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Nonlocality sharing for a three-qubit system via multilateral sequential measurements

Changliang Ren ,1,* Xiaowei Liu,1 Wenlin Hou,1 Tianfeng Feng ,2 and Xiaoqi Zhou2,†

1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter
Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and

Applications, Hunan Normal University, Changsha 410081, China
2State Key Laboratory of Optoelectronic Materials and Technologies and School of Physics,

Sun Yat-sen University, Guangzhou, People’s Republic of China

(Received 6 December 2021; accepted 12 May 2022; published 25 May 2022)

Nonlocality sharing for a three-qubit system via multilateral sequential measurements was deeply discussed.
Nonlocality sharing based on the multiple violations of Mermin-Ardehali-Belinskii-Klyshko (MABK) inequality
in the trilateral sequential measurements scenario can be observed, where all of eight MABK inequalities can
be violated simultaneously. Nevertheless, the genuine nonlocality sharing based on the multiple violation of
Svetlichny inequality can be only observed in the unilateral sequential measurements scenario. Compared with
two-qubit cases, the nonlocality sharing in a three-qubit system shows more fruitful characteristics.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen (EPR) first dis-
cussed the distinctive nonclassical properties of quantum
physics in their seminal paper [1], which indicated some
conflict between quantum mechanics and local realism. Then,
Bell proposed a way to exhibit this conflict between classical
correlations and quantum correlations, which is referred to
as the Bell inequality [2]. Subsequently, Bell-type inequali-
ties have been studied extensively from various perspectives
[3–10] and experimentally verified in many different quan-
tum systems [11–19]. These kinds of research are not only
crucial to deeply understanding quantum theory, but also
play an important role in quantum information protocols,
such as quantum key distribution [20], randomness generation
[21–25], and entanglement certification [26]. For a back-
ground on Bell inequalities, readers could refer to Ref. [27]
and references therein.

Inspired by Bell’s work, Clauser, Horne, Shimony, and
Holt (CHSH) derived a modified inequality [3], which pro-
vides a faithful way of experimentally testing the nonlocality
property in two-qubit composite systems. However, most dis-
cussions of nonlocality based on CHSH inequality focus on
one pair of entangled qubits distributed to only two separated
observers. Recently, a surprising result—that nonlocality can
actually be shared among more than two observers using
weak measurements—has been reported by Silva et al. [28].
In Silva’s scenario, a pair of maximally entangled qubits is
distributed to three observers Alice, Bob1, and Bob2, in which
Alice accesses one qubit and the two Bobs access the other
qubit. Alice performs a strong measurement on her own qubit,
while Bob1 performs a weak measurement on his qubit and
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passes it to Bob2. Finally Bob2 carries out a strong mea-
surement. The measurement results reveal that it is possible
to observe a simultaneous violation of CHSH inequalities
between Alice-Bob1 and Alice-Bob2. To date, a series of
fruitful related theoretical works [29–45] have been published
by tracking this path and several experimental demonstrations
have also been performed [46–48]. In particular, this shows
that nonlocality sharing can be observed in a wide range even
if Bob1’s measurements are close to strong measurements
[36,48], which is impossible in the original protocol [28].
Nevertheless, almost all discussions are limited to unilateral
sequential cases, i.e., one entangled pair is distributed to one
Alice and multiple Bobs. Recently, Zhu et.al explored the
nonlocality sharing in the bilateral sequential measurements
case in which one entangled pair is distributed to multiple Al-
ices and Bobs [43]. But Bell-type nonlocality sharing between
Alice1-Bob1 and Alice2-Bob2 is impossible in such a scenario
[43].

In this work, we explored the nonlocality sharing for a
three-qubit system via multilateral sequential measurements,
where two different Bell-type inequalities, MABK inequal-
ity and Svetlichny inequality, were considered. In contrast
to two-qubit cases, a complete nonlocality sharing with all
of eight MABK inequalities’ simultaneous violations can be
observed in the trilateral sequential measurements scenario.
The genuine nonlocality sharing based on the multiple viola-
tion of Svetlichny inequality was also discussed. It is shown
that genuine nonlocality sharing can be observed only in the
unilateral sequential measurements scenario. These results
not only shed new light on the interplay between nonlocal-
ity and quantum measurements, especially the emergence of
nonlocality sharing via weak measurements, but can also be
applied in unbounded randomness certification [49], quantum
coherence [33], and quantum steering [34].

The paper is organized as follows. In Sec. II, we described
the scenario of a three-qubit system via multilateral sequential
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FIG. 1. Scenario of the trilateral sequential case: a three-qubit
entangled state is distributed to three sides, and each side has two
observers, in which the first observers on each side perform weak
measurements and the second observers perform strong measure-
ments. Two Alices occupy one-third of the state. Bobs and Charlies
have access to the other different. X̂i, Ŷj, Ẑk ∈ {1,−1} and ai, bj, ck ∈
{1,−1} represent measurement directions and measurement out-
comes respectively, where {i, j, k} ∈ {1, 2}.

measurements. Nonlocality sharing based on the multiple vi-
olation of MABK inequality and genuine nonlocality sharing
based on the multiple violation of Svetlichny inequality were
analyzed in Secs. III and IV, respectively. In Sec. V, we
conclude the paper.

II. THE MULTILATERAL SEQUENTIAL
MEASUREMENTS SCENARIO

The scenario illustrated in Fig. 1 is considered, where a
three-qubit entangled state is distributed to three remote sides,
and each side has two observers, which can be named as
{Alice1, Alice2}, {Bob1, Bob2}, and {Charlie1, Charlie2} re-
spectively. Those observers on the same side will measure
their shared qubit sequentially. The communication between
the observers is forbidden, and the measurement choices of
these observers are independent. Each observer randomly
chooses one of two observables to measure, which can be
defined as X̂i = Ai,l for Alicei, Ŷj = Bj,m for Bobj, and Ẑk =
Ck,n for Charliek, where Ai,l is the lth measurement cho-
sen by the observer Alicei, and it is similar for Bj,m and
Ck,n, {i, j, k} ∈ {1, 2} where {l, m, n} ∈ {1, 2}. The binary out-
comes of observers’ dichotomic measurements are given by
ai, b j , ck with {ai, b j, ck} ∈ {−1, 1}. Such a scenario is char-
acterized by the joint conditional probability of the outcomes
P(a1, a2, b1, b2, c1, c2|X̂1, X̂2, Ŷ1, Ŷ2, Ẑ1, Ẑ2).

In the scenario, the first observer on each side performs
weak measurements, while the second observer of each side
carries out strong measurements. In the whole measurement
process, we can always obtain the quantum state after mea-
surement according to the selection of measurement and its
outcome. Without loss of generality, an arbitrary observable
Ô ∈ {X̂i, Ŷj, Ẑk} can be defined as Ô = �ξ · �σ , where �σ is a
vector consists of three Pauli matrices �σ = (σx, σy, σz ). The
weak measurement of Ô can be introduced as follows [28].
As we know, for an arbitrary single-qubit state |�〉, can
be represented by the superposition of the eigenvectors of

the measured observable Ô, which is |�〉 = a|O+〉 + b|O−〉,
where |O±〉 is the eigenvector of Ô. In the standard von
Neumann measurement scheme, the quantum state interacts
with a pointer, which serves as a measurement apparatus,
and the outcome of the observable is obtained from the
position shift of the pointer. Hence, after an interaction
with a pointer, the state |�〉 becomes a|O+〉 ⊗ |φ(q − 1)〉 +
b|O−|〉 ⊗ |φ(q + 1)〉, where |φ(q)〉 is the initial state of the
pointer. A weak measurement is defined when the pointer
spread is very large, since the pointer position supplies few
information and the system has little disturbance. The quality
factor F and precision factor G characterize the weak mea-
surement, where F = ∫ +∞

−∞ 〈φ(q + 1)|φ(q − 1)〉dq and G =∫ 1
−1 φ2(q)dq respectively [28]. F represents the undisturbed

extent to the initial state after the measurement and G is the
precision factor which quantifies the information gain from
the measurement. Hence, the weak measurement of Ô with
the outcome ±1 can be regarded as a positive operator valued
measurement (POVM) measurement, where the operator can
be given as E± = G|O±〉〈O±| + (1 − G)I/2 [34]. When F =
0 and G = 1, it corresponds to a strong measurement, and
the operators E± change to the projective measurements. As
introduced in Ref. [28], there exists a trade-off between mea-
surement disturbance F and information gain G. For example,
the optimal weak measurement requires that F 2 + G2 = 1,
where “optimal” means that the most information can be
extracted with the same disturbance. We consider that weak
measurements in this scenario have the optimal pointer distri-
bution.

We assume that the density matrix of a three-qubit state
is ρ. Alice1 first performs a weak measurement X̂1 on her
received qubit with the quality factor F1 and precision factor
G1. When the measurement outcome is a1, according to the
discussion in Ref. [28], the state changes to

ρ
a1

X̂1
= F1

2
ρ + 1 + a1G1 − F1

2

[
U −1

X̂1
ρ
(
U −1

X̂1

)†]

+ 1 − a1G1 − F1

2

[
U +1

X̂1
ρ
(
U +1

X̂1

)†]
, (1)

where U ai

X̂i
= �

ai

X̂i
⊗ I ⊗ I and �

ai

X̂i
= I+aiX̂i

2 . Subsequently, if

Alice2 performs a strong measurement X̂2 with the outcome
a2, the three-qubit state will change to

ρ
a2

X̂2
= U a2

X̂2
ρ

a1

X̂1
U a2

X̂2

†
. (2)

Later, Bob1 performs a weak measurement Ŷj on his received
qubit with the quality factor F2 and precision factor G2 of
the measurement, with F 2

2 + G2
2 = 1. When the measurement

outcome is b1, the three-qubit state becomes

ρ
b1

Ŷ1
= F2

2
ρ

a2

X̂2
+ 1 + b1G2 − F2

2

[
U −1

Ŷ1
ρ

a2

X̂2

(
U −1

Ŷ1

)†]

+ 1 − b1G2 − F2

2

[
U +1

Ŷ1
ρ

a2

X̂2

(
U +1

Ŷ1

)†]
, (3)

where Ŷj = Bj,m = �ξ j,m · �σ , U
bj

Ŷj
= I ⊗ �

b j

Ŷj
⊗ I . Similarly, if

Bob2 performs a strong measurement Ŷ2 with the outcome

b2, the three-qubit state becomes ρ
b2

Ŷ2
= U b2

Ŷ2
ρ

b1

Ŷ1
U b2

Ŷ2

†
. Subse-

quently, Charlie1 performs a weak measurement Ẑk on his
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received qubit with the quality factor F3 and precision factor
G3 of the measurement, where the optimal weak measurement
requires that F 2

3 + G2
3 = 1. When the measurement outcome

is c1, then the three-qubit state changes to

ρ
c1

Ẑ1
= F3

2
ρ

b2

Ŷ2
+ 1 + c1G3 − F3

2

[
U −1

Ẑ1
ρ

b2

Ŷ2

(
U −1

Ẑ1

)†]

+ 1 − c1G3 − F3

2

[
U +1

Ẑ1
ρ

b2

Ŷ2

(
U +1

Ẑ1

)†]
, (4)

where Ẑk = Bk,n = �ξk,n · �σ and U ck

Ẑk
= I ⊗ I ⊗ �

ck

Ẑk
. Finally,

when Charlie2 performs a strong measurement Ẑ2 with
the outcome c2, the three-qubit state will turn to ρ

c2

Ẑ2
=

U c2

Ẑ2
ρ

c1

Ẑ1
U c2

Ẑ2

†. So, a cyclic measurement process of this scenario
has been completely described. From the unnormalized post-
measurement state ρ

c2

Ẑ2
, the joint probability could be obtained,

P(a1, a2, b1, b2, c1, c2|X̂1, X̂2, Ŷ1, Ŷ2, Ẑ1, Ẑ2) = Tr[ρc2

Ẑ2
].

In order to investigate nonlocality sharing in such a sce-
nario, we are more concerned about the joint conditional
probabilities of the measurement of any three trilateral ob-
servers. It is assumed that the observable choosing is unbiased
for each observer, which requires that each measurement
setting of every observer should be chosen with equal proba-
bility. The joint conditional probability P(ai, b j, ck|X̂i, Ŷj, Ẑk )
is obtained via marginalizing the corresponding variables,

P(ai, b j, ck|X̂i, Ŷj, Ẑk )

=
∑

ai′ ,b j′ ,ck′

P(ai, b j, ck, ai′ , b j′ , ck′ |X̂i, Ŷj, Ẑk, X̂i′ , Ŷj′ , Ẑk′ ).

(5)

Based on the joint conditional probability distribution, the
expected value E (X̂i, Ŷj, Ẑk ) can be given as

E (X̂i, Ŷj, Ẑk ) =
∑

ai,b j ,ck

aib jck P(ai, b j, ck|X̂i, Ŷj, Ẑk ). (6)

III. NONLOCALITY SHARING BASED ON THE
MULTIPLE VIOLATION OF MABK INEQUALITY

The quantum nonlocality can be witnessed via violations
of corresponding inequalities. To explore the phenomenon
of nonlocality sharing for a three-qubit system via multilat-
eral sequential measurements, we first consider the typical
N-qubit Bell-type inequality, Mermin-Ardehali-Belinskii-
Klyshko (MABK) inequality, which can be described as

|−E (Ai,1, Bj,1,Ck,1) + E (Ai,2, Bj,1,Ck,2)

+ E (Ai,2, Bj,2,Ck,1) + E (Ai,1, Bj,2,Ck,2)| � 2. (7)

Obviously, by choosing different observers on each side, we
can discuss the violations of eight MABK inequalities. For
clarity of discussions, we denote MABK quantity as Bω,
which is the value on the left side of Eq. (7), for the com-
bination of different observers, where B1 for (i = j = k = 1),
B2 for (i = k = 1, j = 2), B3 for (i = j = 1, k = 2), B4 for
( j = k = 1, i = 2), B5 for ( j = k = 2, i = 1), B6 for (i = k =
2, j = 1), B7 for (i = j = 2, k = 1), and B8 for (i = j = k =
2). Each expected value in every MABK inequality can be

obtained from Eq. (6). Thus, it is possible to check whether
there exists a multiple violation via calculation results.

As is known, nonlocality sharing between Alice1-Bob1

and Alice2-Bob2 is impossible in a two-qubit system
[43]. We first explore whether nonlocality sharing between
Alice1-Bob1-Charlie1 and Alice2-Bob2-Charlie2 exists in a
three-qubit system or not.

Without loss of generality, we assume that the observers
on the three different sides share a three-qubit GHZ state,
which is

|ψ〉 = 1√
2

(|000〉 + |111〉). (8)

Each observer has two measurement directions to choose, and
the directions of the dichotomic measurements are denoted as
({θ11, φ11}, {θ12, φ12}) for Alice1, ({θ13, φ13}, {θ14, φ14}) for
Alice2, ({θ21, φ21}, {θ22, φ22}) for Bob1, ({θ23, φ23}, {θ24, φ24})
for Bob2, ({θ31, φ31}, {θ32, φ32}) for Charlie1, and
({θ33, φ33}, {θ34, φ34}) for Charlie2.

To explore nonlocality sharing between
Alice1-Bob1-Charlie1 and Alice2-Bob2-Charlie2, it is
necessary to determine whether the MABK quantities, B1 and
B8, can surpass the classical bound simultaneously or not.
To simplify calculations, we require that the measurement
directions of every observer always be in the X -Y plane,
where θ11 = θ12 = θ13 = θ14 = θ21 = θ22 = θ23 = θ24 =
θ31 = θ32 = θ33 = θ34 = π

2 . Unfortunately, it is still too
complex to obtain the analytical solution which can show the
maximal nonlocality sharing between Alice1-Bob1-Charlie1

and Alice2-Bob2-Charlie2. We have calculated the numerical
optimal solution where the optimal double violation of
these MABK inequalities is small. Hence, we preferred
to exhibit nonlocality sharing with a set of suboptimal
analytical solutions. After all, errors are inevitable in
numerical solutions. Interestingly, when we chose such
simple measurement settings, φ11 = φ21 = φ31 = 0, φ12 =
φ22 = φ32 = −φ14 = −φ24 = π

2 , φ13 = −φ23 = −φ33 = π ,
φ34 = 3π

2 , the MABK quantities, B1 and B8, turn to

B1 = 4G1G2G3, (9)

B8 = 1
2 (1 + F1)(1 + F2)(1 + F3). (10)

For simplicity, when G1 = G2 = G3 = G, B1 and B8 change
to B1 = 4G3 and B8 = 1

2 (1 + √
1 − G2)3, which can ex-

ceed 2 simultaneously in the narrow range of G ∈
(
√

2(2
2
3 − 2

1
3 ), 2− 1

3 ) [approximately G ∈ (0.793, 0.809)]. As
illustrated in Fig. 2, when G = 0.8, B1 = B8 = 2.048, which
is the maximal simultaneous violation for B1 and B8. Unlike
a two-qubit case, it shows that nonlocality sharing between
Alice1-Bob1-Charlie1 and Alice2-Bob2-Charlie2 in a three-
qubit system can be observed, where two MABK inequalities
can be violated simultaneously. Of course, the magnitude of
such a double violation is very small, and it will vanish when
the fidelity of the shared state is less than 97.65%.

Second, we can explore whether nonlocality sharing still
exists or not for other different combinations of observers.
Certainly, it can be analyzed by discussing the simultaneous
violation for these MABK quantities, B2 to B7. When the same
measurement settings mentioned above are used, the MABK
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FIG. 2. Plot of MABK quantity B1 for Alice1-Bob1-Charlie1 and
B8 for Alice2-Bob2-Charlie2 when the state is GHZ state and G1 =
G2 = G3= G. The red solid line describes B1 and the blue dot-dashed
line describes B8. They both exceed the bound of 2 in a narrow range.
The picture above is the magnification of the violation part.

quantities, B2 to B7, can be written as

B2 = 2(1 + F2)G1G3,

B3 = 2(1 + F3)G1G2,

B4 = 2(1 + F1)G2G3,
(11)

B5 = (1 + F2)(1 + F3)G1,

B6 = (1 + F1)(1 + F3)G2,

B7 = (1 + F1)(1 + F2)G3.

Similarly, when these MABK quantities in Eq. (11) can ex-
ceed 2 simultaneously, the nonlocality sharing phenomenon
can be observed. For simplicity, when G1 = G2 = G3 = G,
the MABK quantities B2 to B4 will change to the same value
2G2(1 + √

1 − G2), while the MABK quantities B5 to B7 will
change to another value G(1 + √

1 − G2)2. As illustrated in
Fig. 3, it is easily to find the MABK quantities B2 to B4

FIG. 3. Plot of MABK quantities B2 to B7 for Alice-Bob-Charlie
when the state is GHZ state and G1 = G2 = G3= G. Under such
conditions, B2=B3=B4 (purple dotted line) and B5=B6=B7 (green
dashed line). They can exceed the classical bound simultaneously in
a narrow range.

FIG. 4. Plot of MABK quantities B1 to B8 for Alice-Bob-Charlie
when the state is GHZ state and G1 = G2 = G3 = G. Under such
conditions, B2=B3=B4 and B5=B6=B7. The red solid line describes
B1, the purple dotted line describes B2–B4, the green dashed line
describes B5–B7, the blue dot-dashed line describes B8, and they all
exceed the bound of 2 in a narrow range. The picture above is the
magnification of the violation part.

will exceed 2 simultaneously in the range of G ∈ (
√√

5−1
2 , 1).

When G = 2
√

2
3 , the MABK quantities B2 to B4 achieve the

maximal value 2.37 by choosing these measurement settings.
The MABK quantities B5 to B7 will exceed 2 simultane-
ously in the range of G ∈ (0.638, 0.839), and the MABK
quantities B5 to B7 achieve the maximal value 2.07 by choos-
ing these measurement settings when G =

√
5

3 . Hence, the
MABK quantities B2 to B7 will exceed 2 simultaneously in

the range of G ∈ (
√√

5−1
2 , 0.839). When G = 0.8, B2 = B3 =

B4 = B5 = B6 = B7 = 2.048, which is the maximal simulta-
neous violation for B2 to B7.

Third, when all the eight MABK quantities can exceed 2
simultaneously, the system will exhibit complete nonlocality
sharing in such a three-qubit system via multilateral sequen-
tial measurements. Actually, the eight MABK inequalities,
from B1 to B8, can be simultaneously violated. We can eas-
ily show such nonlocality sharing by simple measurement
settings which are mentioned above, even though they are
suboptimal measurement settings. As illustrated in Fig. 4,
when G1 = G2 = G3 = G, we show all the eight MABK
quantities will exceed 2 simultaneously in the range of G ∈
(
√

2(2
2
3 − 2

1
3 ), 2− 1

3 ). when G = 0.8, B1 = B2 = B3 = B4 =
B5 = B6 = B7 = B8 = 2.048, which is the maximal simulta-
neous violation for all the eight MABK quantities. Compared
with two-qubit cases, the nonlocality sharing in a three-qubit
system shows more fruitful characteristics. Nevertheless, it is
difficult to observe in current experimental conditions since
the value of this simultaneous violation is relatively small.

Obviously, the unilateral (Gi = Gj = 1) or bilateral (Gi =
1) sequential measurements scenario is a special case of
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FIG. 5. Plot of numerical solutions (red dashed line) and analyti-
cal solutions of MABK quantities B1 (green wide dashed line), B2/B3

(purple dotted line), and B5 (blue dot-dashed line), when G1 = 1, G2

= G3 = G. The red dashed line is the optimal solution, which means
the simultaneous maximum value that the four quantities (numerical)
can reach.

the above trilateral scenario. Without loss of generality, we
take G1 = 1 and G2 = G3 = G as an example, where Alice1

performs strong measurements. In this scenario, nonlocality
sharing between four combinations of different observers is
worth discussing, Alice1-Bob1,2-Charlie1,2, where the MABK
quantities correspond to B1, B2, B3, B5. The optimal nonlo-
cality sharing can be obtained by numerical calculations. As
illustrated in Fig. 5, the red dashed line is the optimal numeri-
cal value. It is shown that those MABK quantities can exceed
2 in the range of ( 1√

2
, 1) and the maximal violation is 2.56

when G = 0.8. Likewise, we could also attain the analytical
solution under the previous measurement settings. According
to Eq. (11), the four quantities change to B1 = 4G2, B2 =
2(1 + F )G, B3 = 2(1 + F )G, and B5 = (1 + F )2. When G
= 0.8, the simultaneous maximal violation of B1, B2, B3, B5

is 2.56, which is the same value as the optimal numerical
solution. However, the range of the nonlocality sharing is
narrower than the numerical results.

Obviously, this nonlocality sharing phenomenon could be
observed once the fidelity of the shared state is greater than
78%, which is possible to be achieved under the current
experimental technologies. Hence, our results are helpful
for realizing some device-independent certification schemes,
such as self-testing of multipartite GHZ states [50–52].

IV. GENUINE MULTIPARTITE NONLOCALITY SHARING
IN THE SEQUENTIAL MEASUREMENTS CASE

Besides using MABK inequality, the multipartite nonlocal-
ity sharing based on the multiple violation of other Bell-type
inequality can also be investigated in the sequential measure-
ments scenario, such as Svetlichny inequality [53]. As is well
known, Svetlichny inequality can be used to detect genuine
tripartite nonlocality [27]. Therefore, the multiple violation of
Svetlichny inequalities can show genuine tripartite nonlocality
sharing, where Svetlichny inequality can be described as [53]

|E (Ai,1, Bj,1,Ck,1) + E (Ai,1, Bj,1,Ck,2) + E (Ai,1, Bj,2,Ck,1)

+ E (Ai,2, Bj,1,Ck,1) − E (Ai,2, Bj,2,Ck,2)

− E (Ai,2, Bj,2,Ck,1) − E (Ai,2, Bj,1,Ck,2)

− E (Ai,1, Bj,2,Ck,2)| � 4.

FIG. 6. Plot of Svetlichny quantities S1 (Alice1-Bob1-Charlie1)
and S2 (Alice1-Bob1-Charlie2), when G1 = G2 =1, G3= G. The blue
dot-dashed line describes S1 and the red dashed line describes S2.
Both of them exceed the classical bound 4 in a narrow range.

Similar to the above discussion, we numerically investi-
gated the multiple violation of Svetlichny inequalities in the
trilateral, bilateral (G1 = 1), and unilateral (G1 = G2 = 1)
sequential measurement scenarios. It is shown that the mul-
tiple violation in the trilateral and bilateral (G1 = 1) cases
can never be achieved, which means the genuine nonlocality
sharing phenomenon does not exist. However, the genuine
nonlocality sharing can be observed in the unilateral case,
since the numerical results indicated that the double violation
of Svetlichny inequalities between Alice1-Bob1-Charlie1 and
Alice1-Bob1-Charlie2 could be observed at the same time.
The maximal violation [54] of Svetlichny inequality can be
achieved when the measurement settings are fixed in X -Y
plane. We can give an analytic solution by choosing the
appropriate measurement setting, φ11 = φ14 = φ23 = φ24 =
0, φ12 = φ31 = −φ33 = π

2 , φ21 = φ13 = π
4 , φ32 = −π , and

φ22 = 3π
4 . The Svetlichny quantities of Alice1-Bob1-Charlie1

and Alice1-Bob1-Charlie2, S1 and S2, turn to

S1 = 4
√

2G, S2 = 2
√

2(1 + F ), (12)

where G and F are the quality factor and precision factor of
Charlie1’s weak measurements.

Obviously, the double violation can be observed in the

range of G ∈ ( 1√
2
,

√
2[−1 + √

2)], as illustrated in Fig. 6.
When G = 0.8, the maximal simultaneous violation can be
obtained, where S1 = S2 = 4.525. Compared with the non-
locality sharing based on the multiple violation of MABK
inequalities, the genuine nonlocality sharing based on the
multiple violation of Svetlichny inequalities is more difficult,
which can be only observed in the unilateral sequential mea-
surements scenario.

V. CONCLUSION

The phenomenon of nonlocality sharing for a three-qubit
system via multilateral sequential measurements has been
deeply discussed. We analyzed the multiple violation of
two different Bell-type inequalities, MABK inequality and
Svetlichny inequality.

We started with nonlocality sharing based on MABK
inequality in the trilateral sequential measurements sce-
nario. In order to compare with a two-qubit case [43], we
first explored nonlocality sharing in a three-qubit system
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between Alice1-Bob1-Charlie1 and Alice2-Bob2-Charlie2. In-
terestingly, the corresponding MABK inequalities, B1 and
B8, can exceed 2 simultaneously in the narrow range

of G ∈ [
√

2(2
2
3 − 2

1
3 ), 2− 1

3 ]. Hence, nonlocality sharing in
a three-qubit system between Alice1-Bob1-Charlie1 and
Alice2-Bob2-Charlie2 can be observed, while it is impossible
in a two-qubit case. Second, we also investigated nonlocal-
ity sharing for the other different observers combinations. It
is shown that the MABK quantities B2 to B7 will exceed

2 simultaneously in the range of G ∈ (
√√

5−1
2 , 1). Third,

all the eight possible MABK inequalities in this scenario
were fully explored. Actually, the eight MABK inequali-
ties, from B1 to B8, can be violated simultaneously. When
G1 = G2 = G3 = G, we show all the eight MABK quan-
tities will exceed 2 simultaneously in the range of G ∈
[
√

2(2
2
3 − 2

1
3 ), 2− 1

3 ]. when G = 0.8, B1 = B2 = B3 = B4 =
B5 = B6 = B7 = B8 = 2.048, which is the maximal simulta-
neous violation for all the eight MABK quantities.

Furthermore, we investigated nonlocality sharing in the
degenerated trilateral sequential measurements scenario, i.e.,
unilateral or bilateral. When G1 = 1 and G2 = G3 = G, the
optimal numerical solution indicates that the simultaneous
maximal value is 2.56 (G = 0.8) and the violation range is
G ∈ ( 1√

2
, 1) for Alice1-Bob1,2-Charlie1,2. The analytic solu-

tion reaches the maximal simultaneous violation 2.56, while
it has a narrower violation range. In current technologies, it
is possible to observe this nonlocality sharing phenomenon,
which is beneficial to triggering the investigation of some
device-independent certification schemes, such as self-testing
of multipartite GHZ states [50–52].

Finally, we studied the genuine nonlocality sharing based
on Svetlichny inequality in the trilateral sequential mea-

surements scenario. We numerically demonstrated that the
multiple violation of Svetlichny inequalities in the trilateral
and bilateral cases does not exist, which means it is impossible
to observe the genuine nonlocality sharing in these cases.
However, the genuine nonlocality sharing could be observed
in the unilateral case. We show that the double violation

can be achieved in the range of G ∈ [ 1√
2
,

√
2(−1 + √

2)].
When G = 0.8, the maximal simultaneous violation reaches
S1 = S2 = 4.525. Obviously, the nonlocality sharing based on
Svetlichny inequality is more difficult to observe than MABK
inequality.

These results indicate that the nonlocality sharing in a
three-qubit system contains more fruitful characteristics. A
similar discussion could also be generalized to other inequal-
ities or higher dimensional systems.
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