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Geodesics are the shortest curves between any two points on a given surface. Geodesics in the state space of
quantum systems play an important role in the theory of geometric phases, as these are also the curves along
which the acquired geometric phase is zero. Null-phase curves (NPCs) are the generalization of the geodesics,
which are defined as the curves along which the acquired geometric phase is zero even though they need not
be the shortest curves between two points. Here, we present a geometric decomposition of geodesics and NPCs
in higher-dimensional state space, which allows understanding of the intrinsic symmetries of these curves. We
use Majorana star representation to decompose a geodesic in the n-dimensional Hilbert space to n − 1 curves
on the Bloch sphere and show that all the n − 1 curves are circular segments with specific properties that are
determined by the inner product of the end states connected by the given geodesic. We also propose a method
to construct infinitely many NPCs between any two arbitrary states for (n > 2)-dimensional Hilbert space using
our geometric decomposition.
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I. INTRODUCTION

A geodesic is the shortest path between two points on
a given surface. In the state space of a quantum system,
the geodesics are also the curves along which the acquired
geometric phase is zero [1,2]. Hence, they play a crucial
role in the theory of geometric phases. Further, they are also
used in designing optimal quantum circuits, which turned out
to be equivalent to finding the shortest path between two
points in a certain curved geometry [3]. Geodesics can be
generalized to a larger class of curves, known as null-phase
curves (NPCs) [4]. An NPC is defined as a curve between
two pure quantum states on the state space along which the
acquired geometric phase is zero [5,6]. Unlike geodesics, the
NPCs need not be the shortest path between the two states.
The role of the geometric phase in characterizing topological
phases of matter [7], in precision measurements [8–10], and
in robust quantum information processing [11,12] highlights
the importance of understanding NPCs and geodesics. In this
paper, we present a geometric decomposition of the geodesics
and NPCs for the higher-dimensional quantum systems to a
set of curves on the Bloch sphere. This decomposition reveals
the hidden symmetries of higher-dimensional geodesics and
NPCs and may facilitate a deeper understanding of the state
space structure for such systems.
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To find the geometric decomposition of the geodesics
and NPCs, we use the Majorana star (MS) representation,
which enables the representation of a state of an n-level
quantum system by a symmetric combination of (n − 1)
states of a two-level systems [13,14]. This representation has
found applications in quantum information [15–17], quan-
tum entanglement [18–23], geometric phases [22,24–26], and
topological phases of matter [27,28]. Recently, the bulk topol-
ogy and the bulk-boundary correspondence have been studied
in the non-Hermitian tight-binding model using the MS rep-
resentation [29].

Since in the MS representation, a state |�〉 of an n-level
quantum system can be mapped to a symmetric state of n − 1
number of two-level systems, it can be represented by a set of
n − 1 points on the Bloch sphere. Hence, a curve on the state
space of an n-level system can be mapped to n − 1 curves on
the Bloch sphere. The n − 1 points corresponding to the state
|�〉 are often called MSs, and the collection of the points is
referred to as a constellation.

In this paper, we decompose the geodesics and NPCs of
higher-dimensional quantum systems into curves on the Bloch
sphere using MS representation. The key findings of this paper
are the following: (i) geodesics of the n-level quantum system
decompose to n − 1 circular segments on the Bloch sphere
when the end states are represented by (n − 1)-fold degen-
erate MSs. When n is odd, the n − 1 curves occur in pairs
that are reflections of each other about the great circle on the
Bloch sphere connecting the end states. For even n, one curve
is along the great circle connecting the end states, and the re-
maining n − 2 curves occur in pairs reflective about the same
great circle. (ii) For odd n, a class of NPCs can be constructed
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using (n − 1)/2 pairs of curves which are reflective about a
great circle, whereas for even n, (n − 2)/2 pairs of curves are
reflective, and the remaining curve can be chosen along the
great circle connecting the two states.

Our treatment provides a deeper understanding and in-
herent symmetries of geodesics in higher-dimensional state
space. For example, geodesics in three-dimensional state
space, where the end states are chosen such that each one
of them is represented by degenerate MSs, decompose into
two curves. We found that these two curves together form a
unique circle on the Bloch sphere, where the end states are
the diagonally opposite points on the circle. The radius of the
circle depends solely on the inner product between the end
states. Therefore, we can generate a geodesic between two
states in three-dimensional state space by constructing a circle
on the Bloch sphere between the corresponding end points.
Since any pair of three-dimensional states can be mapped to
states represented by degenerate MSs using a unitary trans-
formation, we can construct a geodesic between any arbitrary
states.

Using our geometric decomposition, we construct a promi-
nent class of NPCs for (n > 2)-dimensional state space. These
NPCs can be constructed by choosing curves in pairs such that
the curves within a pair are reflections of each other. If the
total number of curves is odd, then one curve can be chosen
along the great circle connecting the end states on the Bloch
sphere. Since there exists an infinite number of such pairs
between any two end states, we can construct infinitely many
NPCs. A special subset of these NPCs is where the curves
are reflections of themselves, i.e., all the curves are along the
great circle connecting the end points. This subset can be of
experimental importance while designing quantum circuits.

This paper is organized as follows: In Sec. II, we discuss
the relevant background required for our main results. Here,
we discuss MS representation, geodesics, and the NPCs. The
geometric decomposition of geodesics is given in Sec. III and
of NPCs is given in Sec. IV. We conclude in Sec V.

II. BACKGROUND

In this section, we present the relevant background nec-
essary for our main results. Here, we introduce the MS
representation for n-dimensional quantum systems. We dis-
cuss the connection between Bargmann invariant (BI) and
geometric phases and end this section by providing the def-
initions of geodesics and NPCs.

A. MS representation

Symmetric subspace of n − 1 two-level quantum systems
is n dimensional which is isomorphic to an n-level quantum
system. Hence, the state of an n-level system can be geomet-
rically represented as a collection of n − 1 points on the Bloch
sphere, which is known as MS representation [13,14]. In this
section, we briefly outline the details of MS representation.

Consider a general n-level state |�〉 written as

|�〉 =
n−1∑
r=0

cr |r〉, (1)

where cr are the expansion coefficients such that
∑

r |cr |2 =
1, and {|r〉} is the computational basis. The same state |�〉 can
also be written as a symmetric superposition of n − 1 two-
level systems as

|�̃〉 = N
∑

P

[|ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn−1〉]. (2)

Here,
∑

P corresponds to the sum over all (n − 1)! permuta-
tions of the qubits, and N is the normalization factor. From
here onward, we denote the state in the MS representation
with a tilde sign on the state, i.e., a state |�〉 in the normal
representation will read |�̃〉 in MS representation.

The state |ψk〉 = αk|0〉 + βk|1〉 represents a state of a
two-level system. To arrive at the MS representation, |ψk〉
is expressed in dual-rail representation [30], i.e., |ψk〉 ≡
(αka†

1 + βka†
2)|0, 0〉, where a†

1, a†
2 are the bosonic creation

operators for two independent modes, and |0, 0〉 is the two-
mode vacuum state. The symmetrized state of n − 1 two-level
systems in this representation can simply be written as∏n−1

k=1(αka†
1 + βka†

2)|0, 0〉 due to the indistinguishable nature
of n − 1 bosons. Hence,

|�̃〉 ≡
n−1∏
k=1

(αka†
1 + βka†

2)|0, 0〉

≡
n−1∑
r=0

cr
(a†

1)n−1−r (a†
2)r

√
r!(n − 1 − r)!

|0, 0〉. (3)

Comparing Eqs. (1) and (3), we get

|r〉 = (a†
1)n−1−r (a†

2)r

√
r!(n − 1 − r)!

|0, 0〉, (4)

and coefficients cr are functions of αk and βk . Now the task is
to evaluate the αk and βk from given cr . This can be achieved
by constructing a polynomial of the form:

n−1∏
k=1

(αkx − βk ) ≡
n−1∑
r=0

frxn−1−r = 0, (5)

where

fr = (−1)r cr√
r!(n − 1 − r)!

. (6)

Hence, solving the polynomial in Eq. (5) yields αk and βk .

B. BI and geometric phase

In this subsection, we define the BI and its relation
with the geometric phase. Given three nonorthogonal states
{|�1〉, |�2〉, |�3〉} from the Hilbert space H, i.e., 〈�i|� j〉 �=
0; ∀ i �= j, the BI of third order is defined as

�3(�1, �2, �3) = 〈�1|�2〉〈�2|�3〉〈�3|�1〉. (7)

The BI is invariant under unitary transformation |�i〉 →
U |�i〉 and it plays a crucial role in the theory of geometric
phase. Consider a closed curve C constructed by connecting
the three nonorthogonal states {|�i〉} by geodesics, then the
geometric phase �g associated with this closed curve is given
by [2]

�g[C] = − arg �3(�1, �2, �3). (8)
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It is straightforward to generalize Eq. (7) to define nth order
BI as

�n(�1, . . . , �n) = 〈�1|�2〉〈�2|�3〉 . . . 〈�n|�1〉. (9)

Further, any higher-order BIs can be reduced to third-order
BIs [2], and correspondingly, the geometric phase for a closed
curve constructed by connecting n states via geodesics can be
expressed as the sum of geometric phases for n − 2 third-order
BIs.

C. Geodesic curves

A geodesic is the path of shortest distance between two
points on a surface. In this subsection, we introduce a dif-
ferential equation for the geodesic in the state space of a
quantum system. To define geodesic curves, we need a contin-
uously parameterized smooth curve C in the Hilbert space H
given by

C = {|�(s)〉 ∈ H | s1 � s � s2}, (10)

where s is the real parameter varied over [s1, s2]. The quantity
called length associated with C is defined as [2]

L =
∫ s2

s1

ds〈u⊥(s)|u⊥(s)〉1/2, (11)

where

|u⊥(s)〉 = |u(s)〉 − 〈�(s)|u(s)〉|�(s)〉,
and |u(s)〉 is the tangent to |�(s)〉, which reads

|u(s)〉 = d

ds
|�(s)〉 ≡ |�̇(s)〉.

By requiring δL = 0, we obtain a differential equation obeyed
by C to be a geodesic:[

d

ds
− 〈�(s)|u(s)〉

] |u⊥(s)〉
‖u⊥(s)‖ = f (s)|�(s)〉, (12)

where f (s) is a real function of s which is yet to be deter-
mined.

The geodesics are invariant under the U (1) transformation
of the form |�(s)〉 → eiα(s)|�(s)〉. By exploiting this free-
dom and the freedom of reparameterization, we can make
〈�(s)|u(s)〉 = 0 and ‖u‖ = constant, respectively, which
yields [2,5]

d2

ds2
|�(s)〉 = f (s)|�(s)〉. (13)

Further, the above equation can be shown equivalent to a
differential equation of the form [2]:

d2

ds2
|�(s)〉 = −〈�̇(s)|�̇(s)〉|�(s)〉. (14)

A formal solution of Eq. (14), for the given two end states
|�(s1)〉 and |�(s2)〉 with 〈�(s1)|�(s2)〉 ≡ ξ real and positive,
is given by

|�(s)〉 = cos(s)|�(s1)〉 + |�(s2)〉 − ξ |�(s1)〉
(1 − ξ 2)1/2

sin(s). (15)

Hence, using Eq. (15), we can generate the geodesic between
any two points in the state space.

D. NPCs

NPCs are the curves between two points on the quantum
state space along which the acquired geometric phase is zero
[4–6]. Mathematically, these curves can be defined as follows:
Consider a differentiable curve {|�(s)〉} for the real parameter
s ∈ (s1, s2) such that 〈�(s)|�(s′)〉 �= 0 for all s, s′ ∈ (s1, s2).
The curve {|�(s)〉} is an NPC if, for any three points on the
curve, the BI is real and positive, i.e.,

�3(�(s), �(s′), �(s′′)) > 0, s, s′, s′′ ∈ [s1, s2]. (16)

From the above definition, it is clear that, if the curve {|�(s)〉}
is an NPC, then {eiβ |�(s)〉} will also be an NPC. Exploiting
this condition, we can always choose a curve in the H such
that

〈�(s)|�(s′)〉 > 0, (17)

for any s, s′ ∈ (s1, s2) [5]. Hence, there exist infinitely many
NPCs between any two points in the state space.

III. BLOCH SPHERE DECOMPOSITION OF GEODESICS

The geodesic between any two states of a two-level quan-
tum system is the segment of the great circle connecting these
states on the Bloch sphere. This is the consequence of the
spherical geometry of the state space of a two-level system.
However, the geodesics in three- or higher-dimensional state
spaces are notoriously difficult to understand, even though the
expression to calculate these geodesics is given in Eq. (15).
In this section, we present the Bloch sphere decomposition
of higher-dimensional geodesics using MS representation.
This Bloch sphere decomposition reveals intrinsic symmetries
of geodesics which may help to understand the geometric
structure of higher-dimensional state space. We start with
geodesics in three-dimensional state space and extend these
results to higher dimensions.

A. Geodesics in three-dimensional state space

Consider two states {|�1〉, |�2〉} in the three-dimensional
state space. For simplicity, we choose states of the following
form:

|�1〉 =
⎛
⎝1

0
0

⎞
⎠, |�2〉 =

⎛
⎝ α2√

2αβ

β2

⎞
⎠, (18)

such that, each one of them, individually, is represented by
degenerate MSs. Here, α and β are real, with 〈�1|�2〉 = α2 ≡
cos θ , 0 � θ < π/2, and α2 + β2 = 1.

In the MS representation, the states considered in Eq. (18)
take the form:

|�̃1〉 = |0〉 ⊗ |0〉,
|�̃2〉 = |φ〉 ⊗ |φ〉, (19)

where |0〉 = (1 0)T and |φ〉 = (α β )T .
From Eq. (15), we can find a geodesic {|�(s)〉 | 0 � s � θ}

connecting |�1〉 and |�2〉 which reads

|� ′(s)〉 =
⎡
⎣ cos(s)

a sin(s)
b sin(s)

⎤
⎦, (20)
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which further can be written in MS representation as

|�̃(s)〉 ≡ 1

N (s)
[|ψ+(s)〉|ψ−(s)〉 + |ψ−(s)〉|ψ+(s)〉]. (21)

Here, a = √
2αβ/ sin θ , b = β2/ sin θ , and N (s) is the nor-

malization constant. The states |ψ±〉 in the MS representation
of |�(s)〉 are given by

|ψ±(s)〉 = 1√
1 + |x±(s)|2

[
1

x±(s)

]
, (22)

where

x±(s) = a sin(s) ± i
√

b sin(2s) − a2 sin2(s)√
2 cos(s)

. (23)

Here, x±(s) are the solutions of the Majorana polynomial
in Eq. (5) corresponding to the |�(s)〉 in Eq. (20). Thus,
the geodesic curve {|�(s)〉} decomposes into two curves
{|ψ+(s)〉 | 0 � s � θ} and {|ψ−(s)〉 | 0 � s � θ} belonging
to two-dimensional space. Note that the curves {|ψ±(s)〉 | 0 �
s � θ} themselves do not satisfy the differential equation for
a geodesic in Eq. (12). Therefore, they are not geodesics in
two-dimensional space.

The Bloch vectors corresponding to {|ψ±(s)}〉 are denoted
as {n±(s)} and obtained by

n±(s) = 〈ψ±(s)|σ|ψ±(s)〉, (24)

where σ = {σx, σy, σz} is the vector of Pauli matrices [31].
The components of the curves {n±(s)} along x, y, z read

(n+)x = (n−)x =
√

2a sin(s)

cos(s) + b sin(s)
,

(n+)y = −(n−)y =
√

b sin(2s) − a2 sin2(s)

cos(s) + b sin(s)
,

(n+)z = (n−)z = cos(s) − b sin(s)

cos(s) + b sin(s)
. (25)

Since the end states |0〉 and |φ〉 in Eq. (19) lie on the xz plane
on the Bloch sphere and the solutions {x±(s)} in Eq. (23)
form a complex conjugate pair, the components of the curves
{n±(s)} differ only along the y axis by a negative sign. There-
fore, the two curves are reflective about the xz plane. We will
call these curves dual of each other.

On a careful observation, we can see that the components
of the pair of dual curves along the x, y, z axes satisfy an
equation of the form:

[(n±)x − αβ]2 + (n±)2
y + [(n±)z − α2]2 = β2, (26)

which is an equation of a circle with center at (αβ, 0, α2),
the midpoint of the line joining the end states on the Bloch
sphere. Hence, the two curves are segments of a circle and
share the same center and the same radius β. Therefore, the
geodesic curve connecting two states in the three-dimensional
state space can be identified by a complete circle of radius
β = √

1 − 〈�1|�2〉 on the Bloch sphere constructed by join-
ing two semicircular arcs {n±(s)}. The pair of dual curves

(a) (b)

FIG. 1. Here, we plot the geometric decomposition of a geodesic
between two states given in Eq. (19), where we have chosen (a) θ =
π/3, (b) θ = π/5. The blue and orange curves correspond to {n+}
and {n−}, respectively, given in Eq. (25).

C± ≡ {n±(s)} traced by the two states in Eq. (22) are shown
in Fig. 1 for different values of θ .

So far, we have considered the geodesics between the
end states which are represented by degenerate MSs given
in Eq. (18). Interestingly, this formalism can be applied to
the geodesics between two arbitrary three-dimensional states.
We note that any two states {|�1〉, |�2〉} in three-dimensional
Hilbert space can be transformed to degenerate MSs by a
common unitary transformation U (see Appendix A). There-
fore, we can study the structure of the geodesics between
these states by first mapping them to degenerate MSs and
constructing the geodesic using the semicircular curves C±.
Applying U † on these curves will result in the actual curves
corresponding to the geodesic between {|�1〉, |�2〉}.

To summarize the results obtained in this section: (i) A
geodesic connecting the three-dimensional states |�1〉 and
|�2〉, which are represented by degenerate MSs on the Bloch
sphere, decomposes into two unique curves on the Bloch
sphere. (ii) These two curves are reflective about the great
circle connecting the two end points on the Bloch sphere
and constitute a circle of radius

√
1 − 〈�1|�2〉. (iii) One can

obtain the geodesic connecting any two arbitrary states in
three-dimensional space by first converting the two end states
to degenerate MSs states by using a unitary transformation
and then constructing the unique circle between the end states
on the Bloch sphere.

B. Geodesics in higher-dimensional state space

We extend our analysis to study the structure of geodesics
in higher-dimensional state space. Let us start by considering
nonorthogonal end states {|�1〉, |�2〉} in an n-dimensional
state space which map to (n − 1)-fold degenerate MSs, in-
dividually, on the Bloch sphere. In the MS representation, the
end states can be written as

|�̃1〉 = |0〉0 ⊗ |0〉1 ⊗ · · · ⊗ |0〉n−2,

|�̃2〉 = |φ〉0 ⊗ |φ〉1 ⊗ · · · ⊗ |φ〉n−2, (27)

where |0〉 = (1 0)T and |φ〉 = (α β )T . Here, α and β are
real, with 〈�1|�2〉 = αn−1 ≡ cos θ , 0 � θ < π/2, and α2 +
β2 = 1. From Eq. (15), the geodesic curve {|�(s)〉; 0 � s �
θ} connecting the end states in the MS representation turns
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out to be

|�̃(s)〉 = |0〉⊗n−1 + A(n−1)(s)|φ〉⊗n−1

≡ N
∑

P

[|χ1(s)〉 ⊗ |χ2(s)〉 ⊗ · · · ⊗ |χn−1(s)〉], (28)

where
∑

P corresponds to the sum over all symmetric permu-
tations of the n − 1 states |χk (s)〉 of two-level systems. Here,
N is the normalization constant, and

A(n−1)(s) = sin s

cos s(1 − αn−1)1/2 − αn−1 sin s
. (29)

Since the end states considered in Eq. (27) are real, the
Majorana polynomial [Eq. (5)] is also real. Therefore, the
roots occur as complex conjugate pairs along with a real root
depending on the dimension of the state space. By solving
the Majorana polynomial in Eq. (5), one can find the curves
{|χk (s)〉}, i = 1, . . . , n − 1 as

|χk (s)〉 = |0〉 + �ωkA(s)|φ〉. (30)

Here, ωk are the (n − 1)th roots of unity given by
ωk = exp[2π ik/(n − 1)], with k = 0, 1, . . . , n − 2, and � =
(
∏n−2

k=0 ωk )1/(n−1). This shows that a geodesic curve in an n-
dimensional state space decomposes to n − 1 curves on the
Bloch sphere.

The Bloch vector corresponding to the state {|χk (s)〉} can
be written as {nk (s) = 〈χk (s)|σ|χk (s)〉}. Next, we show that
the curve {|χk (s)〉} traced by the states |χk (s)〉 for all the
values of k constitute circular segments on the Bloch sphere.

Consider three Bloch vectors p1, p2, p3 corresponding to
three states on the curve {|χk (s)〉}. The unit vector m orthog-
onal to the plane containing these three Bloch vectors can be
written as

m = (p2 − p1) × (p3 − p1)

‖(p2 − p1) × (p3 − p1)‖ . (31)

The intersection of the plane containing the three vectors
p1, p2, p3 and the Bloch sphere constitute a circle. The three
Bloch vectors p1, p2, p3 also lie on the circle, whereas the
unit vector m passes through the center of this circle. There-
fore, the projection of any of these three Bloch vectors will be
the same on the vector m.

We find that m is the same for any choice of the three Bloch
vectors on the curve {|χk (s)〉}. Moreover, the projection of all
the Bloch vectors p(s) on the curve {|χk (s)〉} with m remains
constant. This indicates that the curve traced by |χk (s)〉 is a
circular segment for all values of k. The radius corresponding
to the kth circular segment is

Rk = 2β√
4β2 − α2(�∗ω∗

k − �ωk )2
. (32)

From the above expression, we see that the radii depend
only on the inner product between the end states and not
explicitly on the states. Furthermore, the circular segments
are unique for the geodesic between a given set of end states.
Therefore, once the end states are uniquely identified on the
Bloch sphere, one can construct the desired geodesic by us-
ing Eq. (32) alone. In Fig. 2, we have plotted the structure
of geodesic curve on the Bloch sphere for n = 4- and 5-
dimensional state space.

(a) (b)

FIG. 2. Geometric decomposition of geodesics in (a) four- and
(b) five-dimensional state space for θ = π/3. We can see that we
obtain n − 1 curves for an n-dimensional system.

There are certain intrinsic symmetries in the MS represen-
tation of a higher-dimensional geodesic. These symmetries
reflect differently for even and odd dimensions. For example,
if the dimension n is odd, we get an even number of curves
which appear in dual pairs, i.e., the pair of curves which are
reflections of each other. The two curves {|χi(s)〉}, {|χ j (s)〉},
which are dual of each other, satisfy the condition i + j = 0
mod n − 1, where i, j = 0, 1, 2, . . . , n − 2, and i �= j. How-
ever, in the case of even n, one curve occurs along the
great circle connecting the end states, and the remaining
n − 2 curves occur in dual pairs. For even n, the two dual
curves {|χi(s)〉}, {|χ j (s)〉} satisfy the condition i + j = n − 2
mod n − 1. From Eqs. (31) and (32), it is evident that the dual
curves give the same value of radius with different centers.

Now we have a way of constructing a unique geodesic
between any two states {|�1〉, |�2〉} in the n-dimensional state
space. Given |�1〉, |�2〉, we first map them to (n − 1)-fold
degenerate MSs states |�̃1〉, |�̃2〉 in the MS representation
using a unitary transformation U . Thereafter, we construct
circular segments on the Bloch sphere which are defined by
Eqs. (31) and (32), yielding the geodesic in n-dimensional
state space, connecting the states |�̃1〉 and |�̃2〉. Finally, we
apply the U † to get the desired geodesic between the original
states.

IV. BLOCH SPHERE DECOMPOSITION OF NPCS

So far, we have seen that the geometric decomposition of
the geodesics has revealed an interesting underlying symme-
try. This has not only given us a better understanding of the
geodesics but also provided us geometric ways of constructing
one. In this section, we investigate the geometric structure
of NPCs in higher-dimensional state space. We mostly deal
with the three-dimensional case, but the analysis can easily
be extended to n-dimensional state space. Here, we propose a
way to construct NPCs by choosing a suitable set of curves on
the Bloch sphere.

Once again, we consider the end states |�̃1〉 = |0〉 ⊗ |0〉
and |�̃2〉 = |φ〉 ⊗ |φ〉 as defined earlier. To construct an NPC
between |�1〉 and |�2〉, we propose the following:

Proposition. An arbitrary curve C connecting the states
{|�̃1〉, |�̃2〉} and its dual curve C∗ together form an NPC in
the three-dimensional state space.
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Proof. The most general curve C ≡ {|ψ (s)〉|s1 � s � s2}
connecting the states {|�̃1〉, |�̃2〉} is given by

|ψ (s)〉 =
{

cos[η(s)/2]
ei�(s) sin[η(s)/2]

}
, (33)

where η(s) and �(s) are arbitrary real functions of s. The func-
tions η(s) and �(s) satisfy the relations η(s1) = 0, η(s2) =
2 cos−1(α) and �(s1) = �(s2) = 0. The dual curve C∗ ≡
{|ψ (s)〉|s1 � s � s2} can then be defined as

|ψ ′(s)〉 =
{

cos[η(s)/2]
e−i�(s) sin[η(s)/2]

}
. (34)

Using the curves C and C∗, the states on the curve in the three-
dimensional state space can be written as

|�̃(s)〉 = 1

N (s)
[|ψ (s)〉|ψ ′(s)〉 + |ψ ′(s)〉|ψ (s)〉], (35)

where N (s) is the normalization constant. One can find that
the BI of order three for the states in Eq. (35) is always real
and positive (see Appendix B); hence, the curve {|�̃(s)〉} is
an NPC. For the given inner product between the end states,
by choosing η(s) and �(s), one can generate NPCs. Since one
can construct infinitely many curves C connecting the states
{|�̃1〉, |�̃2〉}, we can construct infinitely many NPCs between
these two states.

There is a particularly interesting subclass of NPC which
can be useful. An arc of a great circle passing through the
initial and final states is dual to itself and referred as self-dual.
This kind of curve on the Bloch sphere is given by (up to a
unitary transformation)

|ψ (s)〉 =
{

cos[η(s)/2]
sin[η(s)/2]

}
; s1 � s � s2, (36)

with η(s1) = 0, η(s2) = 2 cos−1(α). A curve {|�̃(s)〉 =
|ψ (s)〉 ⊗ |ψ (s)〉} is also an NPC, which we shall call a self-
dual curve.

Although, we have presented the construction of NPCs
for the end states which can be represented by degenerate
MSs, the same technique can be used to construct NPCs for
arbitrary end states. As an example, let us construct an NPC
connecting the two nonorthogonal states |�1〉 = (1 0 0)T

and |�2〉 = (cos θ sin θ 0)T in three-dimensional state space.
Since the state |�2〉 cannot be represented by degenerate MSs,
we first apply a common unitary transformation U to bring
this to the state represented by degenerate MSs. The appropri-
ate unitary transformation U is of the form:

U =
⎛
⎝1 0 0

0 a −b
0 b a

⎞
⎠, (37)

where a = √
2αβ/ sin θ , b = β2/ sin θ , α2 = cos θ , and α2 +

β2 = 1. The states after applying U read

|� ′
1〉 =

⎛
⎝1

0
0

⎞
⎠, |� ′

2〉 =
⎛
⎝ cos θ

a sin θ

b sin θ

⎞
⎠, (38)

which can further be written as

|�̃1〉 = |0〉 ⊗ |0〉,
|�̃2〉 = |φ〉 ⊗ |φ〉,

where |0〉 and |φ〉 are the same as defined earlier. We now take
a pair of dual curves given in Eqs. (33) and (34) with appropri-
ate boundary conditions on η(s) and �(s). Consequently, the
state in three-dimensional state is written as

|� ′〉 = N

⎧⎨
⎩

2 cos2[η(s)/2]√
2 cos[η(s)/2] sin[η(s)/2] cos[�(s)]

2 sin2[η(s)/2]

⎫⎬
⎭,

where N is the normalization constant. Now we apply U † on
|� ′〉 to get the state |�〉 back. With the appropriate choice of
η and �, we can bring it to the form which is already given
in Ref. [5] as an example of an NPC. Further, we choose the
functions η(s) and �(s) with 0 � s � θ as

η(s) = cos−1

[
A(s) − C(s)

A(s) + C(s)

]
,

�(s) = tan−1

[√
4A(s)C(s) − B2(s)

B(s)

]
, (39)

where

A(s) = g(s) cos s,

B(s) = b[1 − g(s)2]1/2 − ag(s) sin s,

C(s) = a[1 − g(s)2]1/2 + bg(s) sin s, (40)

with 0 � g(s) � 1, and g(0) = g(θ ) = 1. This particular
choice of the functions results in an NPC given by

|�(s)〉 =
⎧⎨
⎩

g(s) cos s
g(s) sin s

[1 − g(s)2]1/2

⎫⎬
⎭; 0 � s � θ, (41)

which is the same derived in Ref. [5] between the states
|�1〉 = (1 0 0)T and |�2〉 = (cos θ sin θ 0)T . In Figs. 3(a)
and 3(b), we plot the geometric construction of NPCs on the
Bloch sphere where we have chosen g(s) = cos[s(s − θ )].

We have provided methods to generate NPCs in three-
dimensional state space using pairs of dual curves on the
Bloch sphere. Our method of constructing NPCs can be easily
extended to n-dimensional state space. For example, for odd
n, we can construct (n − 1)/2 pairs of dual curves to get an
NPC. For the case when n is even, we take (n − 2)/2 pairs of
dual curves and one curve along the great circle connecting
the end states to construct the NPC.

An example of NPCs which do not come under this category:
Interestingly, there exist NPCs connecting the considered end
states |�1〉 and |�2〉 which cannot be constructed either by
a pair of dual curves or by self-dual curves. These NPCs are
obtained from Eq. (41) by applying a unitary transformation
which reads

V =
⎛
⎝1 0 0

0 1 0
0 0 eiχ

⎞
⎠. (42)

The BI is invariant under such unitary transformations and
results in another NPC. The new NPC reads

|�(s)〉 �→ V |�(s)〉 =
⎧⎨
⎩

g(s) cos s
g(s) sin s

eiχ [1 − g(s)2]1/2

⎫⎬
⎭, (43)
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(a) (b)

(c) (d)

FIG. 3. Here, we plot the Bloch geometric decomposition of
null-phase curves (NPCs) in three-dimensional state space between
the two states given in Eq. (38). In (a) θ = π/3 and (b) θ = π/6,
we plot the NPCs which are constructed by considering dual pairs
of curves, whereas in (c) and (d), we plot the NPCs which are
constructed by geometric decomposition of the curve in Eq. (43).
We have chosen χ = π/3 and the same values of θ as in (a) and (b).

where the parameter 0 � s � θ , χ ∈ R is a constant phase
factor, 0 � g(s) � 1, and g(0) = g(θ ) = 1. After a common
unitary transformation, these NPCs decompose to a pair of
curves which are not reflective about the great circle con-
necting the degenerate MSs on the Bloch sphere, as shown
in Figs. 3(c) and 3(d). Therefore, this kind of NPC cannot be
constructed by choosing η(s) and �(s).

V. CONCLUSIONS

In conclusion, we have developed a Bloch sphere ge-
ometric decomposition for geodesics and NPCs in higher-
dimensional state space. We have shown that geodesics
connecting the two (n − 1)-fold degenerate MS states in
n-dimensional state space decompose to n − 1 circular seg-
ments on the Bloch sphere. The circular segments, which are
uniquely determined by the radius and the end states, can be
completely characterized by the MSs corresponding to the
end states and the inner product between them. Therefore,
once the MSs for the end states are known, we can construct
the geodesic between any given states in n-dimensional state
space. We have also shown that NPCs can be constructed
between any given end states by constructing arbitrary pairs of
dual curves between the end states. A particularly interesting
class of NPC is the one where all the curves are dual of
themselves, i.e., self-dual curves. The geometric decomposi-
tion presented in this paper reveals intrinsic symmetries in the
geodesics and NPCs and improves our understanding of the
geometric structure of the higher-dimensional state space.
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APPENDIX A: TRANSFORMING TWO ARBITRARY
STATES TO DEGENERATE MSS SIMULTANEOUSLY

Consider two arbitrary states {|�1〉, |�2〉} in three-
dimensional state space with the inner product given by
〈�1|�2〉 = cos θ , i.e., real and positive. We can write |�2〉 as

|�2〉 = cos θ |�1〉 + γ |�̄1〉, (A1)

where γ = sin θeiφ , φ ∈ R, and |�̄1〉 is orthogonal to |�1〉.
Now we take unitary of the form:

U = |0〉〈�1| + e−iφ|1〉〈�̄1| + |2〉〈 ¯̄�1|, (A2)

where {|0〉, |1〉, |2〉} and {|�1〉, |�̄1〉, | ¯̄�1〉} form the orthonor-
mal bases. Application of this unitary on the two states
{|�1〉, |�2〉} results in the states of the form:

U |�1〉 ≡ |� ′
1〉 =

⎛
⎝1

0
0

⎞
⎠, (A3)

U |�2〉 ≡ |� ′
2〉 =

⎛
⎝cos θ

sin θ

0

⎞
⎠. (A4)

One can see that |� ′
2〉 cannot be represented by degenerate

MSs. For that, one needs to apply one more unitary transfor-
mation to bring |� ′

2〉 to a state represented by degenerate MSs.
An appropriate unitary for that is given by

Ũ =
⎛
⎝1 0 0

0 a −b
0 b a

⎞
⎠, (A5)

where a = √
2αβ/ sin θ , b = β2/ sin θ , α2 = cos θ , and α2 +

β2 = 1. After applying the following unitary, we will get

|�2〉 =
⎛
⎝ α2√

2αβ

β2

⎞
⎠, (A6)

which is written as

|�̃2〉 =
(

α

β

)
⊗

(
α

β

)
. (A7)

Therefore, any two arbitrary states with a real inner product
can be brought to the degenerate MS states.

Similarly, given any two arbitrary states {|�1〉, |�2〉} in
n-dimensional state space with the inner product 〈�1|�2〉 =
cos θ , we can always write |�2〉 as [26]

|�2〉 = cos θ |�1〉 + γ |�̄1〉, (A8)

where γ = sin θeiφ , φ ∈ R, and |�̄1〉 is orthogonal to |�1〉.
Let us take a unitary V of the form:

V = |0〉〈�1| + e−iφ |1〉〈�̄1| + |2〉〈�̄2| · · · + |n − 1〉〈�̄n−1|,
(A9)
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where {|0〉, |1〉, . . . , |n − 1〉} and {|�1〉, |�̄1〉, . . . , |�̄n−1〉} are
the two sets of orthonormal bases. Using this unitary, the two
states can be brought to the following form:

|� ′
1〉 =

⎛
⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎠, |� ′

2〉 =

⎛
⎜⎜⎜⎜⎝

cos θ

sin θ

0
...

0

⎞
⎟⎟⎟⎟⎠. (A10)

Further, the state |� ′
2〉 can be transformed to a state rep-

resented by degenerate MSs by applying a suitable unitary
matrix [like the one given in Eq. (A5) for the three-
dimensional case] without changing the form of the state |� ′

1〉
[32]. The general form of the unitary matrix is given as

Ṽ =

⎛
⎜⎜⎝

1 0 · · · 0
0
... R
0

⎞
⎟⎟⎠. (A11)

The first column of the block matrix R is taken to be

1

sin θ

⎛
⎜⎜⎜⎝

√
n−1C1α

n−2β√
n−1C2α

n−3β2

...

βn−1

⎞
⎟⎟⎟⎠. (A12)

The other columns of the block matrix R can be constructed
which satisfying the following condition:

y1(
√

n−1C1α
n−2β ) + · · · + yn−1(βn−1) = 0, (A13)

where yT = (y1, y2, y3, · · · , yn−1) represents the constructed
columns of the block matrix R. For example, in the case of
four-dimensional state space, the constructed unitary matrix
will be of the form:⎛

⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0
√

3α2β

sin θ
−β

−αβ2√
3α2+β4

0
√

3αβ2

sin θ
α

−β3√
3α2+β4

0 β3

sin θ
0

√
3α√

3α2+β4

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A14)

This unitary matrix transforms |� ′
2〉 to the state represented

by degenerate MSs in the Majorana representation.

APPENDIX B: THIRD-ORDER BI

The BI of third-order �3 for any given three mutually
nonorthogonal states {|�1〉, |�2〉, |�3〉} is written as

�3(�1, �2, �3) = 〈�1|�2〉〈�2|�3〉〈�3|�1〉. (B1)

In the MR representation, these states are written as

|�1〉 = 1

N1
[|ψ1〉|ψ ′

1〉 + |ψ ′
1〉|ψ1〉],

|�2〉 = 1

N2
[|ψ2〉|ψ ′

2〉 + |ψ ′
2〉|ψ2〉],

|�3〉 = 1

N3
[|ψ3〉|ψ ′

3〉 + |ψ ′
3〉|ψ3〉], (B2)

where Ni are the normalization constants. Using this repre-
sentation, we can expand �3(�1, �2, �3) as follows:

〈�1|�2〉〈�2|�3〉〈�3|�1〉
= 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉〈ψ ′

1|ψ ′
2〉〈ψ ′

2|ψ ′
3〉〈ψ ′

3|ψ ′
1〉

+ 〈ψ1|ψ2〉〈ψ2|ψ ′
3〉〈ψ ′

3|ψ ′
1〉〈ψ ′

1|ψ ′
2〉〈ψ ′

2|ψ3〉〈ψ3|ψ1〉
+ 〈ψ1|ψ ′

2〉〈ψ ′
2|ψ ′

3〉〈ψ ′
3|ψ ′

1〉〈ψ ′
1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉

+ 〈ψ1|ψ ′
2〉〈ψ ′

2|ψ3〉〈ψ3|ψ1〉〈ψ ′
1|ψ2〉〈ψ2|ψ ′

3〉〈ψ ′
3|ψ ′

1〉
+ 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ ′

1〉〈ψ ′
1|ψ ′

2〉〈ψ ′
2|ψ ′

3〉〈ψ ′
3|ψ1〉

+ 〈ψ1|ψ2〉〈ψ2|ψ ′
3〉〈ψ ′

3|ψ1〉〈ψ ′
1|ψ ′

2〉〈ψ ′
2|ψ3〉〈ψ3|ψ ′

1〉
+ 〈ψ1|ψ ′

2〉〈ψ ′
2|ψ ′

3〉〈ψ ′
3|ψ1〉〈ψ ′

1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ ′
1〉

+ 〈ψ1|ψ ′
2〉〈ψ ′

2|ψ3〉〈ψ3|ψ ′
1〉〈ψ ′

1|ψ2〉〈ψ2|ψ ′
3〉〈ψ ′

3|ψ1〉.
Now we choose

|ψ (s)〉 =
{

cos[η(s)/2]
ei�(s) sin[η(s)/2]

}
, (B3)

and

|ψ ′(s)〉 =
{

cos[η(s)/2]
e−i�(s) sin[η(s)/2]

}
. (B4)

It is very clear from the above choice that a pair of in-
ner products 〈ψi|ψ j〉 and 〈ψ ′

i |ψ ′
j〉, 〈ψi|ψ ′

j〉 and 〈ψ ′
i |ψ j〉, or

〈ψi|ψ ′
j〉 and 〈ψ ′

i |ψ j〉 are complex conjugate of each other.
The �3(�1, �2, �3) has eight terms where each term contains
three such pairs. Hence, it is very straightforward to show that
�3(�1, �2, �3) is real and positive for the above choice of
|ψ (s)〉 and |ψ ′(s)〉.
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