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Decimation technique for open quantum systems: A case study
with driven-dissipative bosonic chains
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The unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (nonuni-
tary) dynamics, which can be radically different from closed-system scenarios. Such open quantum system
dynamics is generally described by Lindblad master equations, whose dynamical and steady-state properties
are challenging to obtain, especially in the many-particle regime. Here, we introduce a method to deal with
these systems based on the calculation of a (dissipative) lattice Green’s function with a real-space decimation
technique. Compared to other methods, such a technique enables us to obtain compact analytical expressions
for the dynamics and steady-state properties, such as asymptotic decays or correlation lengths. We illustrate
the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity,
including the Hatano-Nelson model. The latter is especially illustrative because its surface and bulk dissipative
behavior are linked due to its nontrivial topology, which manifests in directional amplification.
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I. INTRODUCTION

Closed quantum systems are governed by a Hermitian
evolution dictated by the Hamiltonian. These systems, how-
ever, generally correspond to idealizations used to study more
complex scenarios. In practical situations, perfect isolation
is not possible and quantum systems interact with external
degrees of freedom. This interaction leads to nonunitary (dis-
sipative) dynamics [1], very different from the closed-system
case. Understanding such dissipative dynamics is of the ut-
most importance, e.g., for quantum technologies, because it
establishes bounds on their performance [2], and, if properly
engineered, it can even be used as a resource for them [3–7].

The description of open quantum systems needs to be up-
graded from a wave-function formalism to a density matrix
one, whose dynamics is well captured by effective Lindblad
master equations [8,9]. Under the Born-Markov assump-
tions of weak system-bath couplings and memoryless baths,
such master equations have a time-local form [1]. However,
even with this simplification, calculating the steady-state and
dynamical features of such systems is still an outstanding
challenge, since closed-systems methods are not directly ap-
plicable (see Ref. [10] and references therein for an updated
review on the subject). Although there are some analytical
techniques based on third quantization [11,12], resumma-
tion of perturbative series [13,14], weak symmetries [15],
or flow equations [16], open quantum systems are generally
characterized numerically, e.g., via exact diagonalization or
time density-matrix-renormalization-group methods [17–25],
which prevent in many cases a simple understanding of the
phenomena.
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In this work, we introduce a method to characterize the
dynamics and steady-steady properties of open quantum
many-body systems based on the combination of (dissipative)
lattice Green’s functions [26] and a real-space decimation
technique [27,28], which can lead to compact analytical ex-
pressions in certain limits, i.e., semi-infinite chains.

Lattice Green’s functions were originally introduced in
the condensed matter context to characterize the response
functions of discrete systems in various dimensions and ge-
ometries [29–34]. However, they have also been recently
pointed out as a useful tool to characterize out-of-equilibrium
situations subject to time-dependent drives [35,36] and/or
coupling to environments, in combination with the Keldysh
formalism [37–39]. Decimation techniques [27,28] have al-
ready been applied to calculate lattice Green’s functions
in closed-system scenarios in one- [40–44] and higher-
dimensional lattices [45–47], including some topological
models [48–50]. Here, we show how to apply this technique

FIG. 1. Schematic for the system: a bosonic chain with neighbor-
ing sites coupled by (coherent and incoherent) tunneling, t̃±. Sites
are also subject to local gain P and loss γ processes. The dashed
rectangles represent the two different decimation schemes: method
1, based on decimating site 1 until just site 0 remains; and method 2,
based on adding sites at the edge until their Green’s function remains
constant with the number of sites. Method 1 is more appropriate to
determine the Green’s function for finite-size systems, while method
2 is more effective in the semi-infinite limit.
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in generic open quantum systems, where it has been scarcely
used [51]. The main advantage is that we will be able to
find compact analytical expressions for the dissipative Green’s
function, without the need to calculate a matrix inversion.
In particular, for the case of semi-infinite chains, we obtain
that the two-point Green-function Gj,l has two contributions:
(i) one that depends only on the relative distance j − l , and
(ii) one that depends on the distance from the edge, which
encodes the surface effects. We illustrate the power of this
approach with several examples of increasing complexity of
dissipative bosonic chains subject to gain and loss processes
(see Fig. 1), including one example that features topological
quantum amplification, the Hatano-Nelson model [52–55],
where such a separation between surface and bulk properties
will be especially interesting.

The manuscript is structured as follows: In Sec. II, we
review the connection between (lattice) Green’s functions
and Lindblad master equations. In Sec. III, we present two
methods: the first one, discussed in Sec. III A, calculates (dis-
sipative) lattice Green’s functions by direct decimation of all
sites in real space; whereas the second method, introduced in
Sec. III B, takes advantage of the invariance of the system
in the semi-infinite limit to solve the Dyson’s equation. In
addition, in Sec. III C we explain how to use this formalism
to obtain the transient dynamics to the steady state. Then, in
Sec. IV, we illustrate this method with several examples of
driven-dissipative bosonic chains, including physical ingredi-
ents, until we obtain the Hatano-Nelson model, a paradigmatic
model of topological amplification. In addition, we also show
that this method can be combined with the input-output for-
malism [55] to study the noise properties. Interestingly, with
these tools we are able to obtain analytical expressions for
its Green’s function, its topological and noise properties, and
for the amplification dynamics, where we find features of two
different dynamical regimes within the topological amplifying
phase. Finally, in Sec. V, we summarize our findings and point
out future work directions.

II. GREEN’S FUNCTIONS IN OPEN QUANTUM SYSTEMS

Closed quantum system dynamics can be described by a
wave function, |�(t )〉, whose evolution is governed by its
Hamiltonian, H . In open quantum systems, the situation is
more complex. First, the interaction with the environment
requires upgrading from a wave function to a density ma-
trix description, which allows us to describe mixed states.
In addition, assuming that the dynamics of the bath can be
adiabatically eliminated, under the Born-Markov conditions,
the dynamics of the system’s density matrix, ρ, is governed by
the following time-local master equation [1] (we take h̄ = 1 in
the rest of the manuscript):

ρ̇ = −i[H, ρ] +
∑

α

γα

[
LαρL†

α − 1

2
{L†

αLα, ρ}
]
, (1)

which accounts for both the unitary evolution given by the
system’s Hamiltonian, H , and a nonunitary one induced by
the Lindblad operators, Lα , with associated rate γα . Note that
these Lindblad operators can describe both loss- and pump-
type processes when Lα is proportional to annihilation and
creation operators, respectively [55].

Obtaining the full density matrix operator ρ(t ) from Eq. (1)
is generally very challenging. However, this is generally not
needed, because one is typically interested in certain exper-
imental observables that allow for simpler descriptions. For
example, if one is interested in obtaining the mean values of
certain operators, 〈Oj (t )〉 = Tr[Ojρ(t )], they can be shown to
be given by

∂t 〈Oj〉 = i〈[H, Oj]〉 +
∑

α

γα

[
〈L†

αOjLα〉 − 1

2
〈{Oj, L†

αLα}〉
]
.

(2)
Defining a vector with the mean values, 〈X(t )〉 =
(〈O1(t )〉, 〈O2(t )〉, . . . )T , which includes all the operators
coupled by Eq. (2), this equation can be written in matrix
form as follows:

∂t 〈X(t )〉 = −iD〈X(t )〉, (3)

with D being the dynamical matrix, which is generally non-
Hermitian and with complex eigenvalues. Note that in most
cases the set of coupled differential equations of Eq. (2) must
be truncated to a finite number so that it can be numerically
solved. Equation (3) can be formally solved as

〈X(t )〉 = e−iDt 〈X(0)〉, (4)

with 〈X(0)〉 the initial value of 〈X〉. Furthermore, assuming
that the system is dynamically stable, that is, the eigenval-
ues of D always have a nonpositive imaginary part, then
the steady-state value of the operators can be obtained from
〈X(t → ∞)〉.

Other important quantities to characterize these systems
are the so-called two-time averages, 〈Oj (t + τ )O†

l (t )〉, which
are related to important experimental observables such as the
spectrum or the correlation functions. Although they cannot
be directly extracted from Eqs. (2) and (3), which are defined
only for single-time averages, one can use the quantum re-
gression theorem [1,56] to show that they are governed by the
same matrix D, but with a different initial condition:

∂τ 〈X(t + τ )O†
j (t )〉 = −iD〈X(t + τ )O†

j (t )〉. (5)

In addition, from a fundamental point of view, such double-
time averages are also important because they are linked with
the single-particle Green’s function of the system [57], even
in the open quantum system scenario [38]. Considering the
standard definition for the bosonic, retarded Green’s function
[26]:

Gj,l (t + τ, t ) = −iθ (τ )〈[Ô j (t + τ ), Ô†
l (t )]〉, (6)

we find that Eq. (5) translates to the following equation of
motion for the Green’s function:

i∂τ G(t + τ, t ) = δ(τ ) + DG(t + τ, t ). (7)

Here, G(t + τ, t ) is the Green’s functions matrix with ele-
ments Gj,l (t + τ, t ), and D is the dynamical matrix with the
same coefficients as in the homogeneous differential equation,
Eq. (3). The steady-state solution to Eq. (7) is obtained by
means of a Fourier transform and a matrix inversion:

G(ω) = (ω − D)−1, (8)

and it is of great importance in dissipative quantum systems,
because it can be used as a resolvent for the equations of

052223-2



DECIMATION TECHNIQUE FOR OPEN QUANTUM … PHYSICAL REVIEW A 105, 052223 (2022)

motion of various observables. Interestingly, the dynamical
matrix D coincides with the effective Hamiltonian obtained
from the Keldysh path integral method [39], and it can also be
used for the characterization of topological properties.

In what follows, we describe how the decimation tech-
nique allows us to determine the dissipative Green’s function
without having to calculate the inverse of ω − D, which can
be computationally advantageous for large systems. Further-
more, it will also allow us to find simple analytical expressions
in certain cases, as in the semi-infinite limit, where it can be
used to study bulk/boundary properties in topological models.

III. DECIMATION FOR LATTICE GREEN’S FUNCTIONS

For the sake of illustration, we will now particularize to
the case of a one-dimensional chain, described by bosonic
operators, a(†)

i , with i = 0, . . . , N − 1, satisfying [ai, a†
j ] =

δi j . Nevertheless, most of our results can be extrapolated to
fermionic operators with small changes [39].

We assume that the Hamiltonian describing the bosonic
chain can be written as

H =
N−1∑
j,l=0

t j,l a
†
j al , (9)

where the Lindblad terms are given by both a (collective)
decay term,

Ldecay[ρ] =
∑

j,l

γ j,lD[a j, a†
l ], (10)

and a pump term,

Lpump[ρ] =
∑

j,l

Pj,lD[a†
l , a j], (11)

with D[A, B](ρ) = AρB − 1
2 {BA, ρ}. Note, that this allows us

to capture very different models, as follows (see Fig. 1):
(i) A simple dissipative coupled-cavity array with on-

site energy ε and nearest-neighbor hopping tc: ti, j = εδ j,l +
tc(δi, j+1 + δi, j−1), also with local loss and gain terms, γ j,l =
γ δ j,l and Pj,l = Pδ j,l , respectively.

(ii) A more complex case, such as the Hatano-Nelson
dissipative chain [39,52–55,58–63], which requires com-
plex nearest-neighbor hopping: ti, j = εδ j,l + tc(δi, j+1eiφ +
δi, j−1e−iφ ), as well as local and nonlocal decay/pump
terms: γi, j = γ δi j + γnn(δi, j−1 + δi, j+1) and Pi, j = Pδi j +
Pnn(δi, j−1 + δi, j+1).

In what follows, we show how to use decimation [27,28] to
obtain the lattice Green’s functions, Gj,l (ω), in both models.
This technique has been successfully applied in the Hermitian
scenario [40–43,45,48,50] mainly to determine the surface
Green’s function. However, as we will show now, since these
results are based on a self-similarity transformation, they can
be directly extrapolated to the dissipative scenario and can be
used to characterize arbitrary Green’s functions.

A. Real-space decimation: Method 1

In this section, we will see how to determine the self-
similarity transformation of the equations of motion in a finite
system by projecting Eq. (7) to real space. Doing that, one can

write the following set of coupled equations for the Green’s
functions in the steady state:

(ω − ε̃0)G0, j (ω) = δ0, j + t̃+G1, j (ω), (12)

(ω − ε̃1)G1, j (ω) = δ1, j + t̃−G0, j (ω) + t̃+G2, j (ω), (13)

(ω − ε̃2)G2, j (ω) = δ2, j + t̃−G1, j (ω) + t̃+G3, j (ω), (14)

...

where ε̃ j = t j, j − i(γ j, j − Pj, j )/2 and t̃± = t j, j±1 − i(γ j, j±1 −
Pj, j±1)/2. Note that here we have implicitly assumed that the
hopping, decay, and pump terms beyond nearest neighbors
vanish, as in the two models of interest for this manuscript.
However, if this is not the case, one just needs to consider
enlarged unit cells.

To proceed with decimation, we choose to start from the
site next to the boundary, i.e., site 1 (see Fig. 1, method 1).
This means that we formally solve G1, j (ω) in Eq. (13) and
insert its value in the remaining equations. Notice that differ-
ent decimation strategies might be more favorable, depending
on the Green’s function of interest and/or the geometry of the
system [40–43,45,48,50]. After decimating site 1, we find that
the equations of motion can be written as

(ω − ε̃′
0)G0, j (ω) = δ′

0, j + t̃ ′
+G2, j (ω), (15)

(ω − ε̃′
2)G2, j (ω) = δ′

2, j + t̃ ′
−G0, j (ω) + t̃+G3, j (ω), (16)

(ω − ε̃3)G3, j (ω) = δ3, j + t̃−G2, j (ω) + t̃+G4, j (ω), (17)

...

where ε̃′
x = t̃+t̃−/(ω − ε̃1), t̃ ′

± = t̃2
±/(ω − ε̃1), δ′

0, j = δ0, j +
δ1, j t̃+/(ω − ε̃1), and δ′

2, j = δ2, j + δ1, j t̃−/(ω − ε̃1) are the
renormalized parameters after decimating site 1. Crucially,
the renormalized equations are identical to the initial ones,
if we relabel sites accordingly. This allows us to focus on
the transformation rules of the parameters, rather than on the
Green’s functions themselves. After decimating a few more
sites, one finds the general transformation rules:

ε̃
(n+1)
1 = ε̃n+2 + t̃−t̃+

ω − ε̃
(n)
1

, t̃ (n+1)
± = t̃ (n)

± t̃±
ω − ε̃

(n)
1

, (18)

ε̃
(n+1)
0 = ε̃

(n)
0 + t̃ (n)

+ t̃ (n)
−

ω − ε̃
(n)
1

, δ
(n+1)
0, j = δ

(n)
0, j + t̃ (n)

+
ω − ε̃

(n)
1

δ
(n)
1, j,

(19)

δ
(n+1)
1, j = δn+2, j + t̃−

ω − ε̃
(n)
1

δ
(n)
1, j, (20)

where the superscript (n) indicates the number of times that
decimation has been applied. These recurrence equations al-
low us to determine the exact surface Green’s function for a
system with N sites:

G0, j (ω) = δ
(N )
0, j

ω − ε̃
(N )
0

. (21)

Furthermore, the solution can be expressed analytically by
noticing that the recurrence equation for ε̃

(n+1)
1 can be solved

exactly. For example, in the case of homogeneous on-site
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energies and dissipation [i.e., for t j, j = ε → ε̃ j = ε − i(γ −
P)/2],

ε̃
(n)
1 = (ε̃λ+ + 2)λn

+ − (ε̃λ− + 2)λn
−

λn+1
+ − λn+1

−
, (22)

with

λ± = ω − ε̃ ±
√

(ω − ε̃)2 − 4t̃+t̃−
t̃−t̃+

. (23)

From Eq. (22) it is straightforward to write the solution to
all the other recurrence equations, and then for the surface
Green’s function G0, j (ω). Importantly, all the other Green’s
functions can be determined recurrently from G0, j (ω) and the
original equations of motion [cf. Eqs. (12)–(14)]. For exam-
ple, from Eq. (12) we have

G1, j (ω) = ω − ε̃0

t̃+
G0, j (ω) − t̃−1

+ δ0, j . (24)

Although these solutions are analytical for arbitrary N , for
large systems they are polynomials with large powers, and
their analysis in simple terms is difficult (although this form
is still efficient for numerical calculations). For this reason,
we now focus on the semi-infinite limit, N → ∞, where it is
possible to find simple analytical expressions that are asymp-
totically exact. This is because in that limit, Eq. (18) becomes
an infinite continued fraction:

ε̃
(N )
1 −→

N→∞
ε̃ + t̃−t̃+

ω − ε̃ − t̃− t̃+
ω−ε̃− t̃− t̃+

ω−ε̃−...

, (25)

which can be calculated exactly by rewriting it as a quadratic
equation, (ε̃ (N )

1 − ε̃)(ω − ε̃
(N )
1 ) = t̃+t̃−, whose solution is

ε̃
(N )
1 −→

N→∞
ε̃ + ω ±

√
(ε̃ − ω)2 − 4t̃−t̃+

2
. (26)

Here, the sign to get the correct physical solution is fixed by
imposing the decay ε̃

(N )
1 → ε̃ for ω → ±∞. As a numerical

check, in Fig. 2 we show a comparison between the exact
value of ε̃

(N )
1 for a system with N sites and its value in the

semi-infinite limit from Eq. (26), showing indeed an excellent
agreement.

In the next subsection, we will show how to arrive at
similar expressions for the semi-infinite limit using a different
decimation method based on Dyson’s equation.

B. Dyson’s equation decimation: Method 2

Here, we use a slightly different approach consisting in
separating D into two parts: one will be the “unperturbed”
contribution, D0, which corresponds to D excluding the
hopping to the first site j = 0. The other part will the “per-
turbation,” V , introduced by the hopping of the first site to the
rest of the chain. The advantage of this separation is that, in
the semi-infinite limit, the surface Green’s functions before
and after adding the perturbation coincide. To see this, notice
that after the separation D = D0 + V , Eq. (7) in the steady
state can be expressed as a Dyson’s equation:

G(ω) = g(ω) + g(ω)VG(ω), (27)

FIG. 2. Comparison between the exact value of ε̃N
1 for a fi-

nite chain with N sites and the one obtained in the semi-infinite
limit (horizontal red lines) for γ /tc = 0.1, P/tc = 0.05, ε/tc = −0.2,
and ω/tc = 0. The tendency towards the semi-infinite limit is not
monotonous, but is correct for large systems. The vertical dashed line
indicates the corresponding correlation length, Re[ξ (ω)]−1, for these
parameters [see Eq. (31) below for details]. This length is in one-to-
one correspondence with the size required to reach convergence to
the semi-infinite limit.

where we have defined the unperturbed dissipative Green’s
function g(ω) = (ω − D0)−1. For now, the matrix elements of
G(ω) are unknown, and from g(ω) we just know that the first
diagonal element corresponds to the Green’s function of the
isolated site. In addition, we know that for g(ω), all the other
elements along the first column and the first row vanish (be-
cause the last site is decoupled). Finally, we also know that in
the semi-infinite limit, Gj,l (ω) = g j+1,l+1(ω), indicating that
the system is large enough so as to remain unchanged with the
addition of identical extra sites. Inserting all this knowledge
into Eq. (27) leads to the fundamental equation for the surface
Green’s function, G0,0(ω), which reads (see Appendix A for
details)

G0,0(ω) = g0,0(ω) + g0,0(ω)V+G0,0(ω)V−G0,0(ω), (28)

where V± represents the complex hopping from the first to the
second site, and from the second to the first site, respectively.
This is one of the fundamental equations for decimation,
which shows how to reduce the calculation of the full Green’s
function to a nonlinear equation for the surface Green’s func-
tion only.

The advantage of this decimation scheme is that Eq. (28)
is, in general, a nonlinear matrix equation, where g0,0(ω) can
describe clusters of sites or even more complex situations such
as Bogoliubov–de Gennes [64,65] systems. Interestingly, if
the cluster contains a single site, V± coincides with t̃± in
Eq. (14). Nevertheless, it is not difficult to prove that once
the matrix G0,0(ω) is obtained (either analytically or numer-
ically), the general solution for an arbitrary Green’s function
matrix is (see Appendix A for details)

Gj,l = (G0,0Vsgn(l− j) )
| j−l|G0,0

+
min { j,l}−1∑

a=0

(G0,0V−) j−a(G0,0V+)l−aG0,0, (29)
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where we have suppressed the ω-dependence for compact-
ness. This is an important result, which relates the solution
for the surface Green’s function in Eq. (28) with an arbitrary
Green’s function of the system. As a check, from Eq. (29) we
have the simple result

Gj,0(ω) = [G0,0(ω)V−] jG0,0(ω), (30)

which characterizes the propagation from the edge to site j in
terms of the surface Green’s function and the complex hop-
ping matrix. Furthermore, it is useful to separate in Eq. (29)
the contribution that depends on the relative distance d =
| j − l| and the one that depends on the distance to the surface.
If we assume that l � j, we can write (the case l � j can be
analogously obtained)

Gj,l (ω) = [1 + � j (ω)]edξ (ω)G0,0(ω), (31)

where the inverse correlation length ξ (ω) and the matrix
� j (ω) are given by

ξ (ω) = ln[G0,0(ω)V+], (32)

� j (ω) =
j−1∑
a=0

[G0,0(ω)V−] j−a[G0,0(ω)V+] j−a . (33)

Notice that both ξ (ω) and � j (ω) are matrices of dimension
equal to the number of sites in the cluster defining each unit
cell. Note also that ξ−1(ω) has units of length, such that when
its real part is negative (positive), it defines the exponential
decay (amplification) length of the two-point Green’s function
of the system. This is why along this manuscript we will refer
to Re[ξ (ω)]−1 as the coherence or correlation length of the
system.

C. Transient dynamics

After having reviewed two methods to obtain the steady-
state properties of the system, let us now discuss another
application of decimation to quantum dissipative systems that
has been largely overlooked: the possibility to efficiently
study the transient dynamics and extract analytical expres-
sions for the characteristic times. This is important because
certain dissipative systems might have divergent steady-state
solutions, i.e., those which are dynamically unstable, but still
would be be interesting during their transient dynamics.

To extract the dynamics, it is useful to work with the
Laplace transform, rather than the Fourier transform that we
used to characterize steady-state properties. The main differ-
ence with the Fourier transform is that the boundary condition
for the Laplace transform requires fixing an initial time. Im-
portantly, the Laplace transform of the equations still allows
us to apply our decimation scheme, and thus, by means of the
inverse Laplace transform, study the transient dynamics and
extract certain characteristic times.

To see the role of the Laplace transform of the Green’s
function, G(s) = (is − D)−1, notice that it solves the equa-
tion of motion for the field operator:

〈a j (s)〉 = i
∑

l

G j,l (s)〈al (0)〉 , (34)

with 〈a j (0)〉 being the field operator at some initial time
t = 0, and 〈ai(s)〉 is the Laplace transform of the bosonic
operator. Notice that since we are not considering any input
field/coherent drive, a nontrivial solution of Eq. (34) can only
be obtained if we start with an initial seed 〈aj (0)〉 �= 0.

To find G(s), we just need to realize that the Laplace trans-
form of Eq. (7) gives a similar structure to that of the Fourier
transform. Therefore, the decimation process can be carried
out analogously, ending up with the same fundamental equa-
tion to determine the surface Green’s function [cf. Eq. (28)].
For all practical purposes, this means that we can just make the
substitution G0,0(ω → is) to determine the Laplace transform.
However, the main difficulty to study the transient dynamics
relies in calculating the inverse Laplace transform. Although
there are several numerical methods to deal with this problem
[66], here we present a different approach that allows us to
find an exact analytical expression for the Green’s function,
which is valid for arbitrary 1D dissipative quantum systems
with a single site per unit cell.

We start by considering the equation for the surface
Green’s function in the semi-infinite limit of a dissipative
quantum system:

G0,0(s) = g0,0(s) + g0,0(s)V+G0,0(s)V−G0,0(s). (35)

As mentioned earlier, the only difference with Eq. (28) is in
the definition of the unperturbed one: g0,0(s) = (is − D0)−1.
Therefore, the Laplace transform of Green’s function terms
Gi, j (s) fulfills an identical solution as in Eq. (29).

Now let us focus on the Green’s function Gj,0(s) =
[G0,0(s)V−] jG0,0(s), which controls the propagation from the
edge, although the general case Gj,l (s) can be analogously
treated because its s-dependence is analogous. If we focus
on the case of one site per unit cell, we conclude that we need
the inverse Laplace transform of G0,0(s) j+1 to fully determine
the time evolution. Typically, the inverse Laplace transform
of nonlinear functions is hard to find, but in this case the use
of the binomial series allows us to reduce it to the calculation
of the inverse Laplace transform of the unperturbed Green’s
function g0,0(s), which can be done analytically.

The solution for the surface Green’s function for a bosonic
chain described by Eqs. (9)–(11) is

G0,0(s) =
1 −

√
1 − 4g0,0(s)2t̃+t̃−
2g0,0(s)t̃+t̃−

. (36)

We define 2g0,0(s) = y(s) and z(y) =
√

1 − y2α, being α =
t̃+t̃−. This allows us to write the required expression as

G0,0(s) j+1 =
∞∑

n,p=0

(
j + 1

n

)(
n
2
p

)
(−1)n+pαp− j−1y2p− j−1,

(37)

where (a
b) are the generalized binomial coefficients, and we

have applied a binomial series expansion to (1 − z) j+1 and to√
1 − y2α. Now it is possible to perform the inverse Laplace

transform of each term in the sum,

L−1{y(s)2p− j−1}(t ) = −i22p− j−1 e−it ε̃ (−it )2p− j−2

�(2p − j − 1)
, (38)
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where �(x) is the Gamma function. Now, summing over p
and n we can find the analytical expression for G0,0(t ) j+1 (see
Appendix C for details),

G0,0(t ) j+1 = e−it ε̃ (−i) j+1( j + 1)
J j+1(2t

√
α)

tα
j+1
2

. (39)

Here, Jr (x) is the rth Bessel function of the first kind, and ε̃

contains the on-site energy and the local dissipation rates, as
defined below Eq. (14).

The exact expression in Eq. (39) allows us to express, for
example, the exact time evolution 〈aj (t )〉 for a coherent state
initially prepared at the edge of the chain with amplitude
〈a j (0)〉 = α0δ j,0, which reads

〈a j (t )〉 = iα0e−it ε̃ (−i) j+1( j + 1)

(
t̃−
t̃+

) j
2 J j+1(2t

√
t̃+t̃−)

t
√

t̃+t̃−
.

(40)

The advantage of this analytical expression is that it allows
us to capture some general features of the transient dynamics
of one-dimensional systems, such as the long-time behavior or
the characteristic velocity of a wave packet. Also, the steady-
state solution can simply be obtained from limt→∞ f (t ) =
lims→0 sL{ f (t )}(s). This provides a direct way to check the
stability of the system.

IV. EXAMPLES: DRIVEN-DISSIPATIVE BOSONIC CHAINS

Now, we will apply the tools developed in the previ-
ous section to the two particular examples described below
Eqs. (9)–(11), that are, a coupled-cavity array with individual
decay and pump terms (in Sec. IV A), and the Hatano-Nelson
model (in Sec. IV B). Models with a larger number of sites per
unit cell can be treated by similar means [48].

A. Dissipative coupled-cavity arrays

We start by analyzing the simplest instance of a driven-
dissipative bosonic chain: a coupled-cavity array with nearest-
neighbor hopping, tc, and individual decay rate, γ , and
pumping, P. This is useful because it will allow us to connect
with the physics of one-dimensional bosonic chains without
dissipation, which has been thoroughly studied in the litera-
ture [67–73]. Note that the dissipative case without gain has
also been considered in other works, e.g., Ref. [71].

Let us first describe a standard result for periodic boundary
conditions (PBCs) in the infinite limit. There, the Hamiltonian
of this model can be immediately diagonalized:

H1d =
∑

k

ωka†
kak, (41)

with ωk = ωa − 2tc cos(k), where ωa is the on-site energy of
the cavities. This expression allows one to find a compact
analytical expression for the two-point Green’s function in
the limit of N → ∞ and for ω − ωa � 2tc given by (see
Appendix B for details)

Gj,l (ω) = −i
e| j−l|ln( ω−ωa

2tc
−i

√
1−( ω−ωa

2tc
)2 )√

(ω − ωa)2 − 4t2
c

. (42)

FIG. 3. Change in the local density of states (DOS), Dj (ω), ob-
tained from the exact Green’s function from decimation, Eq. (31),
as one moves away from the edge, j = 0 (blue), towards the bulk,
j → ∞ (red). Intermediate sites are labeled in the figure: 1, 2,
10, and 50. Notice the renormalization of the band-edge Van Hove
singularities in the bulk as j �= 0 approaches the edge j = 0.

From this equation, we can immediately see some of the
well-known properties for the case of lossless and infinite
bosonic chains, which include (i) the divergent behavior of
the local density of states, Dj (ω) = − 1

π
ImGj, j (ω + iη) [74],

around the band edges, i.e., |ω − ωa| ∼ 2tc; (ii) the divergence
of the coherence length, Re[ξ (ω)]−1, defined in Eq. (31), for
energies within the band, which translates into an infinite
range two-point Green’s function [67–73]. As we show next,
these two features change dramatically when both finite-size
effects and loss/pump terms are included in the model.

To illustrate this, we apply the decimation technique
described in Sec. III to obtain Gj,l (ω) for a dissipative, semi-
infinite chain. Let us first illustrate the renormalization of the
local density of states due to surface effects, as shown in
Fig. 3, where we plot the change in the local density of states
(DOS) as one moves away from the edge (blue) towards the
bulk (red). There, we observe how the initial density of states
at the edge develops a number of nodes equal to the number
of sites from the edge, and slowly forms the Van-Hove singu-
larities typically observed in the bulk by accumulating states
at the band edge. Importantly, it is also possible to obtain the
analytical expression for the Green’s function with PBC [i.e.,
to recover Eq. (42)] by just coupling two semi-infinite chains
using Dyson’s equation.

Let us now focus on the effect of dissipation on such a
local density of states. This is shown in Fig. 4, where we
compare the DOS for the surface site and for a site in the
bulk with and without dissipation. One can see that the surface
DOS reproduces the well known profile of the Hermitian
case (solid blue), while the presence of dissipation transfers
spectral weight to higher/lower energy states, with |ω|/tc > 2
(green dashed), by softening the band-edges. Analogously,
the DOS in the bulk reproduces the well-known Van Hove
singularities at |ω|/tc = 2 (solid yellow), and the presence of
dissipation again softens their presence and populates higher-/
lower-energy states.
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FIG. 4. Density of states (DOS), Dj (ω), as defined in the text,
at the boundary (blue and green) and deep in the bulk (orange
and red). Solid lines refer to the lossless case, characterized by a
sharp disappearance of states beyond |ω| � 2tc and the Van Hove
singularities for the bulk case. In contrast, the dissipative case softens
and renormalizes the singularities, extending the surface/bulk DOS
to frequencies beyond |ω| = 2tc.

Finally, let us illustrate the impact of dissipation on the
two-point Green’s functions. As mentioned earlier, in lossless
1D systems, correlations between sites do not decay with the
distance. As expected, dissipation introduces a decay that can
be characterized with our analytical expressions. In Fig. 5
we plot the absolute value of the two-point Green’s function
as a function of the distance, normalized by its value at the
surface. As expected, the lossless case (black) shows constant
correlation between sites, independently of the distance, for
states within the band (otherwise there is damping). When
dissipation is added, even states within the band display a
decay (red), which is accentuated if one moves away from the
band center (blue).

These changes can be systematically studied in terms of
the inverse correlation length ξ (ω), which can be written

FIG. 5. |Gj,0(ω)| normalized by |G0,0(ω)| for ω = ωa (red), ω =
ωa + 2tc (blue), and ω = ωa with γ /tc = 0 (black). In the lossless
case, two-point correlations remain constant between distant sites. In
contrast, adding dissipation introduces a decay of correlations, which
is accentuated at the band edges. Vertical dashed lines indicate the
corresponding coherence length 1/Re[ξ (ω)] from Eq. (31).

as

ξ (ω) = 1

2
ln

(
t̃−
t̃+

)
+ ln[α(ω) − α(ω)

√
1 − α(ω)−2], (43)

with α(ω) = (ω − ωa + i�)/2
√

t̃+t̃− and t̃± = t j, j±1 −
i(γ j, j±1 − Pj, j±1)/2. In addition, � = γ − P denotes the
net loss/gain rate. In particular, for a dissipative chain
with local gain and loss, the first term in Eq. (43) vanishes
because t̃± = tc [75]. Thus, in this case one just needs to
study the second term, which has two distinct regimes: (i)
|α(ω)| 
 1 or highly dissipative and (ii) |α(ω)| � 1 or
weakly dissipative. In the weakly dissipative case, we can
expand to first order in � to find

ξ (ω) � ξ0(ω) − �√
4t2

c − (ω − ωa)2
, (44)

where ξ0(ω) is the inverse coherence length in the absence of
dissipation. This shows that in the presence of weak dissipa-
tion, the real part of the correlation length is Re[ξ (ω)]−1 �
−�/

√
4t2

c − (ω − ωa)2, indicating that correlations between
sites decay exponentially with the distance as expected: the
larger the net loss (�) and/or the smaller the group velocity
[
√

4t2
c − (ω − ωa)2], the stronger is the exponential damping.

Besides, an important observation is that since what enters
into the equations is the net loss/gain rate, �, one can com-
pensate the exponential damping of the two-point Green’s
function by adding gain to the system, until � = 0, where
the infinite correlation length of the lossless 1D systems is
recovered.

Finally, we briefly discuss the asymptotic behavior of the
transient dynamics for a reciprocal chain with local dissipa-
tion only. From Eq. (40) we can see that it particularizes to
the following expression:

〈a j (t )〉 = iα0e−iε̃t (−i) j+1( j + 1)
J j+1(2tct )

tct
. (45)

Then, if we are interested in the behavior at long time, we
can use the asymptotic expansion of the Bessel functions,
Jm+1(2tct ) ∼ (πtct )−1/2, to find the well-known t−3/2 behav-
ior:

〈a j (t )〉 ∼ iα0e−iε̃t (−i) j+1 j + 1√
π (tct )3/2 , (46)

where we have neglected the oscillating part of the expansion,
as in experiments one typically is interested in the average
value. This behavior perfectly captures the dynamics at long
time and agrees with previous works where the asymptotic
limit has also been obtained [68–70,72,73].

B. Hatano-Nelson chain

Now, let us consider a more complex model, i.e., the
Hatano-Nelson model [52], which is a paradigm of topo-
logical quantum amplifiers induced by dissipation [39,53–
55,58–63]. The minimal instance of this model requires com-
plex nearest-neighbor hoppings, tceiφ , local dissipative/pump
terms, γ and P, and nonlocal nearest-neighbor decay or pump-
ing (γnn and Pnn, respectively). Here we choose the presence of
nonlocal gain, Pnn �= 0, and hence we can set γnn = 0 for sim-
plicity. Furthermore, in the standard form of this model, local
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FIG. 6. Comparison between G5,4(ω) from exact diagonalization
for a finite array with N = 45 sites (dot and square markers) and the
semi-infinite case (solid and dashed lines), computed using Eq. (51).
Parameters: γ /tc = 3, P/tc = 3, ε/tc = 0.1, and φ = 0.9π/2.

and nonlocal gain are not independent, as they are related by
P = 2Pnn [39,55]. As shown in several works [39,53–55,58–
63], this model supports a topological amplifying phase where
excitations propagate along one direction only, exponentially
increasing their particle number with the distance of propaga-
tion.

Applying the results obtained by decimation in Sec. III, we
obtain that the surface Green’s function for an isolated site is
given by

g0,0(ω) = 1

ω − ε + i γ−P
2

. (47)

The calculation of the surface Green’s function requires us to
solve Eq. (28), which for the present model is just a second-
order equation with solution,

G0,0(ω) = 1 − √
1 − 4g0,0(ω)2t̃+t̃−
2g0,0(ω)t̃+t̃−

, (48)

with t̃± = tce±iφ + iP/4. The analytical expression for the sur-
face Green’s function allows us to calculate the two relevant
quantities that define the Green’s function in Eq. (31):

ξ (ω) = ln[G0,0(ω)t̃+], (49)

� j (ω) = ρ(ω)
ρ(ω) j − 1

ρ(ω) − 1
, (50)

which are the inverse correlation length ξ (ω) and site-
dependent amplitude � j (ω), respectively. Note that we have
evaluated the sum over a in Eq. (33) and that ρ(ω) =
G0,0(ω)2t̃−t̃+. Therefore, we can write the Green’s function
in the Hatano-Nelson model with the following compact ex-
pression:

Gj,l (ω) = e( j+1)ln[ρ(ω)] − 1

ρ(ω) − 1
e(l− j)ξ (ω)G0,0(ω). (51)

To validate this expression obtained through decimation,
in Fig. 6 we show a comparison between the Green’s function
obtained from exact diagonalization for the particular com-
ponent G5,4(ω) (for a finite chain with N = 45 sites) and the

FIG. 7. Top: ξ (ω) for the topological phase (φ = π/2). The blue
region represents the region of amplification due to Re[ξ (ω)] > 0.
The vertical dashed lines indicate the critical points from the phase
diagram. The inset shows the Im[ξ (ω)]. Bottom: Phase diagram
obtained from the surface Green’s function. It gives identical results
to the calculation of W1(ω) for PBC using Eq. (53). Parameters:
γ /tc = 2, P/tc = 4, and ε/tc = 0.

semi-infinite solution obtained in Eq. (51). There, it can be
seen how the agreement between the two is excellent for the
choice of parameters depicted in the caption. Although not
shown, other parameters show similar agreement, as long as
N is large enough.

In contrast with the case of a simple dissipative chain
studied in Sec. IV A, the combination of collective dissipation,
nonreciprocity, and time-reversal symmetry breaking due to
the gauge field produces a topological amplification phase
[39,53–55,58–63]. As the amplification process depends on
the distance |x − y| traveled by an excitation, it should be
encoded in the real part of the inverse correlation length ξ (ω),
which can be easily computed from Eq. (49). Figure 7 (top)
shows its behavior as a function of ω, and the blue area shows
the region Re[ξ (ω)] > 0, where amplification happens. In
addition, the inset shows the behavior of the imaginary part of
ξ (ω), which is related to the phase acquired by the excitations
at a given energy. The vertical (blue, dashed) gridlines in
Fig. 7 (top) correspond to the phase boundaries obtained when
Re[ξ (ω)] changes its sign. Interestingly, these boundaries co-
incide with those of the topological phase diagram for periodic
boundary conditions (Fig. 7, bottom), which in this case can
be calculated as [39]

W1(ω) =
∫ π

−π

dk

2π i
∂kln[ω − D(k)], (52)
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FIG. 8. Comparison between the exact and the analytical so-
lution for the real part of 〈aj (t )〉 for N = 15, φ = 0, P/tc = 0,
γ /tc = 0.5, and ε/tc = 0.1. The inset shows a zoom at intermediate
time, where a difference between the two solutions arises around
t ∼ 12 (units of t−1

c ) due to a revival. This is the Poincaré recurrence
time for the finite system, where the excitation has bounced off the
opposite edge. Enlarging the unit-cell size delays this effect.

with D(k) = ε − i γ

2 + iP cos2( k
2 ) + 2tc cos(k − φ). Using

z = eik , one can calculate this integral analytically, resulting
in

W1(ω) = 1 − θ (1 − |z+|) − θ (1 − |z−|), (53)

with z± = (μ ±
√

μ2 − 4t̃+t̃−)/2t̃− being the poles of the in-
tegrand and μ = ω − ε + i(γ − P)/2. The exact agreement
between W1(ω) and the positive regions of the coher-
ence length in Fig. 7 (bottom) allows us to postulate that
�(Re[ξ (ω)]) can be used as a topological invariant for this
model. This is important because calculating the inverse cor-
relation length ξ (ω) only requires us to know the surface
Green’s function G0,0(ω), and it can be calculated analytically
in the semi-infinite system, numerically for a finite system, or
from a local measurement in an experimental setup, allowing
us to link a local observable with the topology of the model.

1. Transient dynamics in the Hatano-Nelson chain

We now go beyond the steady-state properties and we
study the dynamics that can be extracted from the expressions
obtained in Sec. III C, starting with an initial state situation,
e.g., where one of the edges is populated.

In the Hatano-Nelson model, there are two well-
distinguished regimes. One can choose the parameters to be
in the topologically trivial phase, dominated by losses. In that
case, the initial coherent state propagates and decays over
time, as shown in Fig. 8, as would occur in a standard dis-
sipative chain such as the one studied in Sec. IV A. There, one
can see how the excitation amplitude is damped as it moves
through the array. The comparison shows excellent agreement
between the exact numerical solution for a finite-size system
and the semi-infinite analytical expression. Interestingly, the
inset shows that finite-size effects can emerge for long enough
time, due to the Poincaré recurrence time. Therefore, our
solutions allow us to separate interference due to the opposite
boundary from the bulk dynamics.

The other phase that can be considered is that of topo-
logical amplification. Interestingly, we find two different
dynamical regimes within this phase, depending on how the
process of topological amplification happens. The first possi-
bility is a regime with dissipation dominating over the pump

FIG. 9. Regimes of amplification dynamics for the topological
phase. The top plot shows the case with local dissipation dominating
over a collective pump (γ /tc = 2), where the excitation is amplified
as it propagates, but rapidly damping after hopping to the next site.
The bottom plot shows the regime dominated by a collective pump
(γ /tc = 1), where the excitation is delocalized between sites and
constantly amplified over time. Parameters: φ = π/2, P/tc = 1.4,
and ε/tc = 0.

(γ > P), where the initial signal is amplified as it moves
through the array, but while it leaves a site the signal gets
rapidly damped, vanishing at long time, as shown in Fig. 9
(top). The second possibility corresponds to a regime with the
pump dominating over dissipation (γ < P), where the initial
signal is amplified as it moves through the array, but the
amplitude at each site keeps increasing over time, as shown
in Fig. 9 (bottom). The main difference between these two
regimes is the steady-state solution, which in the first case
has a vanishing average at each site, while in the second
case it diverges. This means that we can separate the phase
of topological amplification in two dynamical regimes, where
one is stable while the other is unstable.

This interesting behavior can be linked with the stability
of the system, and it demonstrates that, from the transient
dynamics, it is possible to not just extract the presence of
a topological amplification phase, but also to determine if
it is stable or unstable and see how the instability develops
over time. This is illustrated in Fig. 10, where we plot, as
a function of the dissipative parameters γ /tc and P/tc, the
different possibilities found for this model. The white region is
characterized by a stable trivial phase, where amplification is
absent and fluctuations are rapidly suppressed due to damping
(see Fig. 8). In contrast, colored regions characterize the pres-
ence of topological amplification, which can be stable (blue)
or unstable (red). In the unstable (topological) case, random
fluctuations will be indefinitely amplified, as shown in Fig. 9
(bottom). However, in the stable (topological) region, fluctu-
ations are damped while signals are amplified. The stability
diagram has been obtained from the sign of the imaginary
part of the eigenvalues of D for a finite system, and we have
checked that it is independent of the system size, in agreement
with Ref. [55]. Hence, it links the different dynamical regimes
obtained in the transient with the steady-state properties.
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FIG. 10. Stability diagram and its relation with the topological
phase. The trivial phase is always stable (white region). In contrast,
the topological phase is divided in two: a stable region (blue) and
an unstable one (red). The crossing between dashed lines indicates
the two points chosen in Fig. 9 to represent the different dynamical
regimes of amplification. Parameters: φ = π/2 and ε/tc = 0.

Finally, an interesting estimate from the transient dynam-
ics is the propagation speed of the excitation or the average
time that is required to amplify a signal. This is important to
characterize amplifiers, because in addition to the steady-state
solution, which indicates the gain produced by the amplifier,
it is also important to determine the time it takes that signal to
be amplified. Obviously, one is interested in amplifiers that are
fast. To estimate the time it takes the excitation to travel from
one site to the next, τamp, we can estimate the distance between
the zeros of two consecutive Bessel functions. In the long-
time regime, it can be characterized from their average phase
difference, resulting in τamp ∼ π/|4√

α|, being α = t̃+t̃− =
t2
c − P2/16 + itcP cos(φ)/2, which perfectly agrees with the

numerical results (notice that Fig. 9 is shown for even sites
of the array only). This means that the amplifying time is thus
inversely proportional to |t̃+t̃−|, and thus its value can be tuned
to control the propagation velocity.

2. Connecting the Green’s function with input-output theory

So far, we have considered situations in which the only
driving of the systems comes either from an initial state or
through incoherent pumping terms. Another relevant situa-
tion, especially for the purpose of amplification, is that in
which there is an additional input field in some of the cavities.
For those cases, it is convenient to adopt the input-output
formalism, in which one writes a Langevin equation of the
form [55]

ȧ j = −i
∑

l

D j,l al + bin, j (t ), (54)

to calculate the evolution of the system operators aj in the
presence of a driving field bin, j (t ) at the j-site. D j,l is the dy-
namical non-Hermitian matrix in Eq. (7). If we are interested
in the steady-state properties, it is possible to apply a Fourier
transform and solve for aj (ω) [76]:

a j (ω) = i
∑

l

G j,l (ω)bin, j (ω), (55)

FIG. 11. Top: Gain vs ω at different sites. The input port is at
the edge, and as the signal propagates, it is exponentially amplified
with the distance, for a finite range of frequencies. Bottom: Normal-
ized added noise during the amplification process. The frequencies
within the topological phase show a noise-to-signal ratio nearly at
the quantum limit nadd

j (ω) = 1 (dashed line). Parameters: ε/tc = 0,
φ = π/2, γ /tc = 4, and P/tc = 3.6.

where we have used that the Green’s function is the resolvent
for the homogeneous part of the equation of motion. Thus,
we can use the Green’s functions obtained in Sec. III to find
analytical expressions for the relation between the input and
output fields.

For example, let us consider that the input is a coherent
state inserted at port j = 0 (i.e., at the boundary of the chain).
In that case, we can calculate the gain, G j (ω), at site j > 0 as
follows [55]:

G j (ω) = γ 2|Gj,0(ω)|2 = γ 2|G0,0(ω)|2e2 jRe[ξ (ω)], (56)

where we have used Eq. (30) and ξ (ω) = ln[G0,0(ω)t̃−]. Fig-
ure 11 (top) shows the gain as a function of ω for different
lattice sites. As the plot is in logarithmic scale, we can confirm
that the amplification process happens exponentially with the
number of sites. Furthermore, there is a central plateau where
the amplification is quite homogeneous for a wide range of
frequencies.

Another interesting property, which can be analytically
calculated, is related to how the photonic lattice changes the
noise-to-signal ratio. The normalized added noise is defined
as nadd

j (ω) = namp
j (ω)/G j (ω) [77], with namp

j (ω) the total noise
per bandwidth added by the amplification process [55]:

namp
j (ω) = γ

∑
l,l ′

G∗
j,l (ω)Gj,l ′ (ω)Pl,l ′ . (57)

We plot nadd
j (ω) at various lattice sites in Fig. 11 (bottom).

This shows that the topological phase is an amplifier with
an excellent noise-to-signal ratio, close to the quantum limit
of nadd

j (ω) = 1 [78]. To understand in simple terms why the
phase of topological amplification is near the quantum limit,
we can check the asymptotic behavior of nadd

j (ω) in Eq. (57).
In the topological phase and for an input port at the edge, the
sum is dominated by the Green’s function with the largest
number of sites contributing to amplification, Gj,0(ω) (con-
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tributions with Gj,l> j are exponentially suppressed due to the
directionality of the phase). In that case, we can approximate
to lowest order namp

j (ω) � γ P|Gj,0(ω)|2. Therefore, if the sys-
tem is tuned close to the center of the topological phase γ � P
and is large enough, we find that nadd

j (ω) = namp
j (ω)/G j (ω) →

1 for all frequencies within the topologically nontrivial region.
This result only relies on the system being a directional ampli-
fier with exponential gain with the number of sites. Therefore,
we can conclude that topological amplifiers will always oper-
ate near the quantum limit of the noise-to-signal ratio.

V. CONCLUSIONS AND OUTLOOK

To sump up, we introduce a method to obtain the dy-
namical and steady-state properties of open quantum systems
based on the calculation of lattice Green’s functions using
decimation techniques. Compared to other methods, our ap-
proach allows one to find compact analytical expressions in
certain limits, which can bring additional understanding of the
emergent phenomena. We have illustrated the power and ver-
satility of the method with two examples of driven-dissipative
bosonic chains, including one with a topological amplifier
phase. Thanks to the analytical understanding brought by
this method, we have been able to extract relevant observ-
ables, such as the signal-to-noise ratio, or magnitudes like
the coherence propagation length or the topological am-
plifying time. In addition, we have identified a different
transient dynamical regime in the topological amplifying
phase of the Hatano-Nelson model, which could not be ex-
tracted by the conventional steady-state analysis done in the
literature.

An interesting extension of this work would be to apply
these tools to more complex scenarios, such as fermionic
models or arrays of parametric amplifiers [79–82].
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APPENDIX A: DERIVATION OF THE SURFACE GREEN’S
FUNCTION EQUATION IN METHOD 2

We start from the standard Dyson’s equation for the
Green’s function, which separates the effective Hamiltonian
into its perturbed and unperturbed parts: D = D0 + V , where
V describes the dissipative hopping between the last site of
the array and its nearest neighbor, and D0 contains the local
energy and dissipation, as well as all the other hopping terms.
With this separation, Dyson’s equation can be written as

G(ω) = g(ω) + g(ω)VG(ω), (A1)

where we have defined the matrix of the unperturbed Green’s
function g(ω) = (ω − D0)−1:

g(ω) =

⎛
⎜⎜⎜⎜⎜⎝

g0,0(ω) 0 0 · · ·
0 g1,1(ω) g1,2(ω) · · ·
0 g2,1(ω) g2,2(ω) · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

, (A2)

and the perturbation matrix:

V =

⎛
⎜⎜⎜⎜⎜⎝

0 V+ 0 · · ·
V− 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

. (A3)

If we now consider the matrix elements in Eq. (A1) and focus
on the equation for the surface Green’s function G0,0(ω), we
find

G0,0(ω) = g0,0(ω) + g0,0(ω)V+G1,0(ω), (A4)

which is coupled to the equation for G1,0(ω):

G1,0(ω) = g1,1(ω)V−G0,0(ω). (A5)

Within this method, finding the solution is straightfor-
ward in the semi-infinite limit by imposing that gj+1,l+1(ω) =
Gj,l (ω). This makes Eq. (A4) transform into the nonlinear
equation

G0,0(ω) = g0,0(ω) + g0,0(ω)V+G0,0(ω)V−G0,0(ω). (A6)

Once Eq. (A6) is solved, it is possible to express an arbi-
trary Green’s function in terms of G0,0(ω) and the dissipative
hopping V±. For this, just notice that the following equa-
tions are also obtained from Eq. (A1):

Gj,0(ω) = Gj−1,0(ω)V−G0,0(ω) → Gj,0(ω)

= [V−G0,0(ω)] jG0,0(ω). (A7)

Similarly, for the other matrix elements one finds

G0, j (ω) = [G0,0(ω)V+] jG0,0(ω). (A8)

Evaluating all the other matrix elements, one can deduce
the form written in Eq. (29):

Gj,l = (G0,0Vsgn(l− j) )
| j−l|G0,0

+
min { j,l}−1∑

a=0

(G0,0V−) j−a(G0,0V+)l−aG0,0. (A9)

APPENDIX B: ANALYTICAL CALCULATION OF THE
GREEN’S FUNCTION FOR A 1D ARRAY

In the 1D lossless case, the two-point Green’s function for
the case of PBC can be analytically calculated. This requires
us to calculate the integral

Gj,l (ω) =
∫ 2π

0

dk

2π

eik( j−l )

ω − 2tc cos (k)
. (B1)
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The exact result is easily obtained using contour integral methods, which only require us to define z = eik . This substitution
leads to the following integral form:

Gj,l (ω) = 1

2π i

∮
z j−l dz

zω − tcz2 − tc
. (B2)

The denominator has two poles at z± = ω±
√

ω2−4t2
c

2tc
, which can be used to calculate the integral, noticing that only z− is within

the unit circle. The result separates two regions:

Gj,l (ω) =

⎧⎪⎪⎨
⎪⎪⎩

sgn(ω)√
ω2−4t2

c

[
ω
2tc

− sgn(ω)
√(

ω
2tc

)2 − 1
]| j−l|

for |ω| > 2tc,

∓i√
ω2−4t2

c

[
ω
2tc

± 1
i

√
1 − (

ω
2tc

)2]| j−l|
for |ω| < 2tc,

(B3)

where the ± corresponds to the retarded/advanced Green’s function, respectively. This expression describes the exact Green’s
function for the Hermitian 1D tight-binding model. To write it as in Eq. (42), we just need to exponentiate it and take its
logarithm. This allows us to encode the spatial dependence in the exponential.

APPENDIX C: DERIVATION OF THE INVERSE LAPLACE TRANSFORM

The solution for the surface Green’s function is

G0,0(s) =
1 −

√
1 − 4g0,0(s)2t̃+t̃−
2g0,0(s)t̃+t̃−

. (C1)

Now, we define 2g0,0(s) = y(s) and z(y) =
√

1 − y2α, being α = t̃+t̃−. With this we can write the required expression as

G0,0(s)x+1 = (yα)−x−1(1 − z)x+1 = (yα)−x−1
∞∑

n=0

(
x + 1

n

)
(−1)nzn

= (yα)−x−1
∞∑

n=0

(
x + 1

n

)
(−1)n

∞∑
p=0

(
n/2

p

)
(−1)pαpy2p =

∞∑
n=0

(
x + 1

n

)
(−1)n

∞∑
p=0

(
n/2

p

)
(−1)pαp−x−1y2p−x−1.

(C2)

Now, we can perform the inverse Laplace transform of each term:

L−1{y(s)2p−x−1}(t ) = −i22p−x−1 e−it ε̃ (−it )2p−x−2

�(2p − x − 1)
, (C3)

and use this result to write the inverse Laplace transform of the powers of the Green’s function in the time domain:

G0,0(t )x+1 = −ie−it ε̃
∞∑

n=0

(
x + 1

n

)
(−1)n

∞∑
p=0

(
n/2

p

)
(−1)p αp−x−122p−x−1(−it )2p−x−2

�(2p − x − 1)
= e−it ε̃ (−i)x+1(x + 1)

Jx+1(2t
√

α)

tα
x+1

2

,

(C4)

where Jr (x) is the rth Bessel function of the first kind.
Finally, we can write the time evolution of the average of the field operator at site x as

〈ax(t )〉 = i〈a0〉e−it ε̃ (−i)x+1(x + 1)

(
t̃−
t̃+

)x/2 Jx+1(2t
√

t̃+t̃−)

t
√

t̃+t̃−
. (C5)
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