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Quantum mechanics of a fermion confined to a curved surface in Foldy-Wouthuysen representation

Hao Zhao,1,2 Yong-Long Wang,2,3,* Cheng-Zhi Ye,2 Run Cheng,1,2 Guo-Hua Liang ,4 and Hui Liu1

1Department of Physics, Nanjing University, Nanjing 210093, China
2School of Physics and Electronic Engineering, Linyi University, Linyi 276000, China

3Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
4School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

(Received 28 November 2021; revised 20 April 2022; accepted 10 May 2022; published 25 May 2022)

In Foldy-Wouthuysen representation, this paper deduces the effective quantum mechanics for a relativistic
particle confined to a curved surface in an external field by using the thin-layer quantization scheme. It is found
that the quantum effects caused by introducing the confining potential can be taken as the results of relativistic
correction in the nonrelativistic limit. Meanwhile, the spin connection of the curved surface can produce a
Zeeman-like gap through the relativistic correction term. In addition, the confining potential can provide a
curvature-independent energy shift resulting from the Zitterbewegung effect. As an example, this paper applies
the effective Hamiltonian to a torus surface, in which the spin effects related to the introduced confining potential
are obtained. These results demonstrate the scaling of the noncommutation of the nonrelativistic limit and the
thin-layer quantization procedure.
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I. INTRODUCTION

With the rapid development of nanotechnology, more
and more nanostructures with complex geometries can be
fabricated [1–4]. The presence of geometries enables the
nanosystems to have some novel quantum effects. Two impor-
tant ingredients are the geometric potential [5] and geometric
momentum [6,7], both of which are induced by curvature.
Subsequently, the curvature-induced effects were extensively
investigated in thin magnetic shells [8,9], nematic shells [10],
titania single crystals [11], smectic liquid crystals [12], a
quantum spin Hall system [13], photonic crystal fibers [14],
domain wall pinning [15], domain wall motion [16], antiferro-
magnets [17], etc. For the particle or quasiparticle confined to
a two-dimensional (2D) curved surface, the effective quantum
dynamics can be effectively given in the thin-layer quanti-
zation formalism [5,18,19]. The validity of the quantization
approach was recently proven in experiments. Specifically,
the geometric potential was experimentally observed in topo-
logical crystal [20], and the geometric momentum was found
to affect plasmon polarization [21]. The thin-layer quanti-
zation approach is effective, and it has been expanded to
the classical field, a particle with spin, etc. Specifically, the
thin-layer quantization approach was successfully employed
to obtain the effective Maxwell’s equation [22–24] describ-
ing the electromagnetic wave propagation along a curved
surface, the effective Schrödinger equation [25] describing
the particle confined to a curved surface, the effective Pauli
equation [26–28] describing the nonrelativistic particle with
a spin confined to a curved surface, and the effective Dirac
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equation [29–35] describing the relativistic particle confined
to a curved surface.

The thin-layer quantization formalism is valid and success-
ful, but some problems need to be further discussed. One is
the noncommutation relationship of the nonrelativistic limit
and the thin-layer quantization procedure [36]. For a rela-
tivistic fermion in an external field, the nonrelativistic limit
can contribute to an additional coupling of magnetic moment
and external field, without effective spin-orbit coupling and
energy correction induced by the external field. However,
in the Foldy-Wouthuysen representation (FWR) [37–41], the
two components of positive- and negative-energy states can be
decoupled step by step and thus lead to an effective spin-orbit
coupling and an effective energy correction in the effec-
tive quantum dynamics. In addition, in FWR, the effective
quantum mechanics can well illustrate the effects of the field-
induced Darwin term [42,43] and the spin precession [44–46]
in superconducting materials and valley electronics devices.
For a nonrelativistic electron confined to a 2D curved surface,
an effective moment induced by geometry [47] will couple
with the external field in the thin-layer quantization procedure.
Therefore it is interesting to reconsider a relativistic electron
confined to a curved surface in FWR.

This paper considers a relativistic electron confined to a
curved surface in an external field in FWR and discusses
the effective quantum dynamics in the thin-layer quantization
formalism. The rest of this paper is organized as follows. In
Sec. II, the Dirac equation in a stationary curved space-time
and the Foldy-Wouthuysen transformation (FWT) are briefly
reviewed. In Sec. III, a relativistic electron confined to a
curved surface S in an external field is considered, and the
effective Dirac Hamiltonian in FWR is presented by using
the thin-layer quantization approach. Interestingly, the effec-
tive Hamiltonian contains a coupling of spin connection and
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external field, which can lead to a Zeeman-like effect. As an
example, the particular curvature-induced Zeeman splitting is
demonstrated on a torus surface. Finally, Sec. IV concludes
this paper.

II. DIRAC EQUATION AND ITS FOLDY-WOUTHUYSEN
REPRESENTATION

In this section, the Dirac equation in a curved space-time
and the FWT in an external field are briefly reviewed. A
relativistic electron in a curved space-time can be described
by a Dirac equation, that is,

(iγ μ∇μ − m)� = 0, (1)

where ∇μ is a covariant derivative with ∇μ = ∂μ + �μ. �μ

denotes a spin connection, and μ = 0, 1, 2, 3 stands for the
four coordinate variables of the curved space-time. γ μ is a
Dirac matrix defined in the curved space-time, and it can be
expressed as

γ μ = Eμ
α γ α,

where γ α is an ordinary Dirac matrix defined in a flat space-
time. α = 0, 1, 2, 3 stands for the four coordinate variables of
the flat space-time, and Eμ

α are vierbeins defined by

Eμ
α = ∂qμ

∂xα
,

where qμ stands for a coordinate variable of the curved space-
time and xα stands for a coordinate variable of the flat space-
time. With the vierbeins Eμ

α , the inverse of the metric tensor
defined in the four-dimensional curved space-time Gμν can be
expressed as

Gμν = Eμ
α E ν

βηαβ,

where ηαβ is the inverse metric tensor defined in the
four-dimensional flat space-time and ηαβ = diag(−1, 1, 1, 1).
Through �ν

κμ and �αβ the spin connection �μ can be
described as

�μ = 1
4 Eα

ν

(
∂μE νβ + �ν

κμEκβ
)
�αβ,

where �ν
κμ is the Christoffel symbol and �αβ = [γα, γβ]/2.

For simplicity and without loss of generality, ds2 can be
described with a stationary space-time as

ds2 = −G00dq0dq0 + GABdqAdqB,

where G00 = 1 and A, B = 1, 2, 3 stand for the three coor-
dinate variables of the curved space. Therefore Eν

α can be
simplified in the following form:

Eν
α =

(
1 0
0 EI

A

)
,

where I = 1, 2, 3 stands for the three coordinate variables of
the flat space. The space components of Dirac matrices γ A can
be expressed as γ A = EA

Iγ
I . In the stationary space-time, the

Dirac Eq. (1) can be simplified in the form of the Schrödinger
equation,

H� = E�,

where H is a Dirac Hamiltonian, that is,

H = −iβγ A∇A + βm,

where β is γ 0, a Dirac matrix, and γ A stands for a reduced
Dirac matrix defined in the curved space.

In the relativistic case, the quantum mechanics can be
described by a Dirac equation that is a first-order differen-
tial equation. In the nonrelativistic limit case, the quantum
dynamics is usually described by a Pauli equation that is a
second-order differential equation. In view of the differential
orders of the quantum dynamical equations, the performing
order of the thin-layer quantization scheme is crucial be-
cause the second-order derivative operators can exhibit more
geometry-induced effects than the first-order ones in the effec-
tive quantum dynamics. Ultimately, the nonrelativistic limit
and the thin-layer quantization scheme are generally non-
commutative. According to the noncommutation, the actions
of the nonrelativistic limit on the geometric effects (which
are obtained in the thin-layer quantization formalism) need
further discussion to be more detail. This paper considers a
relativistic particle in the presence of an external electric field
and discusses it in FWR.

As an example, this paper considers a relativistic electron
in an external field that can be described by a Dirac Hamilto-
nian,

H = −iβγ A∇A + βm + βV , (2)

where β = γ 0, ∇A = ∂A + �A + AA. AA is a vector potential,
and V is a scalar potential. Under the FWT, the Dirac Hamil-
tonian (2) can be simplified as

H = βm + E + O, (3)

where E = βV is an even form that commutes with β and
O = −iβγ A∇A is an odd form that anticommutes with β. To
decouple the two components of positive and negative energy,
the first unitary operator eiS can be expressed by the odd term
O with S = −iβO

2m . With the first unitary operator eiS , the Dirac
Hamiltonian Eq. (3) can be transformed into

HFW = eiSHe−iS = βm + βE + β

2m
O2 − 1

8m2
[O, [O, E]]

+ β

2m
[O, E] − 1

3m2
O3 + · · · , (4)

where HFW is a new Dirac Hamiltonian that is added by two
even terms β

2mO2 and − 1
8m2 [O, [O, E]], and it is replaced by

two new odd terms β

2m [O, E] and − 1
3m2 O3. To transform the

original Dirac Hamiltonian into a block-diagonal form, i.e.,
eliminate the off-diagonal elements, the second unitary oper-
ator can be taken as eiS2 with S2 = −iβO2

2m and O2 = β

2m [O, E],
and the third unitary operator can be given by eiS3 , with S3 =
−iβO3

2m and O3 = − 1
3m2 O3. It is obvious that the above unitary

transformations will converge when the m term is much larger
than the others in Eq. (3). Generally, the effective mass of
an electron is of the order of mega-electron-volts (MeV),
and the rest of the terms are of the order of approximately
milli-electron-volts (meV) to electron volts (eV) in ordinary
Dirac matter. As an effective approximation, the former four
terms in Eq. (4) can be taken as an effective Hamiltonian in
FWR.

052220-2



QUANTUM MECHANICS OF A FERMION CONFINED TO A … PHYSICAL REVIEW A 105, 052220 (2022)

III. THE EFFECTIVE QUANTUM MECHANICS FOR A
RELATIVISTIC ELECTRON CONFINED TO A CURVED

SURFACE IN FWR

In this section, the effective quantum mechanics in FWR
will be discussed for a relativistic electron confined to a 2D
curved surface embedded in a three-dimensional Euclidean
space. For convenience, a curvilinear coordinate system
spanned by (q1, q2, q3) can be adapted, where q1 and q2 are
two tangent coordinate variables of S and q3 is a normal one.
Therefore, in a small neighborhood of S denoted as �S, the
position vector of the point can be parametrized by

�R(q1, q2, q3) = �r(q1, q2) + q3�n(q1, q2), (5)

where �r(q1, q2) denotes the position vector of a point on S and
�n(q1, q2) is the normal unit basis of S, which is a function of
q1 and q2. With Eq. (5), the covariant elements of the metric
tensor GAB in �S can be defined by

GAB = ∂ �R
∂qA

· ∂ �R
∂qB

.

The covariant elements of the metric tensor gAB defined on S
can be defined by

gab = ∂�r
∂qa

· ∂�r
∂qb

,

where a, b = 1, 2 stand for the two tangent coordinate vari-
ables of S. In terms of the two definitions of GAB and gab, it is
easy to prove that the covariant elements Gab and gab satisfy
the following equation:

Gab = gab + q3[αg + (αg)T ]ab + q2
3(αgαT )ab, (6)

Ga3 = G3a = 0, G33 = 1, where α is the Weingarten curvature
tensor described by

αab = ∂�r
∂qa

· ∂�n
∂qb

.

In �S and with the adapted coordinate system of (q1, q2, q3),
the vierbeins EI

A can be expressed as

EI
A =

(
Ei

a 0
0 1

)
, (7)

where

Ei
a = ei

a + q3α
b
aei

b,

Ea
i = ea

i − q3α
a

beb
i + O

[
q2

3

]
. (8)

With the vierbeins and their inverses, the reduced Dirac ma-
trices γ a can be described by γ a = Ea

i γ i, and γ 3 is invariant.

A. The effective Hamiltonian on a curved surface in FWR

According to the thin-layer quantization scheme, this paper
introduces a confining potential V (q3) to confine the relativis-
tic electron to S. For simplicity and without loss of generality
[48], the electron is confined to S by a square-well potential
type. It is zero on the surface and goes to infinity elsewhere.
Subsequently, the Dirac Hamiltonian should be replaced by

H = −iβγ A∇A + βm + βV (q3), (9)

where V (q3) is the introduced confining potential and ∇A =
∂A + �A. Obviously, the term −iβγ A∇A is odd. Therefore the
first unitary operator for FWT can be given by U1 = eiS1 ,
and S1 = −γ A∇A

2m . The first transformed Hamiltonian can be
obtained as

HFW = eiS1 He−iS1

= βm + βV (q3) + β

2m
(γ A∇A)2

+ 1

8m2
[βγ A∇A, [βγ A∇A, βV (q3)]]

+ −iβ

2m
[βγ A∇A, βV (q3)] − i

3m2
(βγ A∇A)3 + · · · .

(10)

On the right-hand side, the first four terms are even, and
the last two terms are odd. In order to diagonalize the two
odd terms, we need to introduce the second unitary opera-
tor U2 = eiS2 and the third unitary operator U3 = eiS3 , where
S2 = −1

4m2 [βγ A∇A, βV (q3)] and S3 = −β

6m3 (βγ A∇A)3. With eiS2

and eiS3 , the first transformed Hamiltonian can be transformed
into

H1
FW = eiS3 eiS2 HFWe−iS2 e−iS3

= eiS3 eiS2 eiS1 He−iS1 e−iS2 eiS3

= βm + βV (q3) + β

2m
(γ A∇A)2

+ 1

8m2
[βγ A∇A, [βγ A∇A, βV (q3)]] + · · · . (11)

It is straightforward that H1
FW is a power series of 1

m . When the
energy contributed by the effective mass m plays a dominant
role in Eq. (11), H1

FW converges. Generally, in a Dirac material
the effective mass of the electron corresponds to MeV, the
confining potential corresponds to eV, and the momentum cor-
responds to meV. As a consequence, the effective Hamiltonian
is limited to the first four terms and denoted as HEFW.

In the squeezing process of the thin-layer quantization
formalism, the differential homeomorphism transformation
induced by the presence of curvature should be consid-
ered. Specifically, the curvature-induced transformation can
be described by the relationship G = f 2g, where G is the
determinant of GAB defined in �S, g is the determinant of
gab defined on S, and f is the rescaling factor with f =
1 + Tr(α)q3 + det(α)q2

3. Under the rescaling transformation,
the wave function � and the Dirac Hamiltonian HFW satisfy
the following transformations:

ψ = f 1/2�,

H̄FW → f
1
2 HFW f − 1

2 , (12)

where ψ and H̄FW are a new wave function and a new
Dirac Hamiltonian, respectively. By expanding the Hamilto-
nian H̄FWT as a power series of q3 and limiting q3 = 0, the
effective Dirac Hamiltonian confined to S can be obtained as

H̄EFW = βm + βV (q3) + H ′
FW + H ′′

FW, (13)
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where

H ′
FW = β

2m

{
[γ̄ a(∂a + �a)][γ̄ b(∂b + �b)] + ∂2

3

− γ 3αa
beb

iγ
i∂a + γ 3αa

beb
iγ

i

(
�a + 1

2
εa

b γ̄aγ
3αa

a

)

+ γ 3γ̄ a∂3�a + ∂3�3 + |εa
b |αa

bα
b

a/2

}
, (14)

where in γ̄ a = ea
i γ

i is the reduced Dirac matrix defined on S,
�a is the normal part of the spin connection �a that does not
depend on q3, and ε is a second-order matrix whose antidi-
agonal elements are 1 and whose other elements are zero. In
Eq. (13), the last term, H ′′

FW, is

H ′′
FW = −V (q3)

m
H ′

FW − β

8m2

[
2γ 3(∂3V (q3))γ̄ a(∂a + �a)

+ 4(∂3V (q3))∂3 + (
∂2

3V (q3)
)]

. (15)

Obviously, H ′
FW results from the term β

2m (γ A∇A)2, and
H ′′

FW results from the term 1
8m2 [βγ A∇A, [βγ A∇A, βV (q3)]] in

H̄EFW. H ′
FW and H ′′

FW are proportional to β, and they are block
diagonal. Also, the two blocks are opposite to each other.

The thin-layer quantization scheme aims to separate the
surface component from the normal one in H̄EFW analytically.
Analytically, the terms βm + βV (q3) + H ′

FW can be divided
into a normal component,

Hn = βV (q3) + β∂2
3 , (16)

and a surface component,

Hs = βm + β

2m

{
[γ̄ a(∂a + �a)][γ̄ b(∂b + �b)]

− γ 3αa
beb

i γ
i∂a + γ 3αa

beb
i γ

i

(
�a + 1

2
εa

b γ̄aγ
3αa

a

)

+ γ 3γ̄ a∂3�a + ∂3�3 + |εa
b |αa

bα
b
a/2

}
. (17)

The effective surface Hamiltonian Hs consists of two diagonal
blocks, i.e., positive- and negative-energy components. In Hs,
�a plays the role of a pseudomagnetic field that is induced
by Gauss curvature [30], the term −γ 3αa

beb
i γ

i∂a stands for
a spin-orbit coupling that agrees well with the result given
in Ref. [30], and the terms γ 3αa

beb
i γ

i(�a + 1
2εa

b γ̄aγ
3αa

a ) +
γ 3γ̄ a∂3�a play the role of Zeeman-like splitting, which is
contributed by the gradient of vierbein fields and the normal
spin connection. The last term, |εa

b |αa
bα

b
a/2, is the known ge-

ometric potential [5] resulting from the antidiagonal elements
of the Weingarten matrix, and it generally depends on the
mean curvature and Gaussian curvature.

In terms of the coupling of the q3 dependence of the
confining potential V (q3) and the tangent components of the
momentum, the term H ′′

FW cannot be analytically separated
into surface and normal parts. In comparison with the terms
βm + βV (q3) + H ′

FW, H ′′
FW is very small to be taken as a

perturbation term.

B. The actions of the confining potential

Compared with the effective Pauli equation, the effective
Dirac equation contains additional high-power terms of 1

m for
a relativistic electron confined to S. That is, H ′′

FW is a function
of 1

m2 that is a relativistic effect added by the presence of
the external field. In the external field a moving electron will
feel a force, and the coupling of the momentum and spin
in the Dirac equation will be modified by the external field.
As a consequence, the deformed coupling can provide a spin
precession for the moving electron.

In Eq. (9), the mass and V (q3) are regarded on the same
footing for the relativistic mass-energy equivalence via c. In
the nonrelativistic limit, the confining potential V (q3) pro-
vides a mass correction proportional to V (q3 )

m . Moreover, the
normal gradient ∂3V can provide an additional force to the rel-
ativistic electron by deforming the spin-orbit coupling (SOC).
Specifically, the curvature couples with the spin to deform the
SOC. The deformation can induce a Zeeman-like splitting.
Meanwhile, ∂2

3V (q3) can fluctuate at the normal position of
the electron as Zitterbewegung, which is caused by the inter-
ference between positive- and negative-energy components.
As a result, the Zitterbewegung can lead to a constant energy
shift.

To specifically study the actions of the confining potential
on the effective Dirac dynamics, this paper considers three
simple examples: (a) V (q3) = mω|q3|, (b) V (q3) = mωq2

3
with ω being a constant, and (c) a deep square well with a
small width of L. In case (a), ∂3V (q3) depends on having
an m and ω that can be taken as a constant to induce a spin
precession correction and Zeeman-like splitting, without Zit-
terbewegung for ∂2

3V (q3) = 0. By introducing the confining
potential V (q3) = mω|q3| and by vanishing the terms of q3,
the normal component of Hamiltonian can be given as

Hn = βV (q3) + β∂2
3 − β

2m
ω∂3 (18)

and the effective Dirac Hamiltonian can be obtained as

Heff = Hs − β

4m
γ 3ωγ̄ a(∂a + �a). (19)

In case (b), ∂3V (q3) = 2mωq3 is still a function of q3 that can-
not significantly affect the spin precession and Zeeman-like
splitting. ∂2

3V (q3) = 2mω just depends on having an m and ω

that can be taken as a constant to provide a Zitterbewegung
effect. Therefore the effective Dirac Hamiltonian should be
replaced by

Heff = Hs − β

4m
ω. (20)

In case (c), H ′′
FW directly vanishes on S, and thus the confining

potential does not affect the effective Dirac Hamiltonian.
The above discussions indicate that the results are different

from the known conclusion given by da Costa [5], i.e., the
details of the confining potential do not affect the effective
quantum dynamics on a curved surface. Strikingly, the form of
the confining potential plays an important role in the effective
Dirac Hamiltonian in FWR. Based on this, the effects of the
details of the confining potential can be employed to measure
the scaling of noncommutation of the nonrelativistic limit and
the thin-layer quantization procedure.
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FIG. 1. A torus surface with curvilinear coordinate variables θ

and ϕ.

C. An example: A torus surface

In this section, the previous discussions will be applied to
a nanoscale torus that can be parametrized by (θ, ϕ), shown
in Fig. 1. The effective Dirac Hamiltonian in Eq. (17) can be
specifically given by

Hs = βm + β

2m

{[
γ̄ θ ∂θ + γ̄ ϕ

(
∂ϕ + i

sin θ

2
�3

)]2

− γ 3

(
1

r
γ̄ θ ∂θ + cos θ

(R + r cos θ )
γ̄ ϕ∂ϕ

)

− i
cos θ

(R + r cos θ )

sin θ

2
�ϕ

}
, (21)

where �ϕ is a ϕ Dirac matrix, and the contribution given by
the confining potential is

H ′′
FW = −V (q3)

m
H ′

FW

− β

8m2

{
2γ 3(∂3V (q3))

[
γ̄ θ ∂θ + γ̄ ϕ

(
∂ϕ+i

sin θ

2
�3

)]

+ 4(∂3V (q3))∂3+ (∂2
3V (q3))

}
, (22)

where γ̄ θ = eθ
iγ

i and γ̄ θ = eϕ
iγ

i are tangent Dirac matrices
and �3 = iγ1γ2 is a normal Dirac matrix.

On the torus surface, the spin connection contained in ∇θ

vanishes, and that in ∇ϕ is i sin θ�3
2 . The nonvanishing term

plays the role of a pseudomagnetic field that produces the
Zeeman-like gap. Meanwhile, in H ′′

FW, the couplings of cur-
vature can enlarge the Zeeman-like gap. For sin θ

2 , the relevant
spin connection and Zeeman-like gap will vanish at θ = 0 or
π . For cos θ

(R+r cos θ ) , the relevant spin connection and Zeeman-

like gap will vanish at θ = π
2 or 3π

2 . As shown in Fig. 2 , there
are opposite Zeeman-like gaps for the spin in the direction
ϕ in the red area and the green area, This is because the
Zeeman-like splitting is induced by the Gaussian curvature
and its gradient. It is easy to prove that the Gaussian curvature
has its maximum value and its gradient vanishes at θ = 0 and
π , and the Gaussian curvature vanishes at θ = π

2 and 3π
2 .

In the spin-orbit interaction terms of Hs, the coefficients
are functions of curvature. As a potential application, the
Zeeman-like splitting can be manipulated by designing the
geometry of the curved surface.

FIG. 2. The different Zeeman-like gaps induced by the Gaussian
curvature and its gradient on a torus. There are different directions
of gaps in the red area and green area, respectively. The arrowheads
denote the directions of splitting.

IV. CONCLUSION

In this paper, the Dirac equation describing a relativistic
particle in a stationary curved space-time and the Foldy-
Wouthuysen transformation in the presence of an external
field are briefly reviewed. In FWR, for the relativistic particle
confined to a curved surface in the presence of an external
field, the effective Dirac Hamiltonian is deduced by using
the thin-layer quantization method. Some interesting terms
are induced by the geometry of the curved surface, such as
the coupling of spin connections and spin, and that of spin
connections and the external field. Those couplings can lead to
Zeeman-like splittings. Strikingly, there are two terms (first-
and second-order derivatives of q3) given by the confining po-
tential, which are present in the effective Dirac Hamiltonian.
As a result of FWT, the first-order term can lead to a spin pre-
cession and a Zeeman-like splitting, while the second-order
term can provide a Zitterbewegung effect. The results indicate
that the noncommutation of the nonrelativistic limit and the
thin-layer quantization procedure can be measured.

As an example, the effective Dirac Hamiltonian is given to
describe the relativistic electron confined to the torus surface.
As expected, the spin connection in the effective Hamiltonian
plays the role of a pseudomagnetic field, and it couples with
the spin as SOC. The geometry-induced SOC can provide a
Zeeman-like gap. These results can be observed in 2D curved
graphene materials; the energy gap is widened to several
hundred meV at their Dirac points by doping [49,50] or ad-
sorption [51]. On curved hexagonal boron nitride the energy
gap is broadened to about 6 eV [52]. These results indicate
that the particular properties of spintronic devices and valley
electronics can be manipulated by designing their geometries.
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