.S.

of the error-disturbance relations, Eqs. (1), (2), and (3). We
also choose the light-meter state to be a coherent state in the
horizontal linear polarization

|ξ 〉 ≡ |α〉H |0〉V = exp(αa†
H − α∗aH )|0〉H |0〉V , (18)

where |α〉 is the coherent state with the coherent amplitude
α and |0〉 is the vacuum state of light. For this meter state,
〈Sx〉ξ = |α|2 and 〈Sy〉ξ = 〈Sz〉ξ = 0. We readily find 〈Nσz 〉ξ =
0 and thus 〈Nσz〉 = 0 irrespective of |ψ〉, i.e., MT is unbiased
as mentioned earlier. For the disturbance, however, 〈Dσx 〉ξ �=
0 in general, since 〈cos(2gSz )〉ξ �= I even though 〈Sz〉ξ = 0
and 〈sin(2gSz )〉ξ = 0. The nonzero means that the disturbance
comes from the noise (fluctuation) in Sz, which randomly
rotates the spin system about the z axis and effectively reduces
the x component of the spin. This behavior is the imprint of
the back-action effect on the spin system caused by the light
meter, which disturbs (rotates) the spin system on its Bloch
sphere.

Then the square error and disturbance read (see the detailed
calculation in Appendix B)

ε2
σz

= 1

|α|2 sin2(2g)
, (19)

η2
σx

= 2(1 − e−2|a|2 sin2 g). (20)

Note that, for the polarized coherent state of light, the root-
mean-square noise in Sy (and also in Sx and Sz) is |α|. This
noise is imprinted in MT as |α|/〈Sx〉ξ sin(2g) = 1/|α| sin(2g),
and thus results in the square error ε2

σz
in Eq. (19). Also, as

mentioned above, the noise in Sz contributes to the disturbance
in σx with a bias and thus results in the square disturbance η2

σx

given in Eq. (20).
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In Fig. 1, we show the square error ε2
σz

and square dis-
turbance η2

σx
as functions of the interaction strength g for

several coherent amplitudes |α|2. When g = nπ/2 where n
is an integer number, ε2

σz
diverges because no shift of Sy is

expected in the meter. With increasing g, due to the rotation of
the light polarization that causes a certain amount of shift of
Sy in the meter depending on σz in the system, the square error
gradually decreases as ε2

σz
≈ g−2. When g = π/4 + nπ/2, ε2

σz

reaches its minimum value 1/|α|2, i.e., the minimum square
error that can be achieved by the coherent light meter. Like-
wise, the square disturbance η2

σx
exhibits periodic behavior

as a function of g. When g = nπ , the square disturbance η2
σx

vanishes because the spin system is rotated by integer multi-
ples of 2π for any integer values of Sz and thus returns to its
original state. This phenomenon can be regarded as a kind of
quantum revival, which essentially reflects the discrete nature
of the observable, i.e., Sz. When g = π/2 + nπ , η2

σx
reaches

its maximum 2(1 − e−2|a|2 ) ∼ 2 for large |α|. In this case, the
spin system is rotated about the z axis by 0 or π at almost
even probabilities depending on the even or odd numbers
of Sz, so that the square disturbance becomes approximately
(22 + 02)/2 = 2. This analysis provides us a complete and
accurate insight on the quantum measurement of spin systems
via the Faraday interaction.

B. Phase-space approximation (canonical approximation)
for polarization-squeezed light meter

To further investigate the error and disturbance in various
light meter states, we apply the phase-space approximation
(PSA) for the light system. We introduce two canonical oper-
ators as q ≡ Sy/

√|〈Sx〉| and p ≡ Sz/
√|〈Sx〉| for a finite 〈Sx〉

[68,75]. These operators approximately obey the canonical
communicator relation [q, p] = 2i Sx

|〈Sx〉|  2i. This approxima-
tion is valid when Sx can be regarded as a classical positive
constant that does not change during the measurement pro-
cess. Practically, under the PSA the evolution of q in the BCH
formula [Eq. (A2) in Appendix A] is approximated up to its
first order (first and second terms).

Here, we discuss the error and disturbance using the impact
of a class of the polarization-squeezed state in the light meter
space, which is given by

|ξ 〉 =
( 1

2πσ 2

)1/4
∫

e− q2

4σ2 |q〉 dq, (21)

where σ represents the squeezing parameter. For σ = 1, it is
a coherent state, the cases σ < 1 and σ > 1 correspond to an
amplitude-squeezed state and a phase-squeezed state, respec-
tively [87] (see Appendix C for details). Here, q and |q〉 are
the eigenvalue and eigenstate of the position operator q, such
that q|q〉 = q|q〉. We illustrate such a polarization-squeezed
state in a Poincaré sphere in Fig. 2.

The interaction evolution (8) is recast as

UT = e−ig|α|σz⊗p, (22)

where we set
√|〈Sx〉| = |α|. Under the PSA as mentioned

above and using the BCH formula, we have

(I ⊗ q)T = (I ⊗ q)0 + 2g|α|(σz ⊗ I)0. (23)

FIG. 2. Illustration of the class of polarization-squeezed light in
the Poincaré sphere.

Using the calibrated meter operator (I ⊗ q)T /2g|α|, we ob-
tain the corresponding information of (σz ⊗ I)0 in the system.
Thus, the error operator is given by

Nσz = (I ⊗ q)T /2g|α| − (σz ⊗ I)0 = (I ⊗ q)0/2g|α|. (24)

As a result, the square error is appropriate to the variance of
the meter, i.e., 〈q2〉ξ /4g2|α|2 when 〈q〉ξ = 0 . Similarly, the
square disturbance operator is given by 2(1 − 〈cos(2g|α|p)〉ξ )
(see Appendix C). Straightforward calculating gives

ε2
σz

= 1

4χ2
, and η2

σx
= 2(1 − e−2χ2

), (25)

where χ = g|α|/σ represents the measurement strength.
In Fig. 3, we show the square error (solid curve) and

disturbance (short-dashed curve) for PSA as functions of χ .
When g|α| is fixed (not required to be small), hence, the
squeezing parameter σ plays the role of the measurement
strength: for large σ (or small χ ) the measurement is weak,
likewise, for small σ (or large χ ) the measurement is strong.
It is natural that for weak measurement, the square error is
large and gradually reduces when increasing the measurement
strength (solid curve). Inversely, the square disturbance is
small for weak measurement and gradually increases when in-
creasing the measurement strength and reaches the maximum
of 2 (short-dashed curve). These results can be explained by
the “squeezed” of the meter state: larger σ means a broader
Gaussian shape in the class of the polarization-squeezed state,
which is equivalent to “weak measurement,” while small
σ refers to the narrow Gaussian shape, which results in a
strong measurement. Thus, using the class of the polarization-
squeezed state will be more convenient in some particular
cases, such as using squeezed states instead of the large
photon-number coherence states.
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FIG. 3. Phase-space approximation (PSA): The plot of square
error (solid curve) and square disturbance (short-dashed curve) in
the class of squeezed coherent state in the meter as functions of the
measurement strength χ = g|α|/σ . For a fixed of g|α|, then σ plays
the role of the measurement strength: for large σ the measurement
is weak, for small σ the measurement is strong. Correspondingly,
small (large) χ implies weak (strong) measurement. Weak interac-
tion approximation (WIA): The plot of square error (solid curve) and
square disturbance (long-dashed curve) in the WIA as functions of
the measurement strength χ .

C. Weak interaction approximation

In many realistic models, the Faraday interaction is used
in the far off-resonant light to avoid completely absorbing the
classical field [68]. For adaptability with such models, a weak
interaction in the atom-light can be made (see, for example,
Ref. [70]).

In this subsection, to investigate the impact of the error and
disturbance in such a far off-resonant region, we consider a
weak interaction approximation (WIA), i.e., χ � 1. In this
approximation, we have

ε2
σz

≈ 1

4χ2
, and η2

σx
≈ 4χ2, (26)

where χ = g|α| (see Appendix D). Noting that, in the
coherent-state case, σ = 1. We show Fig. 3 for the square er-
ror (solid curve) and square disturbance (long-dashed curve),
denoted by “WIA.” While the square error is the same as in
the PSA case, the square disturbance gradually increases from
zero when increasing χ . This square disturbance is different
from that of the PSA case because the WIA is applied to
both the spin system and the light meter (we can neglect the
higher-order terms of g in both the spin system and the light
meter). It thus provides us with the impact of weak Faraday
interaction on the error and disturbance in spin measurements.
We also confirm that the joint unbiasedness condition is satis-
fied, i.e., 〈Nσz〉 = 〈Dσx 〉 = 0 irrespective of the initial system
state |ψ〉 (see Appendix D), which is sufficient for holding the
Heisenberg-Arthurs-Kelly uncertainty [25], i.e., ε2

σz
η2

σx
= 1.

IV. ERROR-DISTURBANCE RELATIONS

This section examines the error-disturbance relations for
the measurement of a single spin system with two cases
of the meter state: the exact solution of the classical

exact case

HAK and WIA
BOt

phase-space approximation
(PSA)

FIG. 4. The error-disturbance tradeoffs. The short-dashed curve
is the Heisenberg-Arthurs-Kelly bound given in Eq. (27) and denoted
by HAK. The left region is the forbidden region where the HAK
relation is violated. Similarly, the long-dashed curve is the tight
Branciard-Ozawa bound given in Eq. (29) and denoted by BOt. The
solid curves show the error-disturbance tradeoff obtained from the
atom-light interface in this work for two cases of exact solution and
PSA. For the WIA it follows the HAK bound.

coherent light [Eq. (18)] and PSA of the polarization-squeezed
light [Eq. (21)]. We consider the Heisenberg-Arthurs-Kelly
relation [the left-hand side (L.H.S.) of Eq. (1)] and the
Brainciard-Ozawa relation [the L.H.S. of Eq. (3)], which are
denoted as HAK and BO, respectively. With our choice of the
spin system, we have σσz = 1, σσx = 1, and Cσz,σx = 1. We
straightforwardly rewrite these relations as

ε2
σz

η2
σx

� 1 for HAK relation, (27)

ε2
σz

+ η2
σx

� 1 for BO relation, (28)

We also consider a tighter Brainciard-Ozawa relation (BOt),
where the condition of B2 = I is satisfied, here B = σx.
Following the authors of Ref. [41], we replace ησx by

ησx

√
1 − η2

σx
4 in Eq. (28) and recast it as

ε2
σz

+ η2
σx

(
1 − η2

σx

4

)
� 1. (29)

We examine an error-disturbance tradeoff, which shows the
dependence of the disturbance on the error and vice versa.
The result is shown in Fig. 4. It can be seen that the error-
disturbance tradeoff in the exact case behaves the same as the
dependence on the Faraday and spin rotations: for small g,
the error is large and the disturbance is small, then increas-
ing g results in reducing of the error and increasing of the
disturbance. After the error reaches the minimum, the distur-
bance grows towards 2, while the error gradually increases
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and results in a straight line in the tradeoff. Here, we show the
result for |α|2 = 6. For large |α|2, the tradeoff asymptotically
reaches that of the PSA. Moreover, the tradeoff can reach the
BOt relation in the PSA, while the HAK relation is violated.
Concretely, it can be seen that for large square error (small χ ),
the error-disturbance tradeoff reaches the HAK bound, while
for small square error (large χ ), the error-disturbance tradeoff
reaches the maximum of 2, the BOt bound.

Finally, let us briefly discuss the comparison between our
work and the work by Bao et al. [75]. Our work discusses
the error-disturbance relations in a single measurement, while
the work of the authors of Ref. [75] considers the uncertainty
relation between the standard deviation of observables, i.e.,
the Kennard-Weyl-Robertson (KWR) relation, in the presence
of prediction (preparation) and retrodiction (postselection)
measurements. Because the two works are conceptually dif-
ferent they cannot be directly compared with each other.
Nevertheless, it is interesting to compare the origins of the
violation of the standard HAK or KWR relation. The violation
of the HAK relation in our work originates from the fact
that the unbiasedness condition is broken except for the case
of WIA. In fact, the disturbance (back-action) onto the spin
system is biased, as was pointed out earlier. In the case of
Ref. [75], the postselection is the origin of the violation of
the standard KWR relation, which becomes irrelevant in the
presence of conditional postprocesses such as postselection.
It may be regarded, in some sense, as the relation between the
accuracies of state preparation (prediction) and the estimation
(retrodiction), where the standard uncertainly relations are
not applicable. It is also suggested that the error-disturbance
relations could also be violated in such a situation [75].

V. CONCLUSION

We discussed the error, disturbance, and their uncertainly
relations in Faraday measurements. For a single spin interact-
ing with coherent polarization of the light meter, we derived
the exact behaviors of error and disturbance without approx-
imation. Under the Faraday rotation of the coherent light
polarization and its back-action to the spin system, the error
and disturbance behave as cyclic oscillations. In these cases of
the polarization-squeezed light meter, to which we apply the
canonical phase-space approximation, the squeezing parame-
ter acts as a factor that modifies the measurement strength. In
this approximation, the square error monotonically decreases
to 0 while the square disturbance monotonically increases
and approaches to 2 with increasing measurement strength. In
the cases above, the Heisenberg-Arthurs-Kelly uncertainty is
violated while the tight Branciard-Ozawa uncertainty always
holds. It is worth mentioning that, under the weak interac-
tion approximation, the Heisenberg-Arthurs-Kelly uncertainty
holds because the error and disturbance both satisfy the unbi-
asedness.

Our analysis contributes to the deeper understanding of
error, disturbance, and uncertainty relations in quantum mea-
surements under the atom-light interface and provides an
insight into quantum metrology [88,89], quantum sensing
[90], and quantum state estimation [91]. This analytical work
is also a testbed for further experimental studies.
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APPENDIX A: HEISENBERG EQUATION OF MOTIONS

1. Heisenberg equation for Sy

In the Heisenberg picture, the meter’s operator Sy evolves
with time according to

(I ⊗ Sy)T = U†
T (I ⊗ Sy)0UT , (A1)

where UT = e−igA⊗Sz .
Using the Baker-Campbell-Hausdorff formula [84]

eEFe−E = F + [E, F] + 1

2!
[E, [E, F]] + · · · , (A2)

for E = igA ⊗ Sz and F = I ⊗ Sy, we have

F = I ⊗ Sy,

[E, F] = ig[A ⊗ Sz, I ⊗ Sy]

= igA ⊗ [Sz, Sy]

= 2gA ⊗ Sx,

1

2!
[E, [E, F]] = − (2g)2

2!
A2 ⊗ Sy,

1

3!
[E, [E, [E, F]]] = − (2g)3

3!
A3 ⊗ Sx,

· · · .

Then Eq. (A2) is recast as

eEFe−E = [cos(2gA) ⊗ Sy]0 + [sin(2gA) ⊗ Sx]0. (A3)

Submitting Eq. (A3) into the R.H.S. of Eq. (A1), we have

(I ⊗ Sy)T = [cos(2gA) ⊗ Sy]0 + [sin(2gA) ⊗ Sx]0. (A4)

In the case of A2 = I, as in the Pauli operators, we obtain

(I ⊗ Sy)T = (I ⊗ Sy)0 cos(2g) + (A ⊗ Sx )0 sin(2g), (A5)

which is given in Eq. (10) in the main text.

2. Heisenberg equation for σx

Next, we consider the particular case where A = σz and
B = σx, and calculate the Heisenberg equation of motion for
σx in the spin system. We consider

(σx ⊗ I)T = U†
T (σx ⊗ I)0UT , (A6)

where UT = e−igσz⊗Sz . Using the BCH formula for E =
igσz ⊗ Sz and F = σx ⊗ I, we have

F = σx ⊗ I,

[E, F] = ig[σz ⊗ Sz, σx ⊗ I]

= ig[σz, σx] ⊗ Sz

= −2gσy ⊗ Sz,

1

2!
[E, [E, F]] = − (2g)2

2!
σx ⊗ S2

z ,

· · · .
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Then Eq. (A6) gives

(σx ⊗ I)T = [σx ⊗ cos(2gSz )]0 − [σy ⊗ sin(2gSz )]0. (A7)

APPENDIX B: ERROR AND DISTURBANCE

In this section, we provide a detailed calculation root-
mean-square (rms) error εσz and rms disturbance ησx .

1. Error

We first consider the MT operator as follows:

MT = 1

〈Sx〉ξ sin(2g)
(I ⊗ Sy)T

= (I ⊗ Sy)0 cot(2g)

〈Sx〉ξ + (σz ⊗ Sx )0

〈Sx〉ξ , (B1)

where we used A = σz in Eq. (A5). Then, the noise operator
is given by

Nσz = (I ⊗ Sy)0 cot(2g)

〈Sx〉ξ + (σz ⊗ Sx )0

〈Sx〉ξ − (σz ⊗ I)0. (B2)

Then, we obtain

N2
σz

=

⎡
⎢⎢⎢⎣

(I ⊗ Sy)0 cot(2g)

〈Sx〉ξ︸ ︷︷ ︸
Y

+ (σz ⊗ Sx )0

〈Sx〉ξ︸ ︷︷ ︸
X

− (σz ⊗ I)0︸ ︷︷ ︸
Z

⎤
⎥⎥⎥⎦

2

.

(B3)

Now, we calculate the average 〈N2
σz

〉 over the initial joint state
|ψ〉 ⊗ |ξ 〉. We have

〈Y 2〉 =
〈
S2

y

〉
ξ

cot2(2g)

〈Sx〉2
ξ

; 〈X 2〉 =
〈
S2

x

〉
ξ

〈Sx〉2
ξ

; 〈Z2〉 = 1,

〈Y X〉 = 〈XY 〉 = 0, 〈Y Z〉 = 〈ZY 〉 = 0,

〈XZ〉 = 〈ZX〉 = 1.

Explicitly, we express the meter-coherent state |ξ 〉 into two
modes as |ξ 〉 = |αH , 0V 〉. We have

〈Sx〉ξ = 〈αH , 0V |(a†
H aH − a†

V aV )|αH , 0V 〉 = |α|2, (B4)

〈
S2

y

〉
ξ

= 〈αH , 0V |(a†
H aV + aH a†

V )2|αH , 0V 〉
= 〈αH , 0V |(a†

H aV a†
H aV + a†

H aV aH a†
V

+ aH a†
V a†

H aV + aH a†
V aH a†

V )|αH , 0V 〉
= |α|2, (B5)

and 〈
S2

x

〉
ξ

= 〈αH , 0V |(a†
xax − a†

yay)2|αH , 0V 〉
= |α|2 + |α|4. (B6)

Then, we obtain the square error:

ε2
σz

= 〈
N2

σz

〉 = 1

|α|2 [cot2(2g) + 1]

= 1

|α|2 sin2(2g)
. (B7)

2. Disturbance

Next, we calculate the rms disturbance, starting from the
BT operator in Eq. (A7),

BT ≡ (σx ⊗ I)T

= [σx ⊗ cos(2gSz )]0 − [σy ⊗ sin(2gSz )]0. (B8)

The disturbance operator reads

Dσx = (σx ⊗ I)T − (σx ⊗ I)0. (B9)

Substituting Eq. (B8) into Eq. (B9) and taking the square of
both sides, we have

D2
σx

=
⎡
⎣(σx ⊗ [cos(2gSz ) − I])0︸ ︷︷ ︸

X

− [σy ⊗ sin(2gSz )]0︸ ︷︷ ︸
Y

⎤
⎦

2

.

(B10)

Now, we calculate the average 〈D2
σx

〉 over the initial joint
state |ψ〉 ⊗ |ξ 〉. We have

〈X 2〉 = 〈[cos(2gSz ) − I]2〉ξ ,
〈Y 2〉 = 〈sin2(2gSz )〉ξ ,

〈XY 〉 = 〈Y X〉 = 0.

Finally, we have〈
D2

σx

〉 = 2[1 − 〈cos(2gSz )〉ξ ]. (B11)

For |ξ 〉 = |αH , 0V 〉 and using the operator ordering relation
[92–94], such as eκa†a =: e(eκ−1)a†a :, we have

〈cos(2gSz )〉ξ = e−2|a|2 sin2 g. (B12)

Finally, we obtain the square disturbance:

η2
σx

= 〈
D2

σx

〉 = 2(1 − e−2|a|2 sin2 g), (B13)

as shown in Eq. (20) in the main text.

APPENDIX C: PHASE-SPACE APPROXIMATION
AND POLARIZATION-SQUEEZED LIGHT METER

In this Appendix, we examine a class of the polarization-
squeezed coherent meter states using the phase-space approx-
imation. Let us consider a class of the squeezed coherent state
of the two polarization modes as

|ξ 〉 = |α, z〉 = D(α)S (z)|0〉H |0〉V , (C1)

where D(α) = exp[αa†
H − α∗aH ] is the displacement operator

with α = |α|eiφ in the polar form and the two-mode squeez-
ing operator is chosen to be S (z) = exp[z∗aLaR − za†

La†
R]

with z = reiϑ , and aL(R) = (aH ± iaV )/
√

2. This squeezing
operator is equivalent to S (z) = SH (z)SV (z) where SH (z) =
exp[ 1

2 z∗a2
H − 1

2 z(a†
H )2] and SV (z) = exp[ 1

2 z∗a2
V − 1

2 z(a†
V )2].

It is known that when r > 0, φ − ϑ/2 = 0 results in the
amplitude-squeezed coherent state, while the phase-squeezed
coherent state will happen when φ − ϑ/2 = ±π/2 [95]. In
the following, we choose φ − ϑ/2 = 0.
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The mean photon numbers in the two modes are

〈nH 〉 = 〈a†
H aH 〉

=H〈0|S†
H (z)D†(α)a†

H aHD(α)SH (z)|0〉H

= |α|2 + sinh2r, (C2)

〈nV 〉 = 〈a†
V aV 〉 = sinh2r, (C3)

and the variances are

σ 2
nH

= |α|2e−2r + 2 cosh2 r sinh2 r

= |α|2e−2r + 1
2 sinh2 2r, (C4)

σ 2
nV

= 1
2 sinh2 2r. (C5)

The expectation values of the Stokes operators give

〈S0〉 = |α|2 + 2sinh2r, (C6)

〈Sx〉 = |α|2, and 〈Sy〉 = 〈Sz〉 = 0. (C7)

The variances give

σ 2
S0

= σ 2
Sx

= σ 2
Sy

= |α|2e−2r + sinh2 2r (C8)

σ 2
Sz

= |α|2e2r . (C9)

For |α| � e3r , we can ignore the term sinh22r and read

σ 2
S0

= σ 2
Sx

= σ 2
Sy

= |α|2e−2r, (C10)

σ 2
Sz

= |α|2e2r . (C11)

Thus, for r > 0, we observe squeezing in σ 2
S0

, σ 2
Sx

, and σ 2
Sy

,

while antisqueezing appears in σ 2
Sz

.
We introduce the canonical operators

q = Sy√|〈Sx〉|
, and p = Sz√|〈Sx〉|

, (C12)

which is proportional to the polarized Stokes operators
Sy and Sz, respectively. The commutation relation [q, p] =
2iSx/|〈Sx〉|  2i indicates that q and p can be regarded as a
pair of canonical operators when Sx can be approximated by
a classical positive constant such as |〈Sx〉| so that [Sx, Sy]  0
and [Sx, Sz]  0. It means that the third and higher terms in
Eq. (A2) can be ignored as in the case where g � 1, and
that the Stokes operators, which essentially hold the discrete
nature of the photon number, are replaced by the canonical
continuous variable operators. Again, this approximation is
valid only when g � 1 so that the change in Sx/|〈Sx〉|, which
is in the order of g2, is sufficiently small.

Then, the variances in q and p read

σ 2
q = e−2r ; σ 2

p = e2r . (C13)

We can define the wave function for the polarization-squeezed
coherent state as

ψ (q) =
( 1

2πσ 2

)1/4
e− q2

4σ2 , (C14)

where σ =
√

σ 2
q = e−r represents a squeezing parameter:

⎧⎨
⎩

σ < 1 → r > 0 : amplitude-squeezed,
σ = 1 → r = 0 : no squeezed,
σ > 1 → r < 0 : phase-squeezed,

Then, the meter light state |ξ 〉 can be defined as

|ξ 〉 =
∫

ψ (q)|q〉dq

=
( 1

2πσ 2

)1/4
∫

e− q2

4σ2 |q〉dq, (C15)

which we name as the polarization-squeezed coherent state.

1. Error

The interaction evolution is defined by

UT = e−ig|α|σz⊗p. (C16)

Using the BCH formula, we have

(I ⊗ q)T = eig|α|σz⊗p (I ⊗ q)0 e−ig|α|σz⊗p

= (I ⊗ q)0 + 2g|α|(σz ⊗ I)0. (C17)

Therefore, if we measure the calibrated meter operator (I ⊗
q)T /2g|α|, we will obtain the corresponding information of
(σz ⊗ I)0 in the system.

We first calculate the error ε2
σz

= 〈N2
σz

〉ξ = 〈q2〉ξ /4g2|α|2.

Particularly, for |ξ 〉 = (
1

2πσ 2
)
1/4 ∫

e− q2

4σ2 |q〉 dq, we have

〈q2〉ξ =
( 1

2πσ 2

)1/4
∫

e− q2

4σ2 〈q|dq ·
∫

q2
1|q1〉〈q1|dq1

×
( 1

2πσ 2

)1/4
∫

e− q2
2

4σ2 |q2〉dq2

=
( 1

2πσ 2

)1/2
∫

q2e− q2

2σ2 dq

=
( 1

2πσ 2

)1/2 1

2

√
8πσ 6

= σ 2. (C18)

Then, we obtain the square error

ε2
σz

= 〈q2〉ξ
4g2|α|2 = 1

4χ2
, (C19)

where in the last equality we have set χ = g|α|/σ .

2. Disturbance

In a similar manner as in Appendix B, we obtain〈
D2

σx

〉 = 2[1 − 〈cos(2g|α|p)〉ξ ]. (C20)

Using the Fourier transformation, we recast the me-
ter state |ξ 〉 in the momentum representation as |ξ 〉 =
(
2σ 2

π
)
1/4 ∫

e
−σ2 p2

4 |p〉 d p. Then, we obtain

η2
σx

= 〈
D2

σx

〉 = 2(1 − e−2χ2
), (C21)

as shown in Eq. (25) in the main text.
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APPENDIX D: WEAK INTERACTION APPROXIMATION

Under the WIA, we assume g � 1 and g|α| � 1. From
Eqs. (B7) and (B13), we obtain

ε2
σz

≈ 1

4g2|α|2 , and η2
σx

≈ 4g2|α|2. (D1)

From Eqs. (C19) and (C21), we obtain for χ � 1,

ε2
σz

≈ 1

4χ2
, and η2

σx
≈ 4χ2, (D2)

which are equivalent to Eq. (D1) when σ = 1. Note that, in
Eq. (C19), we already assumed that g � 1 in the phase-space
approximation. In Eqs. (D1) and (D2), we observe ε2

σz
η2

σx
=

1 and thus the Heisenberg-Arthurs-Kelly uncertainty is valid
with minimal uncertainty.

We also show that, under the WIA, both the noise and
disturbance are unbiased. As described in the main text, the
noise operator (B2) is already unbiased, i.e., 〈Nσz〉ξ = 0 and

thus 〈Nσz 〉 = 0 irrespective of |ψ〉, provided that 〈Sy〉ξ = 0.
Obviously, it is also true in the case of WIA. For the distur-
bance operator, from Eqs. (B8) and (B9), we get

Dσx = (σx ⊗ [cos(2gSz ) − I])0 − [σy ⊗ sin(2gSz )]0 (D3)

and

〈Dσx 〉ξ = σx[〈cos(2gSz )〉ξ − 1] − σy〈sin(2gSz )〉ξ
= σx(e−2|a|2 sin2 g − 1). (D4)

Here, we use Eq. (B12) and 〈sin(2gSz )〉ξ = 0. Thus, 〈Dσx 〉ξ ≈
0 when g � 1 and g|α| � 1. Consequently, for our initial
meter state under the WIA, both the noise and disturbance
operators are unbiased, i.e., 〈Nσz〉 = 〈Dσx 〉 = 0 irrespective
of the initial system state |ψ〉. This joint-unbiassedness con-
dition is sufficient for holding the Heisenberg-Arthurs-Kelly
uncertainty [25].
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