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Steady-state susceptibility in continuous phase transitions of dissipative systems
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In this work we explore the critical behaviors of fidelity susceptibility and trace distance susceptibility
associated with the steady states of dissipative systems at continuous phase transitions. We investigate two
typical models: One is the dissipative spin-1/2 XY Z model on a two-dimensional square lattice and the other is
a driven-dissipative Kerr oscillator. We find that the susceptibilities of fidelity and trace distance exhibit singular
behaviors near the critical points of phase transitions in both models. The critical points in the thermodynamic
limit, extracted from the scalings of the critical controlling parameters to the system size or nonlinearity, agree
well with the existing results.
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I. INTRODUCTION

Phase transition is the key concept in condensed matter and
statistical physics [1]. In general, quantum phase transitions
in the equilibrium case always signify that the ground-state
properties of the quantum many-body systems have changed.
In particular, the correlation length, magnetic susceptibility,
entanglement, and other physical quantities exhibit divergent
behaviors at the critical point [2]. However, a realistic system
is always regarded as an open system due to the inevitable
interactions with its environment [3–5]. The dissipation in-
duced by the system-environment interactions drives the open
system away from equilibrium. The phase transition may also
occur in open quantum many-body systems manifested by the
emergence of an ordered steady state in the long-time limit
when tuning the controllable parameter [6,7]. Investigating
such nonequilibrium phase transitions is of great significance
not only in the understanding of the collective phenomena and
dynamics of dissipative systems, but also in highlighting the
possibilities of quantum information processing in open sys-
tems, such as quantum state engineering and quantum sensing.

Due to the nonunitary nature of the dynamics and exponen-
tial growth of the dimension of Hilbert space of the system,
its theoretical description and numerical simulation for open
quantum many-body systems are challenging. In recent years,
plenty of meaningful results have been obtained [8–14] and
several numerical methods have been developed [15–24].
By combining the corner-space renormalization method [19]
with the Monte Carlo wave-function trajectory method [25],
Rota et al. investigated the divergence of the angularly
averaged magnetic susceptibility in the two-dimensional dis-
sipative spin-1/2 XY Z model on a square lattice. With the
finite-size scaling analysis, they obtained the critical point
of the phase transition from paramagnetic to ferromagnetic
phases. The corresponding critical exponents are obtained as
well. Besides the angularly averaged magnetic susceptibility
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and von Neumann entropy, they found that the multipartite
entanglement witnessed by the quantum Fisher information
also exhibits the critical behavior when the controlling param-
eter is close to the critical point [26]. An alternative way to
uncover the dissipative phase transition is to investigate the
system through the dynamical behavior which is related to the
Liouvillian spectrum. The Liouvillian gap tends to close when
the system approaches the critical point; as a consequence, the
system takes a longer time to reach the steady state. The crit-
ical slowing down has been observed in the two-dimensional
driven-dissipative Bose-Hubbard model [27] and the dissi-
pative spin-1/2 XY Z model [28]. Meanwhile, for the latter
model, the Liouvillian gap saturates for the one-dimensional
case, signaling the absence of the dissipative phase transition.

Different from the previous studies on the dissipative quan-
tum many-body system, in this work we mainly focus on
an observable-independent way to estimate the critical point,
which is derived from the response degree of the steady states
of the system to the parameter perturbations. To be more
precise, we determine the critical point by intuitively giving
the degree of similarity of the steady states of the system
before and after the perturbation. The basic idea is that, in the
thermodynamic limit, when the dissipative systems undergo
the phase transitions by tuning the controlling parameter
of the Hamiltonian, not only do the steady-state order pa-
rameters that belong to different phases change abruptly, but
also the similarity between the two steady states shows a
significant dip in the vicinity of the phase transition, e.g., the
fidelity may exhibit divergent behavior in phase transitions of
the closed system [29,30]. However, because the dimension
of the Hilbert space in a practical simulation is limited by the
computational power, the singular behavior of the similarity
of steady states in different phases is usually not revealed.
Here we utilize the fidelity susceptibility χF as an indicator
to reveal the singular behavior.

The fidelity susceptibility, which is a higher-order deriva-
tive of fidelity, originates from the linear response theory
and differential-geometric approach [31]. It is sensitive in
reflecting the stability of a given system to the parameter
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perturbation. Actually, the fidelity susceptibility has already
been widely used in characterizing the ground-state phase
transition in equilibrium. The nonanalytic divergence behav-
ior of the fidelity susceptibility has been observed in the phase
transitions of first and second orders [32–36]. Moreover,
the fidelity susceptibility has also been used to investigate
nonzero temperature phase transitions [37] and topological
phase transitions [38,39].

In this paper, inspired by the good performance of fidelity
susceptibility in characterizing the equilibrium phase tran-
sitions, we employ the fidelity susceptibility χF and trace
distance susceptibility χT to investigate the dissipative phase
transitions in open quantum many-body systems. We deter-
mine the critical points by finite-size scaling analysis on both
χF and χT for the dissipative spin-1/2 XY Z model on a
two-dimensional square lattice on which the existence of a
steady-state phase transition from the normal paramagnetic
to the ordered ferromagnetic phases has been verified by
many numeric methods. Our results show that both quantities,
which are observable independent, exhibit nonanalytic singu-
lar behaviors in the vicinity of the phase transitions. We also
investigate the system of a driven-dissipative Kerr oscillator.
We verify the existence of the continuous steady-state phase
transition through the semiclassical approximation and obtain
similar results near the phase transition.

This paper is organized as follows. In Sec. II we introduce
the theoretical framework of the fidelity susceptibility and the
trace distance susceptibility for mixed states. In Sec. III A
we investigate the critical behavior of the two-dimensional
spin-1/2 XY Z model on a square lattice and determine the
critical exponents. In Sec. III B we employ the semiclassical
approximation as a preliminary exploration and then identify
the occurrence of dissipative phase transitions in the driven-
dissipative Kerr oscillator model. We summarize in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we introduce the theoretic description of
the dynamics of open quantum many-body systems and the
concepts of fidelity susceptibility and trace distance suscep-
tibility. We focus on the quantum many-body systems that
are subjected to local environments. Under the Markovian
approximation, the dynamics of the system’s density matrix
can be described by the Lindblad master equation (h̄ = 1
hereinafter)

∂ρ̂

∂t
= Lρ̂(t ) = −i[Ĥ, ρ̂] +

∑
j

D j[ρ̂], (1)

where L is the non-Hermitian Liouvillian superoperator, Ĥ is
the Hamiltonian of the many-body system, and the dissipator
D j[ρ̂] rules the interplay between the system and the local
external environment. The first term on the right-hand side
of Eq. (1) describes the coherent time evolution ruled by the
Hamiltonian, while the second term describes the incoherent
dissipation due to the system-environment interaction.

In general, the eigenspectrum of the superoperator L is
complex. The eigenvalue equation is given by

Lρ̂i = λiρ̂i, (2)

where λi (i = 0, 1, 2, . . .) and ρ̂i are the eigenvalues and
(normalized) eigenstates ofL, respectively. Usually the eigen-
values are sorted by the real parts as Re[λ0] > Re[λ1] >

Re[λ2] > · · · . The real parts of the eigenvalues are negative
semidefinite. There is always at least one zero eigenvalue and
the associated eigenstate is considered to be the steady state,
which is defined as ρ̂SS = ρ̂0 (the subscript SS denotes steady
state). This can be understood as follows. Suppose that the
system is initialized in the state ρ̂(0) = ∑

i ciρ̂i, where ci are
the probability amplitudes. According to Eq. (2), the state
of the system at arbitrary time evolves to ρ̂(t ) = ∑

i eλit ciρi.
Apparently, after a sufficiently long time, all the eigenstates
disappear asymptotically except for ρ̂0. Moreover, the eigen-
value with the largest nonzero real part is defined as the
Liouvillian gap or the asymptotic decay rate [40]. The asso-
ciated eigenstate decays slowest. By tuning the controllable
parameter p in the Hamiltonian, the Liouvillian gap may start
to close at a critical point pc, indicating the occurrence of
the continuous steady-state phase transition in open quantum
many-body systems [41].

The steady-state phases are characterized by the order
parameter 〈Ô〉SS = Tr(ρ̂SSÔ), which is the expected value
of an appropriate observable Ô in the steady state. The
nonzero order parameter indicates the ordered steady-state
phase. In particular, the Mth-order phase transition can be
defined as [41]

lim
p→pc

∣∣∣∣∣
∂M

∂ pM
〈Ô〉SS

∣∣∣∣∣ → +∞. (3)

The discontinuity of the Mth-order derivatives of the order
parameter implies that the properties of the steady states are
dramatically changed. It should be noted that the observable
Ô is parameter p independent, which means that the singu-
larity in Eq. (3) stems from the steady-state density matrix
itself. This reminds us that the abrupt change of the similarity
between the states associated with two close parameters may
signal the occurrence of phase transition.

In the thermodynamic limit, if the Hamiltonian at the criti-
cal point is perturbed to Ĥ (pc) → Ĥ (pc + δp), the perturbed
Hamiltonian can be expressed as

Ĥ (pc + δp) = Ĥ (pc) + Ĥ (δp). (4)

The corresponding steady states are denoted by ρ̂SS(pc) and
ρ̂SS(pc + δp), respectively. When the parameter perturbation
drives the system across the critical point, the properties of
the steady states belonging to different phases will change re-
markably. Along this line, quantifying the differences between
two steady states in different phases may help us determine the
critical point.

The fidelity quantifies the overlap between two given quan-
tum states. It was introduced to characterize the response of
a quantum system to a perturbation [42]. The fidelity is a
non-negative, continuous, and symmetric function and it is
invariant under unitary transformation [43]. The fidelity be-
tween the steady states associated with Ĥ (p) and Ĥ (p + δp)
in the Hamiltonian is given by Uhlmann as follows [31,44]:

F (p, p + δp) = Tr
√√

ρ̂SS(p)ρ̂SS(p + δp)
√

ρ̂SS(p). (5)
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For sufficiently small perturbation, one can expand Eq. (5)
in powers of δp,

F (p, p + δp)δp→0 � 1 − χF (p, p + δp)

2
δp2 + · · · + O(δpn).

(6)

The fidelity susceptibility is defined by the coefficient of the
quadratic term χF , which characterizes the response of fidelity
to the parameter p. The definition of χF is rooted in the Bures
distance between two infinitesimally close density matrices
[45]; the expression is governed by [46]

χF (p, p + d p) = 1

2

∑
n,m

|〈m|δρ̂|n〉|2
λm + λn

, (7)

where δρ̂ = ρ̂SS(p + δp) − ρ̂SS(p) and |n〉 is the eigenstate
associated with the eigenvalue λn of the steady state ρ̂SS(p).
In brief, the fidelity susceptibility is the higher-order deriva-
tive of the fidelity, which means this quantity is much more
sensitive to perturbation.

There are also alternative quantities that can be used to
measure the difference between two density matrices. For
example, the trace distance measures the distance of two
quantum states in Hilbert space, which satisfies the non-
negative definiteness, the homogeneity, and the triangle
inequality [47]. Hence, different from the quantum fidelity,
the trace distance is a real distance in Hilbert space. For two
arbitrary steady states ρ̂SS(pA) and ρ̂SS(pB), the trace distance
was originally defined as

T (pA, pB)

:= 1
2‖ρ̂SS(pB) − ρ̂SS(pA)‖1

= 1
2 Tr{

√
[ρ̂SS(pB) − ρ̂SS(pA)]†[ρ̂SS(pB) − ρ̂SS(pA)]}. (8)

Consider two steady states as ρ̂SS(pA) = ρ̂SS(p) and
ρ̂SS(pB) = ρ̂SS(p + δp), with δp the parameter perturbation.
We obtain a more refined form of the trace distance

T (pA, pB) = 1
2 Tr(

√
δρ̂†δρ̂ ), (9)

where δp = ρ̂SS(p + δp) − ρ̂SS(p). Now we can define the
trace distance susceptibility as

χT (p + δp, p) = 1
2 Tr(

√
δρ̂†δρ̂ )/δp. (10)

III. RESULTS

In this section we investigate both the fidelity susceptibility
and trace distance susceptibility in two specific models. We
analyze their scaling behaviors when the controllable param-
eters go across the steady-state phase transitions to extract the
information of the critical points.

A. Dissipative spin-1/2 XY Z model

We start with the model of spin-1/2 particles on the square
lattice in two dimensions. The Hamiltonian of the many-body
system is given by the anisotropic Heisenberg interactions as

Ĥ =
∑
〈 j,l〉

Jxσ̂
x
j σ̂

x
l + Jyσ̂

y
j σ̂

y
l + Jzσ̂

z
j σ̂

z
l , (11)

where σ̂ α
j (α = x, y, z) are the Pauli matrices for the jth

site, 〈 j, l〉 denotes the nearest-neighbor interactions, and Jα

is the coupling strength. In addition, we assume that each spin
couples with a Markovian bath individually, which tends to
incoherently flip the spin down to the z direction. Under the
Born-Markovian approximation and the secular approxima-
tion, the dissipator in Eq. (1) is given by

∑
j

D j[ρ̂] = γ

2

∑
j

[2σ̂−
j ρ̂σ̂+

j − {σ̂+
j σ̂−

j , ρ̂}], (12)

where σ̂±
j = (σ̂ x

j ± iσ̂ y
j )/2 are the raising and lowering oper-

ators, respectively, γ is the decay rate, and {·, ·} denotes the
anticommutator. The master equation admits a Z2 symmetry,
which means that the system is invariant after a π rotation of
all spins along the z axis (σ̂ x

j → −σ̂ x
j , σ̂

y
j → −σ̂

y
j ∀ j). Here-

inafter we set γ = 1.
Generally, in the thermodynamic limit, all the spins in

steady states will point down along the z axis with zero
magnetization on the xy plane, which is referred to as the
paramagnetic (PM) phase. However, as the coupling strength
varies, the steady states of the system may undergo a phase
transition to the ordered phase with nonzero magnetization on
the xy plane, which is referred to as the ferromagnetic (FM)
phase, implying the spontaneous breaking of Z2 symmetry.
The steady-state phase transitions in the dissipative spin-1/2
XY Z model has been widely studied throughout the literature
[8,9,14,15,26,28].

Here we briefly review the steady-state properties of the
model considered. By means of Gutzwiller mean-field fac-
torization, the density matrix for the total system can be
factorized as the tensor product of the density matrices of
each site, ρ̂ = ⊗

j ρ̂ j . All sites are assumed to be identical.
As a consequence, Eq. (1) is reduced to a single-site master
equation for a single-qubit system as

d ρ̂

dt
= −i[ĤMF, ρ̂] + γ

2
[2σ̂−ρ̂σ̂+ − {σ̂+σ̂−, ρ̂}], (13)

where the mean-field Hamiltonian ĤMF is given by

ĤMF =
∑

α=x,y,z

Jα〈σ̂ α〉σ̂ α, (14)

with 〈σ̂ α〉 = Tr(σ̂ αρ̂ ). By performing the integral on Eq. (13),
the self-consistent master equation will finally converge to an
asymptotic steady state. It is easy to find the paramagnetic
state with all the spins pointing down in the z direction,
ρ̂↓ = ⊗

j ρ̂ j,↓, where ρ̂ j,↓ = |↓ j〉〈↓ j | is always a steady-state
solution to Eq. (13).

Now we check the linear stability of the paramagnetic
steady-state solution to the fluctuations [48–51]. The fluctu-
ations are added to each site as follows:

ρ̂ =
⊗

j

(ρ̂ j + δρ j ). (15)

By performing the Fourier transform on the fluctuations
δρk

j = ∑
k e−ik·r j δρ j and substituting the perturbed density

matrix in Eq. (15), we can decouple the master equa-
tion (13) in the momentum space as ∂tδρ

k = Lk · δρk. The
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FIG. 1. (a) Mean-field steady-state magnetizations for 〈σ̂ x〉SS

(squares) and 〈σ̂ y〉SS (triangles) as a function of Jy. (b) Real part of
the most unstable eigenvalue of the superoperator Lk in Eq. (16) as a
function of kx and ky for Jy = 1.06. The other parameters are Jx = 0.9
and Jz = 1.

superoperator Lk reads

Lk =

⎛
⎜⎝

−γ 0 0 0
0 P − γ

2 Q 0
0 −Q −P − γ

2 0
γ 0 0 0

⎞
⎟⎠, (16)

where the coefficients are P = −i[(Jx + Jy)tk − 2zJz] and
Q = −i(Jx − Jy)tk, z = 4 is the coordination number of two-
dimensional square lattice, the vector is given by tk =
2 cos(kxa) + 2 cos(kya), and a is the lattice constant. The sta-
bility of the paramagnetic steady state can be revealed by the
eigenvalue spectrum of the superoperator Lk. If the real parts
of all the eigenvalues of Lk are negative, the system is stable
under perturbation; otherwise, the system is unstable. Mean-
while, the critical points of the PM-FM phase transition can
be analytically determined by the eigenvalues of the Jacobian.
The Jacobian is obtained by the system of nonlinear Bloch
equations [8,51]. The phase boundary can be expressed as

Jc
x,y = 1

16z2

1

Jz − Jy,x
+ Jz. (17)

In Fig. 1(a) we show the steady-state magnetizations in
the xy plane as a function of Jy. One can find that for Jy <

J (c)
y ≈ 1.0391, the steady-state magnetizations are 〈σ x〉SS =

〈σ y〉SS = 0. When Jy goes across the critical point J (c)
y , the

magnetizations in the xy plane become nonzero, indicating the
appearance of a continuous phase transition from the disor-
dered PM phase to the ordered FM phase with Z2 symmetry
breaking. In particular, for Jy > J (c)

y , the state ρ̂↓ is unstable to
the uniform spatial perturbations, as shown in Fig. 1(b). One
can see that the system is mostly unstable to the perturbations
with wave vector k = (0, 0) and will be eventually driven to
the FM phase. For the case of Jx = 0.9 and Jz = 1, under the
mean-field approximation, the critical point can be analyti-
cally determined by Eq. (17).

Now we investigate the susceptibilities of fidelity and trace
distance in the vicinity of the phase transition by varying
the coupling strength. The amount of variation δJy should
be sufficiently small by definition. In Fig. 2 we check the
convergence of the fidelity susceptibility, which is computed
with various magnitudes of δJy. It is shown that the fidelity
susceptibility starts to converge at δJy = 10−3. In the rest
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FIG. 2. In different scales of perturbations δJy, the fidelity sus-
ceptibility χF as a function of Jy for a 2 × 2 square lattice. The
parameters are Jx = 0.9 and Jz = 1. The inset shows a close-up of
the curves corresponding to δJy � 10−3.

of the discussion of this model, unless stated otherwise, the
parameter perturbation is fixed at δJy = 10−3.

With the periodic boundary condition, the steady states
are obtained as follows: For the 2 × 2 and 2 × 3 lattices,
we exactly diagonalize the Liouvillian superoperator L and
take the eigenstate associated with the zero eigenvalue as
the steady state, while for the 3 × 3 and 3 × 4 lattices, we
numerically integrate the master equation via the fourth-order
Runge-Kutta method and obtain the steady states by look-
ing at the density matrix in the long-time limit, i.e., ρ̂SS =
limt→+∞ eLt ρ̂(0).

In Fig. 3 we show the fidelity susceptibility χF as a func-
tion of the coupling strength Jy for the lattices of different
sizes. One can see that the maximum of χF always appears
in the vicinity of Jy = 1, indicating the abrupt change for
the steady-state density matrices. Moreover, the peak of χF

becomes sharper as the size of the lattice increases. The
inset of Fig. 3 shows the scaling of the maximum fidelity
susceptibility versus the lattice size. We find the power-law
dependence of the maxima on the size of lattice as

χmax
F ∼ κLη, (18)

where L = N1/d is the linear dimension of the system, d = 2
is the real dimension, and N is the number of sites. Then we
obtain the corresponding fitting parameters η ≈ 1.7572 and
κ ≈ 2.2162.

Now we discuss our results within the scope of the scaling
hypothesis. Suppose that, near the critical point Jc

y , the average
fidelity susceptibility χF (Jy, L)/Ld of a cluster of size N = Ld

scales as

χF (Jy, L)

Ld
∼ 1

|Jy − Jc
y |α , (19)
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FIG. 3. Fidelity susceptibility χF as a function of Jy for 2 × 2,
2 × 3, 3 × 3, and 3 × 4 lattices, with fixed Jx = 0.9 and Jz = 1. The
inset shows the maximum of the fidelity susceptibility χmax

F versus
the linear dimension L (log-log scale) with a power-law fitting (dash-
dotted line).

where α is the corresponding exponent. Inspired by the pro-
posals by Gu et al. [33] and taking into account Eq. (18), the
rescaled fidelity susceptibility as a function of the rescaled
coupling strength is given by

χF
(
Jy

(
χmax

F

)
, L

) − χF (Jy, L)

χF (Jy, L)
= f

[
Lν

(
Jy − Jy

(
χmax

F

))]
, (20)

where ν is the critical exponent of correlation length. In deriv-
ing Eq. (20), we have rewritten Eq. (18) as χF (Jy(χmax

F ), L) ∼
Lη, in which Jy(χmax

F ) is the coupling strength for the maximal
fidelity susceptibility in lattices of different sizes. Conse-
quently, we have the relationship

ν = η − d

α
. (21)

In Fig. 4 we show the rescaled fidelity susceptibilities with
respect to the rescaled coupling strength. One can see that
the data collapse with the estimated critical exponent ν =
0.48 ± 0.06. Unfortunately, a direct estimation of the critical
exponent ν in the dissipative quantum XY Z model is not
available and so we could not benchmark our estimation of ν.
Note that the estimation is based on relatively small lattices,
so the result should be interpreted with caution.

In order to estimate the critical point Jc
y of the phase tran-

sition, we linearly fit the critical coupling strengths Jy(χmax
F ),

which correspond to the extreme points of χF , to the system
size N . As shown in Fig. 5, with increasing system size, the
critical coupling strength Jy(χmax

F ) converges. In the thermo-
dynamic limit, i.e., 1/N → 0, the critical coupling strength
can be estimated as Jc

y ≈ 1.05. For comparison, in the cluster
mean-field and Gutzwiller Monte Carlo calculations the crit-
ical points are estimated to be Jc

y ≈ 1.04 [8,52], by means of
the quantum trajectory method the critical point is estimated
to be Jc

y ≈ 1.04 [28], and the corner-space renormalization
predicts a phase transition at Jc

y ≈ 1.07 [26].
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FIG. 4. Rescaled fidelity susceptibility as a function of Lν (Jy −
Jy(χmax

F )) in the finite-size scaling analysis of the two-dimensional
dissipative XY Z model. The critical exponent for the correlation
length is estimated to be ν = 0.48 ± 0.06. The parameters are Jx =
0.9 and Jz = 1.

In Fig. 6 we show the trace distance susceptibility as a
function of Jy. One can see that, as the lattice size N increases
the χT shows a critical behavior which is similar to the fidelity
susceptibility. Near the critical point of the PM-FM phase
transition, the maximal value of χT keeps growing as the
size increases. Although the peak values are not growing as
fast as the results of the fidelity susceptibility, a power-law
fit for the peaks of the χT and the lattice number still can
be found, χmax

T ∝ Lζ with ζ ≈ 0.8921. By linearly fitting the
Jmax

y (N ) to the system size N , we obtain the critical point in
the thermodynamic limit as Jc

y ≈ 1.05. This result is in good
agreement with the existing results [8,26,28,52].

B. Driven-dissipative Kerr model

In this section we concentrate on a driven-dissipative Kerr
model as an example of a second-order dissipative phase
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FIG. 5. Coupling strengths corresponding to the maximum χmax
F

as a function of the different system sizes 1/N . The dash-dotted line
is the linear fitting. The other parameters are Jx = 0.9 and Jz = 1.
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FIG. 6. Trace distance susceptibility versus the coupling param-
eter Jy for 2 × 2, 2 × 3, 3 × 3, and 3 × 4 lattices. The inset shows the
maximum of the trace distance susceptibility χmax

T versus the linear
dimension L (log-log scale) with a power-law fitting (dash-dotted
line). The other parameters are Jx = 0.9, Jz = 1, and δJy = 0.0001.

transition with symmetry breaking in the continuous variable
(CV) system. The specific model we investigate is a typical
nonlinear oscillator with two-photon pumping but single-
photon dissipation. This model has already been studied in
Ref. [53], where the authors investigated the properties of the
continuous phase transition by means of mean-field theory,
exact diagonalization, and the Keldysh formalism.

Here we briefly review the previous work studied by
Zhang and Baranger [53]. In a rotating frame, the considered
Hamiltonian can be obtained as

Ĥ = −�â†â + U

2
â†â†ââ + G

4
(â†â† + ââ), (22)

where � = ωp − ωc is the detuning of the frequency of pump-
ing ωp and cavity ωc, U quantifies the Kerr nonlinearity, and
G is the amplitude of the two-photon driving. The specific
single-photon dissipation is described by

D[ρ̂] = γ

2
(2âρ̂â† − {â†â, ρ̂}), (23)

where γ is the decay rate. Again we will work in units of γ .
Substituting the Hamiltonian (22) and the dissipator (23) into
Eq. (1), we can find a discrete Z2 symmetry associated with
the master equation. The corresponding symmetry superoper-
ator is given by

Z2• = eiπ â†â • e−iπ â†â, (24)

where the symbol • denotes the steady-state density matrix.
Under the semiclassical approximation, in which all the

quantum fluctuations and quantum correlations become negli-
gible, i.e., 〈â†ââ〉 ≈ 〈â†〉〈â〉〈â〉, we can obtain the equation of
motion for the coherent field amplitude α = 〈â〉 in the reso-
nant case (� = 0) [54]

d

dt
α =

(
− iU |α|2 − γ

2

)
α − i

G

2
α∗. (25)
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FIG. 7. (a) Modulus of the steady-state coherent field amplitude
|α| versus the two-photon driving G under the semiclassical approxi-
mation treatment for the different Kerr nonlinearities. (b) Liouvillian
gap λ = Re[λ1] as a function of the two-photon driving strength G
with the different Kerr nonlinearity.

The steady-state value of α can be obtained by numeri-
cally evolving the self-consistent equation of motion (25)
for a sufficiently long time. The steady-state value of |αSS|
is considered as the order parameter. Namely, a zero |αSS|
indicates the disordered phase, while a nonzero |αSS| indicates
the ordered phase with Z2 symmetry breaking. By analyz-
ing the semiclassical equation (25), the number of photons
n in the cavity is of order γ /U and the thermodynamic
limit can be achieved in the limit of infinitesimal interaction
U/γ → 0+ [53].

Figure 7(a) shows the modulus of the steady-state coher-
ent field amplitude as a function of the two-photon driving
strength G. For different values of the Kerr nonlinearity
strength, the order parameter |α| always shows a transition
from the zero value to a finite constant, implying the emer-
gence of a second-order phase transition. At the level of the
semiclassical approximation, the critical point of this dissipa-
tive quantum phase transition is near Gc ≈ 1.

Now we go beyond the semiclassical approximation and
concentrate on the quantum level. We show the Liouvillian
gap λ = Re[λ1] in Fig. 7(b). One can see that with decreasing
Kerr nonlinearity, the Liouvillian gap tends to zero faster.
For the minimum Kerr nonlinearity strength U = 1/100, the
Liouvillian gap closes in the interval of G ∈ (1, 2). This
implies that the two degenerate steady states break the Z2

symmetry spontaneously, characterizing the occurrence of the
second-order phase transition [41].

In Fig. 8 we show that the numerics of the fidelity suscepti-
bility χF changes with the two-photon driving G. The different
markers label the results of the corresponding Kerr nonlin-
earity strengths U . Analogous to the spin model discussed
in Sec. III A, the abrupt changes for the steady-state density
matrices contribute to the peak patterns. As the number of
photons increases, the maximum of χmax

F remains higher and
the peak gets sharper. Moreover, with decreasing nonlinearity
U to the thermodynamic limit, the critical two-photon driving
G(χmax

F ) shifts towards the left. In the inset of Fig. 8, we report
the scaling of G(χmax

F ) with the Kerr nonlinearity U . Through
the linear fitting, one can approximately estimate the critical
value as Gc ≈ 1.04.

The divergence can also be observed in the behavior of
trace distance susceptibility χT as shown in Fig. 9. Following
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FIG. 8. Fidelity susceptibility χF of the single Kerr oscillator
versus the two-photon driving strength G. The different markers
indicate that the results are simulated with different numbers of
photons in the cavity. The inset shows the critical two-photon driving
G(χmax

F ) versus Kerr nonlinearity U ; the dash-dotted line indicates
the finite-size linear fitting.

the same analysis routine for χF , we find that χT becomes
divergent as the two-photon driving strength G approaches
the critical point. As the Kerr nonlinearity U decreasing,
the divergent behavior of χT becomes more and more ap-
parent, i.e., the heights of the peaks become higher and the
positions critical values of two-photon driving G(χmax

T ) shift
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FIG. 9. Trace distance susceptibility χT of the single Kerr oscil-
lator versus the two-photon driving strength G. The different markers
indicate that the results are simulated with different numbers of
photons in the cavity. The inset shows the critical two-photon driving
G(χmax

T ) versus Kerr nonlinearity U ; the dash-dotted line indicates
the finite-size linear fitting.

to the left. The linear fitting of G(χmax
T ) to the nonlinearity

allow us to extrapolate the critical value of two-photon driving
to be Gc ≈ 1.04, consistent with the results obtained by the
fidelity susceptibility.

IV. SUMMARY

We have utilized the susceptibilities of the fidelity and
trace distance to detect steady-state phase transitions in dis-
sipative quantum systems. Different from previous studies of
dissipative phase transitions based on appropriately chosen
order parameters, the two indicators proposed in this paper
are observable independent and, more interestingly, are direct
reflections of the abrupt changes of similarities between the
steady states when the system undergoes a phase transition.

As applications we mainly investigated the dissipative
spin-1/2 XY Z model on a two-dimensional square lattice
and a driven-dissipative Kerr oscillator. It has been shown
that both models may undergo continuous steady-state phase
transitions (breaking Z2 symmetry) via tuning the controlling
parameters.

In the former model, we first confirmed the existence of
a continuous phase by means of the mean-field approxima-
tion and the linear stability analysis. Then we studied the
behaviors of the fidelity susceptibility and trace distance sus-
ceptibility of steady states as functions of coupling strength.
We found the divergent behaviors of the susceptibilities near
the phase transitions which stem from the abrupt change
of the state similarity between two steady states when the
systems undergo the phase transition. We performed finite-
size scaling analysis on the fidelity susceptibility. Within the
scope of the scaling hypothesis, we estimated the values of
the corresponding critical exponents. Moreover, the finite-size
scaling of the critical coupling strength and the system size
enabled us to estimate the true critical point in the ther-
modynamic limit. In the latter CV model, we revisited the
steady-state properties obtained by the semiclassical treat-
ment. Analogous to the spin model, the singular behaviors of
susceptibilities as functions of the two-photon driving strength
were observed, which indicates the occurrence of dissipa-
tive phase transitions. In particular, the scaling of the critical
driving strength to the Kerr nonlinearity allowed us to extrap-
olate the critical point in the thermodynamic limit (U → 0).
The critical points in thermodynamic limit, accessed from
the analysis on the fidelity and trace distance susceptibili-
ties, agree well with the existing results obtained by other
methods.

Finally, the investigation of the dissipative quantum phase
transition is still a hard task, especially for quantum many-
body systems. The exponential growth of the quantum
many-body Hilbert space restricts the ability to directly wit-
ness the phenomenon of phase transitions. Fortunately, the
critical behaviors of the fidelity susceptibility, trace distance
susceptibility, angularly averaged magnetic susceptibility,
and quantum Fisher information can indirectly reveal the
existence of the phase transitions. Along these lines, the
combination of the fidelity susceptibility and trace distance
susceptibility with other state-of-the-art simulation strate-
gies for exploring larger lattices is promising, such as the
matrix-product-operator approach [55] and neural networks
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[56–60]. Future exploration of other physical models and
phenomena, e.g., geometrical frustration [51,61–63], is also
an intriguing perspective.
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