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Quantum theory of electronic friction
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Electronic friction is an important energy loss channel for atoms and molecules scattering off, reacting, or
simply vibrating at metallic surfaces. It is usually well described by mixed classical-quantum approaches where
the nuclei evolve classically according to Langevin-type equations of motion, and Born-Oppenheimer forces and
friction kernels are obtained from first-principles electronic structure calculations. However, classical dynamics
falls short when light atoms are involved, which is also the situation where electronic friction becomes the
dominant dissipation channel and its role in the dynamics can be unambiguously assessed. Furthermore, the
interplay between electronic friction and nuclear quantum effects in molecular processes at surfaces is largely
unknown; in fact, it is not even clear how to include electronic friction in a quantum setting. Here we fill this gap
by developing a fully quantum theory of electronic friction at T = 0 K. The electronic bath is considered to be
entirely general and can be made of interacting electrons, potentially in a strongly correlated state. The derived
friction kernel agrees with a recently obtained mixed quantum-classical result [Dou, Miao, and Subotnik, Phys.
Rev. Lett. 119, 046001 (2017)], except for a pseudomagnetic contribution in the latter that is removed here. The
ensuing equation of motion for the nuclear wave function is a nonlinear Schrödinger equation with a frictional
vector potential that depends on the past wave function behavior. The equation becomes local-in-time in the
typical situation where the electrons respond rapidly on the slow timescale of the nuclear dynamics (Markov
limit) and generalizes previously known Schrödinger-Langevin equations to coordinate-dependent, tensorial
friction kernels.
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I. INTRODUCTION

When molecules interact with metal surfaces they induce
electronic excitations in the substrate, in addition to the usual
phonon excitations, and may give rise to intriguing phenom-
ena, including electron transfer processes and generation of
chemically induced currents [1–4]. If electron excitation re-
mains of limited extent, it reduces to a frictional force of
electronic origin that acts on the molecular degrees of free-
dom, in addition to the usual Born-Oppenheimer forces that
arise in an adiabatic dynamics. This is a situation that is usu-
ally well described by combining a classical, Langevin-type
description of the nuclear dynamics with a quantum treatment
of the electronic problem that relies on the first-principles
computation of the forces and of the friction kernel [5–7].
This so-called “Born-Oppenheimer dynamics with electronic
friction” approach has been applied to a variety of problems
[7–15] and is nowadays a standard tool to investigate the
dynamics of molecules at metal surfaces [15,16].

Electronic friction has a long history [16]. Head-Gordon
and Tully (HGT) [17] were the first to derive the frictional
forces that electrons exert on a set of (classically) moving
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nuclei. They wrote the friction kernel in the form

γ HGT
k j = π h̄

∑
ab

〈a|∂kh|b〉 〈b|∂ jh|a〉 δ(εa − εF )δ(εb − εF ),

(1)
where a, b label single-particle states, k, j label nuclear de-
grees of freedom, h is the one-particle Hamiltonian, and εF is
the Fermi energy. This result was obtained at zero temper-
ature in the independent electron approximation and found
to be consistent with earlier results on vibrational relaxation
at metal surfaces [18–20]. It was also rederived using dif-
ferent methodologies, including influence functionals [21]
and nonequilibrium Green’s functions [22] (see Ref. [16]
for a comprehensive account). Later works addressed the
issue of nonthermal, yet steady-state, electronic baths (e.g.,
in current-carrying metals) [23,24] and of electron-electron
interactions [25,26], and showed the importance of going
beyond a mean-field treatment of the electronic dynamics
[26]. In particular, Dou, Miao, and Subotnik (DMS), using
a mixed quantum-classical approach, derived a completely
general friction kernel that is valid out of equilibrium and
applies equally well to independent or interacting electrons
[26]. DMS wrote the electronic friction tensor, in the Markov
limit, as

γ DMS
k j = −

∫ ∞

0
tre[(∂kHel )e

− i
h̄ Helτ (∂ jρ)e+ i

h̄ Helτ ]dτ, (2)
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where ρ is the steady-state electron density operator, Hel is
the electronic Hamiltonian, possibly including interactions
between electrons, and tre denotes the trace over the electronic
degrees of freedom.

However, none of the above works addressed the nu-
clei quantum mechanically and thus leave open the question
whether the electronic frictional regime is compatible with a
full quantum description of the electronic-nuclear system—
i.e., whether a “Born-Oppenheimer quantum dynamics with
electronic friction” exists—and, eventually, how a quantum
description of the nuclei can accommodate an electronic fric-
tion term. This is a significant shortcoming since electronic
friction becomes the dominant energy loss channel right when
a quantum description is mandatory, i.e., for light atoms that
are hardly able to excite the substrate phonons. Furthermore,
the proper application of the adiabatic approximation intro-
duces, in addition to the usual Born-Oppenheimer forces, two
gauge fields [27]—a pseudoelectric and a pseudomagnetic
field that reflect the geometric properties of the electronic
eigenspaces when viewed as functions of the nuclear degrees
of freedom. It is not clear whether and how these gauge fields
disappear when the electron dynamics is taken into account,
even in the frictional limit considered here.

In this work, the above issues are solved by devising a
full quantum description of the dynamics of the combined
electronic-nuclear system. To this end we shall adopt a repre-
sentation of the exact wave function that closely resembles the
adiabatic one, and derive from it, under suitable conditions,
the frictional response of the electronic degrees of freedom to
the (quantum) nuclear dynamics. Importantly, we shall show
how the adiabatic Hamiltonian has to be modified to include
friction in the nuclear dynamics, and how the equation of
motion for the nuclear wave function is turned into a nonlinear
equation of the Schrödinger-Langevin type. The procedure
is entirely general and not limited to the electronic-nuclear
problem. We shall expand on this issue in a forthcoming
publication.

The article is organized as follows. In Sec. II we re-
visit the adiabatic approximation from the perspective of the
variational quantum dynamics, where the gauge fields arise
naturally from the form of the variational ansatz. The pseu-
domagnetic field is well known, and it has been thoroughly
investigated because of its relation to the adiabatic geometric
phase, the celebrated Berry’s phase [28]. On the other hand,
the pseudoelectric field has received much less attention and
its meaning is far less obvious. We shall show that, by re-
casting the adiabatic problem into a variational problem, it is
possible to give a clear interpretation of the latter in terms of
the local-in-time-error (LITE) [29,30] that accompanies the
variational solution. The latter is shown to be closely related
to a quantum metric of the variational manifold.

In Sec. III we analyze the exact quantum dynamics at
T = 0 K of the combined electronic-nuclear system using
the exact factorization of the wave function [31,32]. We
rederive the key equations of motion for the nuclear and
electronic wave functions by using a projection-operator tech-
nique that emphasizes their gauge transformation properties,
thereby allowing one to single out distinct, physically mean-
ingful contributions to the dynamics. We shall show that the
electronic dynamics introduces a dynamic correction to the

pseudomagnetic and pseudoelectric fields which make them
vanish when averaged over the nuclear state. This leaves
only one genuine, nonadiabatic contribution to the dynamics,
in addition to the usual mean-field, Born-Oppenheimer-
like potential. We shall show that the disappearance of the
pseudoelectric force expresses conservation of a quantum
metric—i.e., the vanishing of the covariant derivative of a
metric tensor—which is a simple generalization of the above
adiabatic metric. This appears consistent since the quantum
metric and the related pseudoelectric field measure the error in
the adiabatic approximation, while the dynamics considered
here is exact. Likewise, the vanishing of the pseudomagnetic
force signals the quenching of geometric phase effects that,
in fact, should disappear when the dynamics is far from the
adiabatic regime.

In Sec. IV we analyze the case of an electronic bath that
relaxes quickly on the timescale relevant for the nuclear mo-
tion, and derive an electronic-friction kernel that describes
the corresponding electronic-friction dynamical regime. In
the Markov limit of a memoryless friction, where the elec-
tronic system returns instantaneously to its ground state, we
shall show that the pseudoelectric and pseudomagnetic fields
are fully restored, thereby making geometric phase effects
potentially observable. This is the quantum-dynamics-with-
electronic-friction regime, in which the electrons are “factored
out” of the dynamical problem and only the evolution of the
nuclear wave function is required. We shall show that the
equation of motion of the latter is a nonlinear equation of
Schrödinger-Langevin type, and obtain the corresponding ef-
fective Hamiltonian. In the simplest situation of a uniform
isotropic friction kernel this bridges the theory with previous,
“nonorthodox” quantum models of dissipation, namely, the
Kostin equation [33], here reobtained from a microscopic
model. Traditional arguments against these models (e.g., their
nonlinearity) are here settled from the outset by noticing that
the nuclear wave function does not represent the wave func-
tion of a closed system, rather it is a marginal probability
amplitude of a subsystem. The theory is formulated for gen-
eral memory kernels (requiring the wave function history) and
only later specialized to the Markov case. Hence it is suitable,
at least in principle, to address issues like the importance
of the memory in the friction kernel [12]. Furthermore, no
assumptions are made on the electronic bath, and the theory
applies equally well to independent electrons and to interact-
ing electrons in a strongly correlated state. The impact of the
electronic state on the dynamical behavior of the nuclei has
just begun to be explored [26], and the present theory sets a
framework to extend these investigations to a regime where
the nuclei need to be treated as quantum objects.

We briefly summarize our findings and draw some con-
clusions in Sec. V. The accompanying Letter [34] focuses
on more physical aspects of the problem and provides a first
application to a model problem. This shows that the proposed
approach represents a viable way to account for electronic
friction in a fully quantum setting for the nuclear dynamics.

II. ADIABATIC APPROXIMATION

As mentioned in the Introduction, we set out by revisiting
the quantum adiabatic approximation from the perspective of
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variational quantum dynamics. We start by considering the
case where the slow variables x ∈ M act as mere external pa-
rameters that are under the control of the experimenter. Here
M is supposed to be a smooth differential manifold, equipped
with an atlas, whose generic coordinate chart ϕ:M ⊇ U →
Rn defines the components xi of x ∈ M and the holonomic
basis {ei ≡ ∂i}n

i=1 in the tangent bundle TM (along with its
dual {dxi}n

i=1 in T ∗M). The Hamiltonian of the quantum
system depends smoothly on x, H ≡ H (x), and Vx is its
eigenspace for the eigenvalue of interest, here taken be non-
degenerate (although this property is not essential for most of
the derivations). By attaching the eigenspace Vx to each point
x of the manifold M one defines a vector bundle, commonly
denoted as π : E → M, where π is the fundamental projection
on the base space M, i.e., π−1(x) = Vx identifies the fiber
above x. In our problem, the variables x are meant to be
the nuclear degrees of freedom, and the quantum system is
the electronic subsystem. The discussion of this subsection
is instrumental for the situation most interesting for our pur-
poses, which is the one in which the x’s become dynamical
variables and hence get subjected to the system response.
We shall show how the local-in-time error [29] in these two
distinct situations—i.e., x as external parameters vs dynamical
variables—relate to each other, and later make the connection
with the more common nonadiabatic transition probabilities.

A. Slow variables as external parameters

When the slow variables x are regarded as parameters that
are under the control of the experimenter, the Hamiltonian
governing the evolution of the system has a predefined time
dependence H (t ) = H (x(t )) for any given path [0, T ] 
 t →
x(t ) of the parameters. The adiabatic approximation for the
nth state can be recast as a variational approximation to the
problem

ih̄
d

dt
|
t 〉 = H (t ) |
t 〉 |
0〉 = |un(x(0))〉

by introducing a time-dependent variational manifold V (t ) ≡
Vx(t ) and a trivial, complex-analytic representation of the wave
function. For instance, for a nondegenerate eigenspace, the
variational ansatz takes the form |
t 〉 = C |un(x(t ))〉, where
C is the only (complex) variational parameter of the problem
and |un(x)〉 ∈ Vx is a normalized eigenvector of H (x), chosen
smoothly over the manifold patches. The Dirac-Frenkel con-
dition [35] amounts to

P(ih̄∂t − H ) |
t 〉 = 0, (3)

where P is the instantaneous eigenprojector and Q = 1 − P its
orthogonal complement. Equivalently, upon using Q |
̇t 〉 ≡
Ṗ |
t 〉, we can rewrite the time derivative of the wave func-
tion, |
̇t 〉, as

ih̄ |
̇t 〉 = HPP(t ) |
t 〉 + ih̄Ṗ |
t 〉 , (4)

where the first term on the right-hand side (r.h.s.) is a proper
dynamical term (here HPP ≡ PHP) and the second term de-
scribes the dynamics of the variational manifold. The latter is
supposed to be “much smaller” than the first if the adiabatic
approximation is expected to be accurate in the long run. This
term has a purely geometric nature, since in reduced time

units s = t/T it is the same irrespective of the slowness of
the adiabatic process,

ih̄
d

ds
|
〉 = T HPP |
〉 + ih̄

dP

ds
|
〉 ,

i.e., irrespective of how large T is for the given transformation
along the path x(t ). Importantly, however “small” the Ṗ term
is, it is crucial for the adiabatic dynamics since it keeps the
state vector on the (moving) eigenspace: without such a term,
the time derivative on the left-hand side would be constrained
to the instantaneous eigenspace of the Hamiltonian, hence |
〉
could not follow the evolution in time of the latter. Further-
more, by generating the geometric phase, this term provides
the correct phase change during the adiabatic evolution. As a
matter of fact, the presence of Ṗ in the variational equation of
motion, Eq. (4), makes it equivalent to a parallel transport
condition (see Appendix A).

For the purpose of introducing the LITE [29,30] in the
considered variational approximation, Eq. (4) is conveniently
transformed into an effective Schrödinger equation ih̄ |
̇t 〉 =
Hn |
t 〉. The corresponding self-adjoint effective Hamiltonian
takes the form

Hn = HPP + ih̄[Ṗ, P]

as follows from PṖ |
t 〉 ≡ 0, upon noticing the identities
PṖP = QṖQ = 0. The LITE is a quantum distance [30] that
measures, in the short run, how much the physical state de-
scribed by the variational solution deviates from the exact
one. In the case of a complex-analytic parametrization the
variational equation of motion is generated by a “variational
Hamiltonian,” here Hn above, and the LITE takes the form
ε = h̄−1‖(H − Hn)
‖, for a normalized |
〉. Hence,

ε = h̄−1||Q(H − ih̄Ṗ)
|| ≡ ||Ṗ
||, (5)

where in the last step use has been made of the fact that |
〉
is an instantaneous eigenstate of the Hamiltonian H . We thus
see that this error is a purely geometrical property, meaning
that for a given infinitesimal displacement in parameter space
it does not depend on the slowness of the evolution,

ε2dt2 =
∑

jk

〈
|(∂ jP)(∂kP)|
〉 dx jdxk,

where ∂ j ≡ ∂/∂x j has been introduced. In fact, for a non-
degenerate eigenspace the LITE is a property of the vector
bundle

ε2 =
∑

jk

〈∂ jun|Q|∂kun〉V jV k =
∑

jk

g jkV
jV k, (6)

as can be seen upon introducing a “frame” |un(x)〉 for any
x ∈ M, and noticing that (∂ jP) |un〉 = Q |∂ jun〉 [or more di-
rectly from Eq. (5), upon observing that ||Ṗ
|| = ||Ṗun||].
Here V j = ẋ j is the jth component of the parameter velocity
vector and norm conservation (|C|2 ≡ 1 at any time) has been
used to write the error in terms of properties of the frame.
In the above equation, only the symmetric components of
q jk = 〈∂ jun|Q|∂kun〉 matter, but it is useful to introduce the
rank-2 covariant tensor q

q =
∑

jk

〈∂ jun|Q|∂kun〉 dx jdxk, (7)
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known as quantum geometric tensor [28,36], and define g to
be its symmetric part (the g jk’s above are then the components
on the direct-product basis dx jdxk). This symmetric (real)
part g represents a quantum metric (a Fubini-Study metric
[36]) on the tangent bundle, i.e., an inner product for tangent
vectors that is (smoothly) defined for any x ∈ M and that is
sensitive to the attached quantum states in a gauge invariant
way. Accordingly, ε above can also be viewed as the mag-
nitude of the velocity—as measured by this metric—along
the variational trajectory, namely, ε ≡ √

g(V, V). Appendix B
summarizes the properties of the Fubini-Study metric and its
relation with the LITE.

We conclude this section by noticing that, on the other
hand, the antisymmetric (imaginary) part of the quantum
geometric tensor is related to Berry’s curvature. In a single
equation we have

q = g − i

2
dω, (8)

where d denotes the exterior derivative and ω is the dif-
ferential form ω = ∑

j A jdx j . Here Aj = i 〈un|∂ jun〉 ∈ R
subsumes the Berry’s connection

TxM × Vx 
 (X, |ψ〉) → ∇X |ψ〉 =
∑

j

X jP |∂ jψ〉 , (9)

as becomes evident when acting on the chosen frame,
∇X |un〉 = −i(

∑
j X jA j ) |un〉, and using the Leibniz rule for

arbitrary vectors |ψ〉 = c |un〉. In the above decomposition of
the quantum geometric tensor, one can make explicit the re-
lation with Berry’s curvature, namely, dω = ∑

jk B jkdx jdxk ,
where Bjk ≡ ∂ jAk − ∂kA j are the components of the curvature
tensor for the present problem.

On comparing Eq. (9) with Eq. (5) one notices that while
the Berry’s connection projects the state-vector variations on
the fiber bundle, the LITE quantifies their changes in the
normal bundle. The simple and well-known case of the Bloch
sphere illustrates well the meaning of the related tensors, dω

and g, respectively. The sphere is the appropriate parameter
space to describe the adiabatic dynamics of a spin-1/2 in
a magnetic field (but also the projective Hilbert space of
a two-state system). The spherical coordinates then specify
the direction of the magnetic field and the vector |ψ〉 =
cos(θ/2) |α〉 + eiφ sin(θ/2) |β〉 uniquely identifies the adia-
batic space with definite, positive projection along the field
axis [37]. The corresponding quantum geometric tensor is eas-
ily found to be q = 1

4 [dθ2 + sin2 θdφ2] ± i
4 sin θ (dθ ∧ dφ)

for the positive and negative projection and describes the usual
metric of the Riemann sphere of radius 1/2, with a curvature
dω = −2Imq = ∓ d�

2 , where d� is the infinitesimal solid
angle and ∧ denotes the wedge product.

B. Slow variables as dynamical variables

If the slow variables are considered as dynamical variables,
the electron-nuclear wave function is written as

|
〉 =
∫

dxψ (x) |un(x)〉 |x〉 . (10)

The variational manifold is again complex and application
of the variational principle reduces to the Dirac-Frenkel

condition [29],∫
dx′dxδψ∗(x′) 〈un(x′), x′| [ih̄∂t − H] |un(x), x〉 ψ (x) = 0.

Here

〈un(x′), x′|H |un(x), x〉 = δ(x − x′)
[〈T̂ 〉n + En(x)

]
,

where En(x) is the Born-Oppenheimer potential energy sur-
face and 〈T̂ 〉n is the coordinate representation of the nuclear
kinetic energy operator averaged over the electronic state,

〈T̂ 〉n = 〈un(x)|T̂ |un(x)〉 .

Setting

Hn = 〈T 〉n + En(x), (11)

the variational equation of motion takes the form of a
Schrödinger equation for the nuclear wave function

Hnψ = ih̄
∂ψ

∂t

with an effective Hamiltonian specific to the electronic state
under consideration. The main difference with respect to the
common Born-Oppenheimer Hamiltonian lies in the nuclear
kinetic energy operator which gets dressed by the electronic
motion: this dressing is the way the gauge fields originate
from the geometric properties of the adiabatic approxima-
tion. In this context, it may be worth noticing that the above
equation of motion, differently from the Born-Oppenheimer
evolution, correctly conserves energy

d

dt
〈
|H |
〉 = 0

due to its variational origin, and this occurs upon including
the above mentioned gauge fields.

Let us now examine the dressed kinetic energy operator.
We assume that T takes the form

T̂ = 1

2

∑
jk

ξ jk p̂ j p̂k,

where ξ jk = ξ k j is the inverse mass tensor, here taken to be
coordinate independent. A simple calculation gives

〈p̂ j p̂k〉n = ( p̂ j − h̄A j )( p̂k − h̄Ak ) + h̄2q jk,

where Aj and q jk have been introduced above [38], hence

〈T̂ 〉n = 1

2

∑
jk

ξ jkπ̂ jπ̂k + φ (12)

with

π̂ j = p̂ j − h̄A j φ = h̄2

2

∑
jk

ξ jkg jk . (13)

Clearly, the dressed operator contains terms analogous to a
vector (Aj) and a scalar (φ) electromagnetic potential and
these modify the nuclear dynamics, when the comparison is
made with the simpler Born-Oppenheimer dynamics. To see
the effect of the gauge fields we start by noticing that the
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π̂k’s are the operators for the mechanical momenta, since the
nuclear velocity takes the form

v̂ j = i

h̄
[〈H〉n , x̂ j] =

∑
k

ξ jkπ̂k .

These mechanical momentum operators do not commute with
each other, but rather satisfy the gauge invariant commutation
relation

[π̂i, π̂ j] = ih̄2Bi j .

Here the gauge freedom is the arbitrariness in the choice of
the electronic frame: a gauge transformation |un〉 → e−iϕ |un〉
amounts to adding the exact 1-form dϕ to ω without altering
the scalar potential and, at the same time, to adding a phase
factor to the nuclear wave function [39], ψ → e+iϕψ . The
force is then obtained by the rate of variation of the particle’s
mechanical momentum,

˙̂πk = i

h̄
[〈H〉n , π̂k]

= i

h̄

[
1

2

∑
i j

ξ i jπ̂iπ̂ j + En + φ, π̂k

]

and takes the form

Fk = −∂kEn − ∂kφ + h̄

2

∑
j

(v̂ jBk j + Bk j v̂
j ).

That is, Fk = F BO
k + F el

k + F mag
k , where the first term repre-

sents the Born-Oppenheimer force

F BO
k = −∂En(x)

∂xk
,

while the latter two form an effective Lorentz force compris-
ing both an electric component

F el
k = − h̄2

2

∑
i j

ξ i j ∂gi j

∂xk

arising from the Fubini-Study metric tensor and a magnetic
force

F mag
k = h̄

2

∑
j

(v̂ jBk j + Bk j v̂
j )

due to Berry’s curvature. Indeed, in the simple three-
dimensional case, upon setting h̄Bxy = Hz, h̄Bxz = −Hy, and
h̄Byz = Hx, one recovers the correct quantum mechanical ex-
pression of the Lorentz force acting on a unit charge due to
the presence of the magnetic field H = Hxex + Hyey + Hzez,
namely, Fmag = 1

2 [v̂ ∧ H − H ∧ v̂].
As is well known, the two components above behave very

differently from each other: the pseudomagnetic field may
vanish almost everywhere yet give rise to observable effects,
similarly to what happens in the Aharonov-Bohm effect [27],
while the pseudoelectric field is ubiquitous (i.e., it does not
vanish unless the adiabatic error is uniform over the configu-
ration space sampled by the nuclei) but typically of secondary
importance and seldom considered in practice. Remarkably,
though, they both arise from one and the same object, namely,
the quantum geometric tensor.

Here we are especially interested in the LITE in this “dy-
namic” adiabatic approximation. As shown in Ref. [29], we
need the time derivative of the whole wave function in the
“standard” dynamical gauge where the state vector evolves ac-
cording to a zero-averaged Hamiltonian. That is, 〈
|
̇+〉 ≡ 0
if we use the superscript “+” to denote the trajectory |
〉 =
|
(t )〉 in this gauge. We need in particular the squared norm
of the time derivative, which reads as

h̄2||
̇+||2 =
∫

dxψ∗(x){〈T̂ 〉n + [En(x) − Ē ]}2
ψ (x),

where 〈T 〉n is the dressed kinetic energy operator of Eq. (12)
and Ē = 〈
|H |
〉 is the average total energy. We also need
the energy variance

�E2 =
∫

dxψ∗(x) 〈{T̂ + [Hel(x) − Ē ]}2〉n ψ (x)

and the result

〈{T̂ + [Hel(x) − Ē ]}2〉n

= 〈T̂ 2〉n + [En(x) − Ē ]2 + 2Re[〈T̂ 〉n [En(x) − Ē ]].

Hence, upon taking the difference of the two expressions, we
find for the LITE the following expression:

ε2 = 1

h̄2

∫
dxψ∗(x)

[〈T̂ 2〉n − 〈T̂ 〉2
n

]
ψ (x), (14)

which shows explicitly the crucial role played by the nuclear
kinetic energy fluctuations in the adiabatic approximation.

This expression can also be put in a form that makes
explicit the contributions of electronic transitions. To this end
it is worth introducing the kinetic energy operator “reduced”
with respect to the electronic coordinates, 〈T̂ 〉nm = 〈un|T̂ |um〉
(the case n = m reduces to the previous dressed kinetic energy
operator 〈T 〉n). These operators have a Hermitian symmetry
〈T 〉†

nm = 〈T 〉mn (as can be readily checked by either their
definition or a direct calculation) and allow us to write

〈T̂ 2〉nn − 〈T̂ 〉2
nn =

∑
m �=n

〈T̂ 〉nm 〈T̂ 〉mn ≡
∑
m �=n

〈T̂ 〉†
mn 〈T̂ 〉mn .

In turn, upon defining

ϕm←n(x) = 〈T̂ 〉mn ψ (x) ≡ 〈um|T̂ |un〉el ψ (x)

we have the error in terms of the contributing electronic tran-
sitions,

ε2 = 1

h̄2

∑
m �=n

∫
dx|ϕm←n(x)|2,

where

νm←n(x) = 1

h̄2 |ϕm←n(x)|2

= 1

h̄2 ψ∗(x) 〈un| T̂ |um〉 〈um| T̂ |un〉 ψ (x)

is a “transition probability density,” which, in this form, is
manifestly gauge-invariant since ψ (x) |un〉 ≡ 〈x|
〉.

In order to make a closer comparison with the error ob-
tained in the previous section for the “quantum-classical” adi-
abatic approximation, we introduce ν(x) = ∑

m �=n νm←n(x)
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and the total conditional transition probability �(x) =
ν(x)/|ψ (x)|2 in such a way that

ε2 =
∫

dx|ψ (x)|2�(x)

provided ψ (x) �= 0. Clearly, �(x) measures the error locally
in configuration space (as well as in time), and thus describes
the tendency of the system in configuration x to jump to an
electronic state other than n. For a smooth nuclear wave func-
tion ψ (x) and a frame |un(x)〉 in the vector bundle π : E → M
we consider |ψn(x)〉 = ψ (x) |un(x)〉 as a smooth section of
E , and the map to the normal bundle defined by |ψn(x)〉 →
|ϕ(x)〉 = QT̂ |ψn(x)〉 , which gives ν(x) = h̄−2 〈ϕ(x)|ϕ(x)〉.
We find

QT̂ |ψn(x)〉 = − ih̄
∑

j

(v̂ jψ )Q |∂ jun〉

− h̄2

2
ψ

∑
jk

ξ jkD jk |un〉 , (15)

where

Djk |un〉 = iA jQ |∂kun〉 + iAkQ |∂ jun〉 + Q |∂ j∂kun〉 .

Written in this way the map is a sum of two terms that are
separately gauge-invariant: under the gauge transformation
|un〉 → |un〉 e−iϕ , ψ → ψe+iϕ we have Ai → Ai + ∂iϕ and

Q |∂ jun〉 → e−iϕQ |∂ jun〉 ,

v̂ jψ → eiϕ v̂ jψ,

Djk |un〉 = e−iϕDjk |un〉 ,

as can be readily verified with a direct calculation. Stated
differently, the operators Q∂ j, π̂ j, v̂

j, Djk, etc., are tensorial
under gauge transformations. Hence, upon introducing the
(gauge-tensorial) residue

R |un〉 = h̄

2

∑
jk

ξ jkD jk |un〉 (16)

and the complex-valued, quantum velocity fields V j

V j = v̂ jψ

ψ
= ψ∗v̂ jψ

|ψ |2 , (17)

we find the following expression for the total conditional
transition probability:

�(x) =
∑

jk

(V j )∗V kq jk

− i
∑

j

(V j )∗ 〈∂ jun|Run〉

+ i
∑

j

V j 〈Run|∂ jun〉

+ 〈Run|Run〉 , (18)

where the q jk’s are the components of the quantum geometric
tensor, Eq. (7), and the remaining scalar products contain
higher derivatives of the electronic state in a gauge-invariant
form. Notice that the V j’s of Eq. (17) depend on both t and x;

however, in the following, for notational convenience we shall
omit this dependence unless it is necessary otherwise.

The first term of Eq. (18) closely resembles the local-in-
time error in the standard adiabatic approximation analyzed
in the previous section, Eq. (6), provided V j is interpreted
as classical velocity of the jth parameter. There are notable
differences, though: when turning the slow variables into
quantum variables both the real (symmetric) and the imagi-
nary (antisymmetric) parts of qi j matter for the error, since

∑
jk

(V j )∗V kq jk =
∑

jk

K jkg jk + 1

2

∑
jk

Y jkB jk,

where K jk (Y jk) is the real (imaginary) part of the product
(V j )∗V k . It is instructive then to consider their total contri-
bution upon integrating over configuration space, which reads
as ∫

dx|ψ (x)|2
∑

jk

K jkg jk = 〈ψ |
∑

jk

v̂ jg jk v̂
k |ψ〉X

and ∫
dx|ψ (x)|2

∑
jk

Y jkB jk = −i 〈ψ |
∑

jk

v̂ jB jk v̂
k |ψ〉X .

Here the scalar product 〈.|.〉X is that of the Hilbert space
L2(M) describing the nuclear degrees of freedom, and use
has been made of the fact that the operator

∑
jk v̂ jg jk v̂

k

(
∑

jk v̂ jB jk v̂
k) is Hermitean (anti-Hermitean) on that space.

Hence, overall, by considering the “classical” contribution
only, we find that the LITE in the dynamic adiabatic approxi-
mation is just the expectation value of a self-adjoint quantum
tensor

q̂ =
∑

jk

v̂ j
(

g jk − i

2
Bjk

)
v̂k =

∑
jk

v̂ jq jk v̂
k, (19)

which is nothing but the quantum version of the quantum geo-
metric tensor. This is a version of the tensor in which quantum
operators appear in place of classical manifold parameters,
and the action of the basic 1-form dx j on a generic tangent
vector V ∈ TxM, i.e., V j = dx j (V), is replaced by the local
differential operator v̂ j acting on the nuclear wave function.
We thus have, to leading order,

ε2 ≈ 〈ψ |
∑

jk

v̂ jq jk v̂
k |ψ〉X . (20)

On comparing with the quantum-classical adiabatic approx-
imation, however, one should also observe that additional
terms appear whose physical meaning is far less obvious.

C. Nonadiabatic transition probability

To better understand the meaning of �(x) and its con-
tributing transitions, we now consider the situation where,
during the time evolution, the LITE exceeds a given threshold,
thereby suggesting the need of going beyond the adiabatic
approximation. This can be accomplished dynamically by
“spawning” [29] the electronic basis that forms the variational
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manifold, e.g., by expanding the wave function ansatz to

|
t 〉 =
∫

dxψt (x) |un(x), x〉 +
∫

dxφt (x) |us(x), x〉 ,

where s = n ± 1 depending on which gap |En − En±1| is the
smallest. Henceforth, we shall first address the simpler situa-
tion where a single neighboring state affects the dynamics and
later generalize the result to a multitude of electronic states.

At the time of spawning ts the amplitude φt (x) must vanish
and its time derivative is determined by the variational equa-
tions of motion

ih̄∂tψ = (〈T 〉nn + En)ψ + 〈T 〉ns φ

ih̄∂tφ = 〈T 〉sn ψ + (〈T 〉ss + Es)φ,

which give ih̄∂tφ = 〈T 〉sn ψ ≡ ϕs←n for t = ts (here and in the
following, ∂t = ∂/∂t). Thus, the probability νs←n represents
precisely the error reduction due to electronic spawning,

ε2 → ε′2 = ε2 − νs←n at t = ts,

i.e., the error reduction arising from lifting the adiabatic ap-
proximation by allowing nonadiabatic transitions to the state
s. On the other hand, the above equation also determines the
short-time behavior of the nonadiabatic transition probability
Ps to the state s as Ps ≈ νs←n(t − ts)2 (t � ts), since ∂t |φ|2 = 0
and ∂2

t |φ|2 = 2
h̄2 | 〈T 〉sn ψ |2 for t = ts. This finding leads to

an interesting conclusion: when a single term s dominates
the sum, νs←n is approximately the total squared error in
the dynamic adiabatic approximation, and, as shown in the
previous section, this is determined by the quantum geometric
tensor (to leading order in the derivatives of the |un〉’s). Hence,
turning this argument around, we see that the quantum geo-
metric tensor also determines the early transition probability
upon spawning. In other words, we have approximately, up to
second order in δt = t − ts,

Ps ≈
∫

dx
∑

jk

(δx̂ jψts )
∗(x)(δx̂kψts )(x)q jk (x)

with δx̂i := v̂iδt , if the most important nonadiabatic channel
were suddenly opened at time ts.

More generally, all the above remains unaltered if the adi-
abatic approximation is suddenly lifted and the “spawning”
process is made virtually complete, i.e., the variational con-
straint is suddenly removed at t = ts and the wave function is
allowed to expand into the whole Hilbert space

|
t 〉 =
∫

dxψt (x) |un(x), x〉

→ |
t 〉 =
∫

dxψt (x) |un(x), x〉

+
∑
m �=n

∫
dxφ

(m)
t (x) |um(x), x〉 .

Again, at the time of spawning, we have φ(m) ≡ 0 and
ih̄∂tφ

(m) = 〈T 〉mn ψ ≡ ϕm←n holds for any m �= n. Now the
LITE is reduced exactly to zero upon spawning. and the to-
tal nonadiabatic transition probability P can be given, up to

second order in δt , as

P ≈
∫

dx
∑

jk

(δx̂ jψts )
∗(x)(δx̂kψts )(x)q jk (x)

with δx̂i := v̂iδt

under the only assumption that the terms involving the second
derivatives of the electronic states are negligible. This result
relates the geometric properties of the adiabatic problem to
the rate of nonadiabatic transitions. In a sense, this is an ob-
vious result since the latter transitions represent precisely the
failure of the adiabatic approximation. Upon closer reflection,
though, it is remarkable that the exact dynamics of the system
beyond the adiabatic paradigm is determined solely by the
geometric properties of the approximation.

III. EXACT FACTORIZATION OF THE WAVE FUNCTION

Next we focus on the exact factorization [31,32] of the
electronic-nuclear wave function. This is an “intermediate”
representation which closely resembles the adiabatic ansatz
and thus represents the ideal starting point for comparing and
improving the adiabatic approximation. As mentioned in the
Introduction, we shall rederive the corresponding equations of
motion using a projection-operator technique that emphasizes
the gauge transformation properties, thereby allowing one to
single out distinct, physically meaningful contributions to the
dynamics.

The exact factorization of the electronic-nuclear wave
function is accomplished by introducing a local basis of nu-
clear states {|x〉}

|
t 〉 =
∫

dx |x〉 〈x|
t 〉X

and noticing that 〈x|
t 〉X is yet a vector in the electronic
Hilbert space Hel, that we can write as

〈x|
t 〉X = ψt (x) |ut (x)〉
upon imposing a normalization condition and choosing a
smoothly varying phase for the local electronic states |ut (x)〉.
This gives the wave function in the form

|
t 〉 =
∫

dxψt (x) |x〉 |ut (x)〉 ,

which closely resembles the adiabatic ansatz of Eq. (10) but
now with a set of time-dependent electronic states {|ut (x)〉} in
place of the adiabatic frame {|un(x)〉}. Clearly, there is some
freedom in choosing |ut 〉 (and correspondingly in defining the
nuclear wave function ψt ) that we may fix by imposing the
arbitrary (but real) gauge term

A0 = i 〈u|∂t u〉 (21)

in the equations of motion.

A. Equations of motion

To obtain the equations of motion for the above nuclear
wave function and the electronic state we write the total
Hamiltonian using the coordinate representation for the nu-
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clear variables, i.e.,

Ĥ = T̂ + Hel(x),

where T̂ is the nuclear kinetic energy operator

T̂ = 1

2

∑
jk

ξ jk p̂ j p̂k with p̂ j = −ih̄∂ j

and Hel(x) is the electronic operator with the nuclei clamped
at a configuration x. From the Schrödinger equation

Ĥ (ψ |u〉) = ih̄(∂tψ ) |u〉 + ih̄ψ |∂t u〉 ,

we immediately obtain the equation of motion for the nuclear
wave function by projecting the above equation onto |u〉

(〈Ĥ〉el − h̄A0)ψ = ih̄(∂tψ ),

where 〈Ĥ〉el = 〈T̂ 〉el + 〈u|Hel|u〉 contains the kinetic energy
operator dressed by the time-dependent electronic state and
the “Born-Oppenheimer” average energy Eel = 〈u|Hel|u〉. As
above, 〈T̂ 〉el reads as

〈T̂ 〉el = 1

2

∑
jk

ξ jkπ̂ jπ̂k + φ,

where π̂ j = p̂ j − h̄A j , Aj = i 〈u|∂ ju〉, φ = h̄2/2
∑

jk ξ jkg jk ,
g jk = Req jk and q jk = 〈∂ ju|Q|∂ku〉, exactly as in Sec. II but
now with |u〉 everywhere meant to be the time-dependent elec-
tronic state (correspondingly, P = |u〉 〈u|, Q = 1 − P, etc.).
Hence, overall, the nuclear wave function is seen to satisfy
an effective Schrödinger equation

H effψ = ih̄∂tψ (22)

with the pseudoelectromagnetic Hamiltonian

H eff = 1

2

∑
jk

ξ jkπ̂ jπ̂k + (Eel − h̄A0 + φ). (23)

Notice that here Berry’s connection is dictated by the electron
dynamics, and its gauge is inherited from the choice made at
t = 0.

As for the equation governing the electron dynamics we
only need its projection onto the “unoccupied” electronic
space, since P∂t |u〉 = |u〉 〈u|∂t u〉 is known once the gauge
term A0 has been fixed. Hence,

ih̄Q |∂t u〉 = 1

ψ
QĤ (ψ |u〉),

or, if we write the equation for ∂t |u〉,

ih̄ |∂t u〉 = +h̄A0 |u〉 + 1

ψ
QĤ (ψ |u〉).

In the case ψ (x) = 0 at a given time (a situation that can be
considered incidental) the local electronic state is immaterial,
and its short-time evolution can be handled with the spawning
approach outlined in the previous section. In the above equa-
tion, the effective electronic Hamiltonian operator contains
two terms,

1

ψ
QĤ (ψ |u〉) = 1

ψ
QT̂ (ψ |u〉) + QHel |u〉 ,

but only the first depends on ψ since Hel is local in the nuclear
coordinates. The first term, which we denote as K[ψ] |u〉, has
been introduced in Sec. II B [see Eq. (15)] and reads as

K[ψ] |u〉 = −ih̄
∑

j

V jQ |∂ ju〉 − h̄R |u〉 , (24)

where V j = (v̂ jψ )/ψ is the complex-valued nuclear velocity
field of Eq. (17) and R |u〉 is the residue defined in Eq. (16),
everywhere with |u〉 in place of the adiabatic vector |un〉.
We recall that the above decomposition has simple gauge
transformation properties, since V j is gauge invariant and both
Q∂ j and R behave tensorially under a gauge transformation.
Hence,

ih̄Q |∂t u〉 = QHel |u〉 + K[ψ] |u〉 , (25)

where, on the r.h.s., the first term describes the electron dy-
namics with the nuclei clamped at x and the second term
describes the drag effect on the electrons due to the mo-
tion of the nuclei. Appendix C shows the equivalence of the
above equations of motion with those originally derived in
Refs. [31,32].

B. Dynamically corrected pseudo-Lorentz force

The striking similarity of Eq. (23) with the effective Hamil-
tonian Hn governing the adiabatic evolution, allows us to
analyze the exact dynamics in parallel to the adiabatic one.
The exact forces acting on the nuclear degrees of freedom
are very similar to the adiabatic ones, with the usual proviso
of replacing the adiabatic electronic states with their time-
dependent counterparts. The additional force, due solely to the
electronic dynamics, is the (gauge-invariant) force

F ED
k = h̄(∂kA0 − ∂t Ak ) = −2h̄Im 〈∂ku|Q|∂t u〉 (26)

that vanishes identically in the adiabatic approximation,
where A0 ≡ 0 and Ak are time-independent. That is, the to-
tal force reads exactly as F tot

k = F BO
k + F el

k + F mag
k + F ED

k ,
where

F BO
k ≡ −∂k 〈u|Hel|u〉 = −∂kEel (27)

is a time-dependent Born-Oppenheimer force, the geometric
forces F el

k and F mag
k stem from the time-dependent quantum

geometric tensor and F ED
k describes the electron dynamics.

Plugging the time derivative of the electronic state from
Eq. (25) into Eq. (26) one obtains two terms,

F NBO
k = 2Re 〈∂ku|QHel|u〉 (28)

and

F corr
k = 2Re 〈∂ku|K[ψt ]|u〉 , (29)

which, by construction, are separately gauge invariant. The
first is a genuine non-Born-Oppenheimer term, which van-
ishes identically when |u〉 happens to be an eigenstate of Hel

and, more generally, it is bounded by the size of the (local)
energy fluctuations in the electronic subsystem, |F NBO

k | �
2�Eel

√
gkk where �E2

el = 〈(Hel − Eel )2〉. The second can be
considered as a dynamical correction to the pseudo-Lorentz
force due to the electron reaction. The interesting result here
is that, once the pseudoelectric and the pseudomagnetic forces
are corrected for this reaction, they vanish when averaged
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over the nuclear state. This can be seen as follows. First, we
write explicitly the correction by using Eq. (24) and Imqk j =
−Bk j/2,

F corr
k = 2h̄

∑
j

gk jImV j − h̄
∑

j

Bk jReV j − 2h̄Re 〈∂ku|Ru〉 .

From this expression the corrected magnetic force is easily
identified,

F mag,c
k = h̄

2

∑
j

(v̂ jBk j + Bk j v̂
j ) − h̄

∑
j

Bk jReV j,

and found to have a zero average with a simple calculation,

〈ψ |F mag,c
k |ψ〉X = h̄

2

∑
j

〈ψ |v̂ jBk j + Bk j v̂
j |ψ〉X

− h̄
∑

j

〈ψ |Bk jReV j |ψ〉X

since

1
2 〈ψ |v̂ jBk j + Bk j v̂

j |ψ〉X = Re 〈ψ |Bk j v̂
j |ψ〉X ,

and, on the other hand,

〈ψ |Bk jReV j |ψ〉X ≡ Re 〈ψ |Bk j v̂
j |ψ〉X .

Hence,

〈ψ |F mag,c
k |ψ〉X ≡ 0. (30)

As for the corrected pseudoelectric force, it takes the form

F el,c
k = 2h̄

∑
j

gk jImV j

− h̄2
∑

i j

ξ i j (Re 〈∂iu|Dk ju〉 + Re 〈∂ku|Di ju〉)

upon observing the key identity

∂gi j

∂xk
= Re 〈∂iu|Dk ju〉 + Re 〈∂ ju|Dkiu〉 . (31)

Then, on taking the average

〈ψ | 2h̄
∑

j

gk jImV j |ψ〉X = 2h̄
∑

j

〈ψ |Im(gk j v̂
j )|ψ〉

= h̄2
∑

i

ξ i j 〈ψ | ∂gk j

∂xi
|ψ〉 ,

where

2h̄Im(gk j v̂
j ) = −ih̄[gk j, v̂

j] = h̄2
∑

i

ξ i j ∂gk j

∂xi

has been used. Hence,

〈ψ |F el,c
k |ψ〉

= h̄2
∑

i j

ξ i j 〈ψ |

×
[
∂gki

∂x j
− (Re 〈∂iu|Dk ju〉 + Re 〈∂ku|Di ju〉)

]
|ψ〉 ,

and the operator between square brackets vanishes by virtue
of Eq. (31), i.e.,

〈ψ |F el,c
k |ψ〉X ≡ 0. (32)

Importantly, by using Eq. (31) we have in fact exploited

Re 〈∂ku|Di ju〉 = 1

2

(
∂gik

∂x j
+ ∂gk j

∂xi
− ∂gi j

∂xk

)
that shows how Re 〈∂ku|Di ju〉 is related to a natural linear
connection that is induced on the tangent bundle by the (time-
dependent) Fubini-Study metric gi j = Reqi j . Indeed, for any
given metric gi j there exists a unique connection ∇q on the
tangent bundle that is both metric and torsion-free. This is the
celebrated Levi-Civita connection [40], and it can be defined
by setting its Christoffel symbol �l

i j according to

∑
l

gkl�
l
i j = 1

2

(
∂gik

∂x j
+ ∂gk j

∂xi
− ∂gi j

∂xk

)
.

Hence,

Re 〈∂ku|Di ju〉 ≡
∑

l

gkl�
l
i j (33)

holds for the above connection, and the zeroing of the average
pseudoelectric force merely expresses the conservation of the
metric, that is the condition(∇q

j g
)

ik
= ∂gik

∂x j
−

∑
l

gil�
l
jk −

∑
l

glk�
l
ji = 0

for the ikth component of the covariant derivative of g taken
with the connection ∇q along the direction j. In other words,
the result of Eq. (32) amounts to

〈ψ |F el,c
k |ψ〉 = h̄2

∑
i j

ξ i j 〈ψ |(∇q
j g

)
ik
|ψ〉 = 0. (34)

C. Statistical properties

We emphasize here that, despite its role of a marginal
probability amplitude, ψ (x) alone cannot determine the full
statistical properties of the nuclear subset of particles, not
even instantaneously. This is evident from the fact that the
(equal-time) statistical properties require the reduced density
operator ρX = treρ which, for pure states and the factorization
introduced above, reads as

〈x|ρX |x′〉 = tre[ψ (x) |u(x)〉 〈u(x′)| ψ∗(x′)]

= σ (x, x′) 〈u(x′)|u(x)〉 ,

where σ (x, x′) = ψ (x)ψ∗(x′) is the “apparent” nuclear den-
sity matrix. In view of this, we have two different strategies
(and interpretative tools) to investigate the statistical prop-
erties of nuclear observables. Either we use the true density
matrix ρX (x, x′) and bare nuclear observables N

〈N〉 =
∫

dx
∫

dx′ρX (x, x′)N (x′, x),

or we use the apparent density matrix σ (x, x′) and dressed
nuclear observables Ñ ,

〈N〉 =
∫

dx
∫

dx′σ (x, x′)Ñ (x′, x),
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where

Ñ (x, x′) = N (x, x′) 〈u(x)|u(x′)〉
or, equivalently,

Ñ (x, x′) = 〈u(x)|N (x, x′)|u(x′)〉el ,

which shows that the dressed observables are “averaged” over
the electronic states.

As for the electronic density operator ρel, it takes the
form of a convex combination of electronic density operators
ρel(x),

ρel =
∫

X
dxP(x)ρel(x),

where P(x) = |ψ (x)|2 is the probability density of finding the
nuclei at x and ρel(x) is the conditional density operator

ρel(x) = 〈x|ρ|x〉
P(x)

≡ |u(x)〉 〈u(x)| ,

which describes a pure local state, the one defined locally by
the exact factorization representation. The results in the adi-
abatic approximation are very similar to the ones given here,
the only difference being that |u〉 is in that case a stationary
state. Therefore, the concept that the adiabatic approximation
“artificially” forces the local electronic state to be a pure
state is misleading, because this is true for an arbitrary wave
function.

In order to clarify the meaning of observables dressed
by the electronic state let us consider in detail the nuclear
momentum for the kth degree of freedom, p̂k (in the coor-
dinate representation appropriate for the exact factorization).
This is first “extended” to an operator P̂k = p̂k ⊗ Iel acting on
the Hilbert space of the electronic-nuclear system, and then
“reduced” to an operator p̃k on the nuclear space by averaging
over the electronic state

p̃k = 〈u|P̂k|u〉 = p̂k − ih̄ 〈u|∂ku〉 ≡ π̂k .

The result is the operator for the mechanical momentum
π̂k , which can thus be considered the canonical momentum
dressed by the electronic state. In general, for notational con-
venience, one does not distinguish P̂k from p̂k , and then care
is needed in interpreting p̂k as the “microscopic” operator
acting on the electronic-nuclear space or the one acting on
the nuclear space only. As for the dressed operators, they are
always averaged over the electronic state, and thus meant to
be operators on the Hilbert space of the nuclei.

It is instructive at this point to reconsider the total force
Fk acting on the kth nuclear degree of freedom in light of the
above difference between “microscopic” and “electronically
averaged” quantities. On the one hand we have

d 〈p̂k〉
dt

= 〈
| i

h̄
[H, p̂k]|
〉 =

∫
dxψ∗(x) 〈−∂kHel〉el ψ (x),

where, to avoid confusion, we used the subscript “el” on the
angular bracket to denote the electronic average. This shows
that the average total force is the expectation value of the
dressed microscopic force −∂kHel acting on the given nuclear
degree of freedom. This term can be further manipulated
to make evident the Born-Oppenheimer-like contribution

[Eq. (27)]

〈−∂kHel〉el = F BO
k + F NBO

k (35)

upon noticing that Re(〈∂ku|u〉 〈u|Hel|u〉) = 0. On the other
hand, we also have

d 〈p̂k〉
dt

= 2Re 〈
| p̂k|∂t
〉 ,

where the time derivative of the total wave function in the
exact factorization form can be written as

∂t (ψ |u〉) = [(∂tψ ) + ψ 〈u|∂t u〉] |u〉 + ψQ |∂t u〉

= − i

h̄
(〈H〉elψ ) |u〉 + ψQ |∂t u〉 ,

hence

d 〈p̂k〉
dt

= 2Re
∫

dxψ∗(x)
(
− i

h̄

)
(π̂k 〈H〉el )ψ (x)

+ 2Re
∫

dxψ∗(x)[+ih̄ 〈∂ku|Q∂t u〉]ψ (x). (36)

Here for the first line we have used 〈p̂k〉el = π̂k , whereas for
the second one we have exploited

〈u| p̂kQ∂t u〉 = 〈u|Q∂t u〉 p̂k − ih̄∂k 〈u|Q∂t u〉 + ih̄ 〈∂ku|Q∂t u〉
≡ ih̄ 〈∂ku|Q∂t u〉

(notice that the in the adopted representation the angular
brackets denote scalar products in the electronic space only).
Furthermore, since

2Re
∫

dxψ∗(x)
(
− i

h̄

)
(π̂k 〈H〉el )ψ (x)

=
∫

dxψ∗(x)
i

h̄
[〈H〉el , π̂k]ψ (x)

and the second term on the r.h.s. of Eq. (36) is the expectation
value of F ED

k of Eq. (26), we finally arrive at

d 〈p̂k〉
dt

=
∫

dxψ∗(x)
(
F BO

k + F mag
k + F el

k + F ED
k

)
ψ (x).

On comparing with Eq. (35) and remembering that F mag
k +

F el
k + F ED

k = F mag,c
k + F el,c

k + F NBO
k we find∫

dxψ∗(x)
(
F mag,c

k + F el,c
k

)
ψ (x) = 0.

This is consistent with Eqs. (30) and (32); however, the proof
given in the previous section makes clear that the dynamically
corrected pseudoelectric and pseudomagnetic forces vanish
separately when averaged.

IV. ELECTRONIC FRICTION

The analysis of Secs. II and III has singled out in the
force of Eq. (26) [and its components, Eq. (28) and Eq. (29)]
the key effect of introducing the electron dynamics in the
description of the dynamical behavior of the nuclei. Of par-
ticular importance for our purposes is the vanishing of the
(average) pseudo-Lorentz force, since this leads us to identify
the genuine non-Born-Oppenheimer force, F NBO

k of Eq. (28),
as the potential source of electronic friction. We address
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here the relevant dynamical regime, derive the appropriate
electronic-friction kernel and the Schrödinger-Langevin-like
equation of motion of the nuclear wave function, obtaining
the corresponding effective Hamiltonian.

A. Linear response

Let us now focus on the electronic equation Eq. (25) in the
situation where the electronic system relaxes quickly to the
ground state |u0〉 and the deviation |�u〉 = |u(t )〉 − |u0(t )〉 re-
mains small throughout the nuclear dynamical evolution [here
|u0(t )〉 is the time-evolving ground electronic state]. This is
the condition where linear response theory (LRT) applies
and also the situation where the electronic-friction picture
is appropriate. Let us then consider the integral form of the
electronic equation and handle the drag term of Eq. (25) in the
spirit of linear response theory. We set h̄A0 ≡ Eel = 〈u|Hel|u〉
and assume that |u(t0)〉 = e− i

h̄ E0t0 |u0〉 holds for some initial
time t0 in the infinite past. Following a common strategy,
we start by considering a simple impulsive “kick” δ(t −
τ )K̃[ψτ ] |u(τ )〉 acting at time τ only, for which we find

|u(t )〉 ≈ e− i
h̄ E0t |u0〉

− i

h̄
e− i

h̄ Hel (t−τ )K0[ψτ ] |u0〉 e− i
h̄ E0τ�(t − τ ),

where �(t ) = 1 for t > 0 and zero otherwise. This can be
readily obtained from the integral version of the equation of
motion by shrinking the time interval around the kick time τ

to find the electronic state soon after the kick,

|u(τ+)〉 ≈ |u(τ−)〉 − i

h̄
K0[ψτ ] |u(τ−)〉 ,

where |u(τ−)〉 = e− i
h̄ E0τ |u0〉 is the freely propagating state

and Q → Q0 = 1 − |u0〉 〈u0| has been used for t = τ − η,
η > 0. Note that, correspondingly, the operator K of Eq. (24)
has been replaced by K0 to remind us of the use of Q0 rather
than Q and of the ground-state connection in the velocity
operators. Next, for the full driving term

K[ψt ] |u(t )〉 =
∫ +∞

−∞
dt ′δ(t − t ′)K[ψt ′] |u(t ′)〉 ,

we assume linear response to write

|u(t )〉 ≈ e− i
h̄ E0t |u0〉

− i

h̄

∫ t

−∞
e− i

h̄ Hel (t−t ′ )K0[ψt ′] |u0〉 e− i
h̄ E0t ′

dt ′. (37)

We thus see that |�u〉 takes the form

|�u〉 ≈ − i

h̄
e− i

h̄ E0t
∫ ∞

0
e− i

h̄ (Hel−E0 )τ K0[ψt−τ ] |u0〉 dτ, (38)

and it is such that 〈�u|u0〉 = 0 since K0 = Q0K0. Plug-
ging Eq. (37) in the genuine non-Born-Oppenheimer force
[Eq. (28)], and using Eq. (24), we find, to first order in |�u〉,
two contributions

F NBO,I
k = −2

∑
j

Re
∫ ∞

0
�k j (τ )V j (t − τ ) dτ (39)

and

F NBO,II
k = −2Im

∫ ∞

0
〈∂ku0|Q0H ′

ele
− i

h̄ H ′
elτ R|u0〉 dτ. (40)

We are mostly interested in the first one, since it represents a
friction-like force with kernel

�k j (t ) = 〈∂ku0|Q0H ′
ele

− i
h̄ H ′

elt |∂ ju0〉 , (41)

where H ′
el = Hel − E0. Here 2Re�k j (t ) is suggestive of a

frictional memory kernel, as becomes evident upon tak-
ing the classical limit of Eq. (39) and letting V j be real.
However, some care is needed in this interpretation since
velocity-dependent terms may also arise from pseudomag-
netic contributions. We shall see below that this is indeed the
case in the physically most relevant situation of an electronic
bath that responds rapidly on the timescale set by the nuclear
motion. In this Markov limit �k j (t ) decays rapidly on the
relevant timescale and we can replace V j (t − τ ) ≈ V j (t ) in
Eq. (39) to write

F NBO,I
k = −Re

(∑
j

γ̄k jV
j (t )

)
, (42)

where the kernel is

γ̄k j = 2 lim
ε→0+

∫ ∞

0
e−ετ�k j (τ ) dτ (43)

and the usual ε converging factor has been introduced. As
shown in Appendix D this is equivalent to the T = 0 K lim-
iting expression derived by DMS in Ref. [26] [Eq. (2) of the
present article]. Later we shall find that γ̄k j is better defined
as the zero-frequency limit (from above) of a frequency-
dependent kernel γ̄k j (ω) in which the excitation energy h̄ω

can be viewed as a “running” correction to E0 in the dynamical
phase factor e

i
h̄ E0t appearing in �k j (t ).

Notice that the friction-like kernels of Eq. (41) and
Eq. (43)—and similar expressions introduced below—are all
position dependent, e.g., γ̄k j ≡ γ̄k j (x), but we shall omit this
dependence in the following.

B. Pseudomagnetic contribution

We show here that the memoryless friction of Eq. (43)
contains in fact a pseudomagnetic contribution. To this end
we need

H ′
ele

−εt e− i
h̄ H ′

elt = ih̄
d

dt
(e−εt e− i

h̄ H ′
elt ) + ih̄ε(e−εt e− i

h̄ H ′
elt )

and

H ′
el

∫ ∞

0
e−εt e− i

h̄ H ′
elt dt = −ih̄

(
1 + iε h̄

H ′
el − iε h̄

)

= −ih̄

[
1 + iε h̄

H ′
el + iε h̄

(H ′
el )

2 + ε2h̄2

]

→ −ih̄[1 + iπH ′
elδ(H ′

el )],

where we have used the common notation 1
A for A−1. No-

tice that in this expression the second term on the r.h.s.
∝ H ′

elδ(H ′
el ) would vanish if it were applied to a regular

electronic state, but this is not the case here because of the
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presence of the derivative couplings. Inserting this identity in
Eq. (43) we find

γ̄k j = −2ih̄qk j + γk j, (44)

where the “corrected” Markovian friction kernel γk j takes the
form

γk j = 2π h̄ 〈∂ku0|Q0H ′
elδ(H ′

el )|∂ ju0〉 . (45)

We are interested in the real part of Eq. (44), in particular in
the contribution 2h̄Imqk j = −h̄Bk j . Plugging this term into
Eq. (42) it is seen to give rise to a magnetic component
+h̄

∑
j Bk jReV j that precisely cancels the magnetic correc-

tion introduced in Eq. (29). This term does not appear in the
common case when the electronic states can be taken as real
functions of the electron coordinates (as DMS [26] assumed),
which is possible in the absence of magnetic fields and for
a trivial topology of the ground adiabatic state. It is however
necessary when the magnetic field is turned on or if conical in-
tersections exist that can be encircled by the evolving nuclear
wave packet.

More generally, in the Markov limit we have

F NBO,I
k = h̄

∑
j

Bk jReV j − 2h̄
∑

j

gk jImV j + F friction
k .

where

F friction
k = −Re

( ∑
j

γk jV
j

)
(46)

is the same as Eq. (42) with γk j in place of γ̄k j , and

F NBO,II
k = 2h̄Re 〈∂ku0|Ru0〉

− 2π h̄Im 〈∂ku0|Q0H ′
elδ(H ′

el )|Ru0〉
for reasons similar to those given above. Hence, summing
up these contributions, we see that in the Markov limit the
electron dynamical force of Eq. (25) reduces to a frictional
force and a secondary correction

F ED
k = F friction

k − 2π h̄Im 〈∂ku0|Q0H ′
elδ(H ′

el )|Ru0〉 , (47)

and, upon neglecting the latter, the total force reads approxi-
mately as

Fk ≈ F BO
k + F el

k + F mag
k + F friction

k

without any dynamic correction to the pseudo-Lorentz force.
This may be physically viewed as restoration of the full adi-
abatic dynamics: electronic friction cools the nuclear motion
and enforces the adiabatic limit, with its gauge fields.

Notice that the residual correction [second term on the
r.h.s. of Eq. (47)], as well as the “nonclassical” frictional term∑

j Imγk jImV j , appears only when time-reversal symmetry is
broken.

C. A posteriori correction to LRT

The friction kernel γk j defined in Eq. (45) is, strictly speak-
ing, ill-defined, as is apparent from the presence of both Q0

and δ(H ′
el ). A more appropriate definition is obtained by iden-

tifying the genuine friction term from the zero-frequency limit

(from above) of the frequency-dependent kernel

γ̄k j (ω) = 2 lim
ε→0+

∫ ∞

0
e−εt eiωt�k j (t ) dt (48)

that is most appropriate for the force of Eq. (39) when taking
the Markov limit [41] that leads to Eq. (42). The physical
motivation for introducing here a small (eventually vanishing)
positive frequency ω is that the evolving ground-electronic
state has an energy slightly above E0, i.e., E0 + h̄ω for h̄ω →
0+, right because of excitations of e − h pairs into the sub-
strate. Thus the replacement

exp
( i

h̄
E0τ

)
→ exp(iωτ ) exp

( i

h̄
E0τ

)
is needed to correct the LRT result [the integrand of Eq. (38)]
for this effect.

Before addressing this issue in detail, let us first derive
some relationships needed to handle the derivative couplings,
and useful to derive different equivalent expressions for the
friction kernel. Let first E0 be a discrete, nondegenerate energy
eigenvalue of the electronic Hamiltonian Hel for some value
of the nuclear coordinates x. Upon taking the derivative of
the electronic Schrödinger equation with respect to (w.r.t.) xk ,
(∂kHel ) |u0〉 = (∂kE0) |u0〉 + (E0 − Hel ) |∂ku0〉, and projecting
with Q0 one easily finds

Q0 |∂ku0〉 = G0(E0)Q0(∂kHel ) |u0〉 ,

where G0(λ) = (λ − H0
el )

−1 is the resolvent of the restriction
of Hel to Q0Hel, i.e., the operator H0

el = Q0Hel = HelQ0 de-
fined in the subspace Q0Hel (here Hel represents the Hilbert
space of the electronic system). More generally, for λ ∈ C

Q0 |∂ku0〉 = [1 + (E0 − λ)G(λ)]−1G(λ)Q0(∂kHel ) |u0〉
and thus

Q0 |∂ku0〉 = [1 + (λ − E0)G(λ) + (λ − E0)2G(λ)2 + · · · ]

× G(λ)Q0(∂kHel ) |u0〉
provided λ is closer to E0 than to any other eigenvalue [here
the projector Q0 effectively removes the pole at E0 in the
spectral representation of G(λ)]. If E0 is part of the continuous
spectrum we shall use

Q0 |∂ku0〉 = G+(E0)Q0(∂kHel ) |u0〉 , (49)

which amounts to defining the eigenvectors |u0〉 through a
limiting procedure. Specifically, given Hel, E0 and |u0〉 at some
point x, in order to fix |u0〉 at a neighboring geometry x′ =
x + dx one first defines the family of vectors |uλ

0〉 through the
(well-defined and unique) solutions of

[λ − (Hel + �H )]
∣∣uλ

0

〉 = (λ − Hel ) |u0〉
for �H = ∑

k (∂kHel − ∂kE0)dxk . This gives∣∣uλ
0

〉 − |u0〉 = G(λ)�H
∣∣uλ

0

〉
,

i.e., for infinitesimal displacements of the nuclear coordinates,

Q0 |∂kuλ
0〉 ≈ G(λ)Q0(∂kHel ) |u0〉 ,

from which the above result follows upon taking the limit
λ → E0 for Imλ > 0.
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Consider now the frequency-dependent friction kernel of
Eq. (48). Upon noticing that

�k j (t ) = 〈∂ku0|Q0H ′
ele

− i
h̄ H ′

elt |∂ ju0〉
= − 〈u0|(∂kHel )Q0e− i

h̄ H ′
elt |∂ ju0〉 ,

it can be manipulated to give

γ̄k j (ω) = −2ih̄ 〈u0|(∂kHel )Q0G+(E0 + h̄ω)|∂ ju0〉
= −2ih̄qk j (ω) + 2γk j (ω) (50)

[cf. Eq. (44)] where

γk j (ω) = −π h̄ 〈u0|(∂kHel )Q0δ(E0 + h̄ω − Hel )|∂ ju0〉 (51)

comes from the imaginary part of the resolvent, and

qk j (ω) = 〈u0|(∂kHel )Q0GP(E0 + h̄ω)|∂ ju0〉 (52)

from its real (or principal) part GP(E ).
Equation (52) defines a frequency-dependent generaliza-

tion of the quantum geometric tensor. It indeed gives qk j in
the limit ω → 0, since Q0GP(E0) = Q0G+(E0) = Q0G−(E0)
holds due to δ(E0 − Hel )Q0 = 0, and this allows one to ex-
ploit Eq. (49) and recover the usual definition of the quantum
geometric tensor [Eq. (7)].

Equation (51), on the other hand, is the sought-for
frequency-dependent version of Eq. (45), as can be seen by
recasting it in the form

γk j (ω) = π h̄ 〈∂ku0|Q0(Hel − E0)δ(E0 + h̄ω − Hel )|∂ ju0〉 ,

(53)
which shows the key role played by the excitation energy h̄ω.
The reason for singling out a factor of 2 in the second term of
Eq. (50) is that, in this way, the Markovian friction kernel—
that is, γk j in Eq. (44)—takes the form of the ω → 0+ limit of
Eq. (51),

γk j = lim
ω→0

2γk j (ω) + 2γk j (−ω)

2
≡ lim

ω→0
γk j (|ω|), (54)

since γk j (ω) = 0 for ω < 0. In other words, Eq. (45) needs to
be interpreted as the following limiting procedure:

〈∂ku0|Q0H ′
elδ(E0 − Hel )|∂ ju0〉

= 1

2
lim

ω→0+
〈∂ku0|Q0H ′

elδ(E0 + h̄ω − Hel )|∂ ju0〉

(see Appendix E for a discussion of the subtleties associated
with the Markov limit).

Equation (51) can be further rearranged to make explicit
the role of ∂ jHel. Specifically, upon replacing |∂ ju0〉 with
−(h̄ω)−1∂ jHel |u0〉, the kernel can be written as γk j (ω) =
�k j (ω)/ω where

�k j (ω) = π 〈u0| (∂kHel )Q0δ(E0 + h̄ω − Hel )

× Q0(∂ jHel ) |u0〉 (55)

is a sound spectral density of the coupling. This can be seen
by casting it in the form

�k j (ω) = πρ(ω) 〈F ∗
k Fj〉ω , (56)

where ρ(ω) is the many-body density of states at energy h̄ω

and 〈F ∗
k Fj〉ω is a force-force correlator

〈F ∗
k Fj〉ω = 1

ρ(ω)

[ω]∑
f

(
F f ←0

k

)∗
F f ←0

j . (57)

Here F f ←0
k = 〈u f |∂kHel|u0〉 and the sum runs over the energy

shell h̄ω above the ground-state. Notice that �k j (ω) defined
in Eq. (55) correctly vanishes in the ω → 0 limit and it is
positive semidefined, since∑

k j

X kX j�k j = π 〈u0|W δ(E0 + h̄ω − Hel )W |u0〉 � 0

holds for an arbitrary nuclear displacement X =
(X 1, . . . , X k, . . .), with W = Q0

∑
k X k∂kHel. Hence, overall,

Eq. (55) clearly displays the symmetry properties of the
kernel γk j (ω)

Reγk j (ω) = Reγ jk (ω), Imγk j (ω) = −Imγ jk (ω) (58)

and the positive semidefinitness of Reγk j (ω) for ω � 0, as
is required for a friction kernel. Appendix E details the re-
lationship between Reγk j (ω) and the spectral function of the
“ordinary” friction kernel—i.e., of the real part of the Fourier
transform of 2γk j (ω)—and justifies the factor of 2 in Eq. (50)
beyond the Markov limit.

Below we expand on an important limiting case, namely,
that provided by independent electrons. A further interesting
limiting case is considered in Appendix F where we apply
Eq. (55) to the widely used model of dissipation defined by
the independent oscillator (also known as Caldeira-Leggett)
Hamiltonian [42,43].

D. Independent electrons

Equations (51) and (55) provide general expressions for
the electronic friction kernel, which apply equally well to
independent or interacting electrons. Here we show that for
independent electrons, in the Markov limit, they lead to the
result first obtained by Head-Gordon and Tully [17], i.e., to
Eq. (1) of the present manuscript. We shall use Eq. (51), but
the same result follows of course from Eq. (55).

For independent electrons, ∂kHel is a monoelectronic oper-
ator that we write as

∂kHel =
∑
μ,ν

Dk
μνc†

μcν

using the second-quantization annihilation (cμ) and creation
(c†

μ) operators for the single-particle state |φμ〉, and de-
noting with Dk

μν the single-particle matrix element Dk
μν =

〈φμ|∂kh|φν〉. As a consequence, the on-shell projector

δ(E0 + h̄ω − Hel ) =
[ω]∑
K

|
K〉 〈
K |

(where the sum runs over all the many-body states with en-
ergy h̄ω above the Hartree-Fock ground state |�0〉) can be
restricted to singly excited Slater determinants, i.e., to states
of the form |
b

a〉 = c†
bca |�0〉 where now a (b) labels occupied

(empty) states in |�0〉. Here h̄ω = εb − εa = �εba, and the
single-particle energies are such that εa < εF < εb, where εF
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is the Fermi level. Notice that the restriction to singly excited
determinants automatically accounts for the projector Q0 ap-
pearing in Eq. (51) (all the way down to ω = 0).

Equation (51) then reads as

γk j (ω) = − π h̄
occ∑
a

nocc∑
b

Dk
ab 〈φb|∂ jφa〉 δ(h̄ω − �εba)

= − π h̄
occ∑
a

nocc∑
b

Dk
abD j

ba

f (εb) − f (εa)

εb − εa
δ(h̄ω − �εba)

= − π h̄
∑
a,b

Dk
abD j

ba

f (εb) − f (εa)

εb − εa
δ(h̄ω − �εba),

(59)

where we have introduced the T = 0 K electron occupation
function, f (ε) = �(εF − ε), and, in the last step, we have
used the condition ω > 0 to free the sums over the orbitals
from any constraint. The rightmost side of Eq. (59) is now a
well-defined function of ω ∈ R, and its real part (the “phys-
ical” component of the friction kernel) takes a unambiguous
zero-frequency limit since it is an even function of ω. Hence,
upon setting εb = εa + h̄ω in the incremental ratio of f , in the
limit ω → 0 we find

Reγk j = π h̄
∑
a,b

Dk
abD j

baδ(εb − εF )δ(εa − εF )

after using f ′(εa) = −δ(εa − εF ). This is the HGT expres-
sion, Eq. (1), as we set out to show.

E. Frictional vector potential

We show here how the above results follow, in linear re-
sponse, by an appropriate modification of the Hamiltonian
governing the adiabatic dynamics, in particular of the vector
potential entering the Hamiltonian. This is important for intro-
ducing friction (i.e., dissipation) into an effective Hamiltonian
for the nuclei. As shown below, this turns the corresponding
Schrödinger equation into a nonlinear equation, but this is the
price to pay if the energy transfer mechanism has to depend on
the system dynamics and it is not due simply to an “external”
field.

To this end, we work in the standard gauge for the electron
dynamics where 〈u+|∂t u+〉 = 0, using the superscript “+” to
denote the chosen gauge. In linear response this amounts
to reference the electronic Hamiltonian to the ground-state
energy, E0, and to write |u+〉 = |u0〉 + |�u+〉 where

|�u+〉 := − i

h̄

∫ +∞

0
e− i

h̄ H ′
elτ K0[ψt−τ ] |u0〉 dτ

since 〈u|Hel|u〉 ≈ E0 + 2Re 〈u0|�u+〉 ≡ E0 holds thanks to
〈�u+|u0〉 = 0. This also implies that the nuclear Hamiltonian
in this gauge

H+ ≈ 1

2

∑
i j

ξ i jπ̂+
i π̂+

j + [E0(x) + φ+]

resembles closely the n = 0 adiabatic Hamiltonian of
Eq. (11), that we denote here as H0 for notational conve-
nience: the only difference is the presence of |u+〉 = |u0〉 +

|�u+〉 in place of |u0〉 in the vector and scalar potentials, e.g.,

A0
k → A0

k + 2Im 〈∂ku0|�u+〉
to first order in |�u+〉. In fact, it turns out that the main
modification is precisely the time-dependent term

δAk = Ak − A0
k

= 2Im

(
− i

h̄

∫ ∞

0
〈∂ku0|e− i

h̄ H ′
elτ K0[ψt−τ ]|u0〉 dτ

)
since this is of second order in the spatial derivative of the
electronic states and generates a force term of the same order
through its time derivative,

Fk = ∂π̂+
k

∂t
+ i

h̄
[H+, π̂k] = −h̄

∂ (δAk )

∂t
+ i

h̄
[H+, π̂+

k ]

≈ −h̄
∂ (δAk )

∂t
+ i

h̄

[
H0, π̂0

k

]
,

where π̂0
k = p̂k − h̄A0

k is the adiabatic momentum. Here, the
last line holds if we retain only terms that contain up to three
derivatives in nuclear coordinates at a time, e.g., of the form

−∂kφ0 = − h̄2

2

∑
i j

ξ i j∂kRe 〈∂iu0|Q0|∂ ju0〉 .

In other words, to this “order” in the spatial derivatives, we
have

[π̂+
i , π̂+

j ] ≈ [
π̂0

i , π̂0
j

]
, φ+ ≈ φ0,

and the geometric properties are the same as in the adiabatic
limit, q+

i j ≈ q0
i j .

Let us then take a closer look at the correction δAk to the
vector potential. From the definition of K0, Eq. (24) with |u〉 ≡
|u0〉, we have

δAk = − 2
∑

j

Im
∫ ∞

0
〈∂ku0|e− i

h̄ H ′
elτ Q0|∂ ju0〉V j (t − τ ) dτ

+ 2Re
∫ ∞

0
〈∂ku0|e− i

h̄ H ′
elτ R|u0〉 dτ,

where the second term can be neglected in the approximation
above since it is time independent and it is of third order in
the sense specified above, hence it contributes to the force
only with a fourth-order term. Upon introducing the complex-
valued “position” fields

X j (x, t ) =
∫ t

−∞
V j (x, t ′) dt ′, (60)

and integrating by parts we find

δAk = − 2
∑

j

Im
(
q0

k jX
j
)

+ 2

h̄

∑
j

Re

[∫ ∞

0
�k j (τ )X j (t − τ ) dτ

]
, (61)

where �k j (τ ) was defined in Eq. (41). In the Markov limit we
have∫ ∞

0
�k j (τ )X j (t − τ ) dτ ≈ X j (t ) lim

ε→0+

∫ ∞

0
e−εt�k j (τ ) dτ,
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where [see Eqs. (43) and (44) and Sec. IV C]

2 lim
ε→0+

∫ ∞

0
e−ετ�k j (τ ) dτ = γ̄k j = −2ih̄q0

k j + γk j .

Hence, in this limit, we find the following simple “frictional
correction” to the adiabatic dynamics:

δAk = 1

h̄

∑
j

Re(γk jX
j ). (62)

Here the disappearance of the quantum geometric contribution
[first term on the r.h.s. of Eq. (61)] signals the full restoration
of the pseudo-Lorentz force discussed above, i.e., the fact that
in this limit the force takes the same form as in the adiabatic
approximation.

Equation (61), and Eq. (62) for the Markov limit, is the key
result of this article. It represents the crucial amendment to the
adiabatic Hamiltonian that is necessary in order to include the
effect of electronic friction into the quantum dynamics of the
nuclei. It is not hard to show that it gives precisely the same
contribution to the force as found in Sec. IV A. For instance, in
the Markov limit, upon taking the time derivative of Eq. (62)
one immediately finds that

Fk = F 0
k + F friction

k ,

where F 0
k is the force computed in the adiabatic approxima-

tion and the second term on the r.h.s. is the frictional force
of Eq. (46). Furthermore, the above corrections to the vector
potential and the ensuing effective Hamiltonian

H+ ≈ 1

2

∑
i j

ξ i j
(
π̂0

i − h̄δAi
)(

π̂0
j − h̄δAj

) + [E0(x) + φ0]

(63)
give simple expressions for the average rate of change of the
energy of the nuclear degrees of freedom. For instance, in the
Markov limit we find

dĒ

dt
=

〈
∂H+

∂t

〉
X

≈ −h̄Re
∑

k

〈
∂ (δAk )

∂t
v̂k

〉
X

= −
∫

dx|ψ (x)|2
∑

jk

Re(γk jV
j )ReV k

= +
∫

dx|ψ (x)|2
∑

k

F friction
k ReV k (64)

consistent with the frictional picture (here v̂k = ∑
j ξ

k jπ̂0
j is

the velocity operator in the adiabatic approximation and V k is
the corresponding velocity field).

Before closing this section it is worth considering the sim-
plified situation where the Markov limit applies, ξ i j = δi jM−1

and γk j = δk jγ ∈ R, uniformly in system configuration space,
at least where the dynamics occurs. Under such circumstances
we find [44]

δAk = 1

h̄
Re(γ X k ) = γ

M
∂k

∫ t

−∞
Im ln ψt ′ (x) dt ′,

which shows that δAk becomes longitudinal and can be re-
placed by an appropriate scalar field

δφ(x) = h̄γ

M
Im ln ψt (x)

upon applying a pseudoelectromagnetic gauge transforma-
tion. The resulting Hamiltonian H = H0 + δφ is the Hamil-
tonian proposed long ago by Kostin [33], who introduced
dissipation in the Schrödinger picture with the help of a
“phase potential,” depending on the phase of the system wave
function in the position representation. Here this type of equa-
tion has been rederived from a microscopic model, using
a fully quantum approach. Furthermore, we generalized the
friction force to the case where friction is position-dependent
and tensorial and, potentially, has a nonvanishing memory
[Eq. (63) with δAk given by Eq. (61) or its Markovian limit
Eq. (62)]. As mentioned in the Introduction, traditional argu-
ments against this kind of models (e.g., the incompatibility
with the superposition principle arising from nonlinearity) are
here settled from the outset: it is clear from the derivation
given above that the wave function of the dissipative system
does not represent the wave function of a closed system,
rather it is a marginal probability amplitude of a subsystem,
in contact with a reservoir. Finally, we notice that the equa-
tion describes the evolution of averaged quantities, here the
nuclear observables dressed by the electronic state, and thus
it lacks any fluctuating term, similarly to what happens when
averaging the Langevin equation to obtain an equation for the
average velocity.

V. CONCLUSIONS

We have developed a fully quantum theory of electronic
friction that describes the nuclear dynamics in a quantum
setting at T = 0 K. Friction is seen to turn the equation of mo-
tion for the nuclear wave function into a nonlinear equation,
where the vector potential depends on the past wave function
behavior. The latter takes the simple form of Eq. (62) in the
commonly relevant Markovian limit where energy dissipation
through excitation of electron-hole pairs of a metallic sub-
strate may enforce a true quasiadiabatic dynamics. The theory,
though, has been formulated for general memory kernels
[Eq. (61)] and it is entirely suitable to address issues like the
importance of a nonvanishing memory in the friction kernel
[12]. Furthermore, it is not limited to independent electrons
and applies equally well to interacting electrons, potentially
in a strongly correlated state. The impact of the electronic
state on the dynamical behavior of the nuclei has just begun to
be explored [26], and the present theory sets a framework to
extend these investigations to a regime where the nuclei need
to be treated as quantum objects. In fact, the interplay between
nuclear quantum effects and electronic friction (with a poten-
tially nonvanishing memory), and its impact on elementary
gas-surface processes remain yet to be explored.

Note added in proof. A recent work by Li et al., [45] derives
Ehrenfest identities in the context of the exact factorization
and shows certain analogies to the formal framework devel-
oped in our work.

APPENDIX A: VARIATIONAL EQUATION OF MOTION AS
PARALLEL TRANSPORT CONDITION

The Berry connection of Eq. (9) allows one to reinterpret
the variational condition of Eq. (3), here written in reduced
time units s = t/T ,

P(s)[ih̄∂s − T H (s)] |
s〉 = 0,
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as a differential equation defining a section of E along a curve
κ: [0, 1] → M. Since P(s)∂s |
(κ (s))〉 = ∑

j κ̇
jP∂ j |
〉 ≡

∇κ̇ |
〉 the equation can be recast in the form

ih̄
∇
ds

|
〉 = T HPP |
〉 ,

where ∇
ds is the covariant derivative along the curve κ (s).

Then, if HPP = EnP (irrespective of the dimension of the
eigenspace), the variational equation of motion is equivalent
to the parallel transport condition

∇
ds

|�〉 = 0

for the vector |�〉 = exp[+ i
h̄ T

∫ s
0 En(s′) ds′] |
〉. This equa-

tion uniquely defines a unitary map Ux(s; κ ), the parallel
transport map, between the space Vx above x = κ (0) and the
space Vy above y = κ (s), for any s ∈ [0, 1]. The latter solves
the equation

ih̄
∂Ux

∂s
= KκUx, Ux(0; κ ) = 1,

where Kκ is the self-adjoint operator defined by

Kκ = ih̄
∑

j

κ̇ j[∂ jP, P]

(similarly to the case of the variational equation of motion
discussed in Sec. II).

Finally, to further emphasize the role played by the man-
ifold dynamics we notice that Ṗ determines the adiabatic
currents associated to time-independent observables O,

d 〈O〉
dt

= 2Re〈
|O|
̇〉

≡ 2Re〈
|O|Ṗ
〉 = 2
∑

j

Re〈
|O|∂ j
〉ẋ j,

where we have used Eq. (4) and in the last step we have
assumed a nondegenerate eigenspace. Here on the rightmost
side only the change of |
〉 in the complementary space
matters, since Re〈
|OP|∂ j
〉 = 0.

APPENDIX B: FUBINI-STUDY METRIC AND GEOMETRY
OF THE LITE

In the projective Hilbert space P(H) whose elements ψ̂ are
rays associated to quantum vectors |ψ〉 ∈ H, a distance DFS

can be introduced by referencing to the unit sphere in H. This
is the Fubini-Study metric and can be defined for any pair of
states ψ̂ and φ̂ as

D2
FS(ψ̂, φ̂) = min ||ψ − φ||2 = 2(1 − | 〈ψ |φ〉 |), (B1)

where |ψ〉 and |φ〉 are normalized representatives of the rays
ψ̂ and φ̂, respectively, and the minimum is taken over their
phase difference. When the rays are the one-dimensional
fibers of a vector bundle π : E → M, as is the case in
the adiabatic approximation with nondegenerate states dis-
cussed in the main text, the above distance turns the base
manifold M Riemannian. This can be seen by introducing
a smooth parametrization of the manifold, considering two

nearby points x and x + dx in M and the distance between
the rays above them, i.e.,

D2
FS(ψ̂ (x), ψ̂ (x + dx))

=
∑

i j

Re 〈∂iψ |(1 − |ψ〉 〈ψ |)|∂ jψ〉 dxidx j

=
∑

i j

gi jdxidx j . (B2)

This follows from Eq. (B1) for a normalized representative
|ψ〉 of ψ̂ upon exploiting ∂i 〈ψ |ψ〉 = 0 and ∂ j∂i 〈ψ |ψ〉 = 0,
and keeping terms up to second order in dxi. The tensor
appearing on the r.h.s. of Eq. (B2) defines, under mild con-
ditions, the Fubini-Study metric on TM, as first observed by
Provost and Vallee [36], and it is precisely the real part of the
(gauge-invariant) quantum geometric tensor of Eq. (7) based
on the section |ψ (x)〉 of normalized vectors. Notice that the
construction just outlined is entirely general and holds also
when the Hilbert space itself is viewed as a vector bundle with
base M = P(H) and its fibers are all the possible rays.

In the main text, we have shown that in the adiabatic
approximation the LITE is closely related to the above metric
[Eq. (6)]. The connection is entirely general and not tied to the
validity of the adiabatic approximation. Specifically, as shown
in Refs. [29,30] the FS distance between the variational (ψ̂dt )
and the exact (ψ̂exact

dt ) states evolved in the infinitesimal time
dt from the same state ψ̂t reads as (up to second order in dt)

D2
FS

(
ψ̂t+dt , ψ̂

exact
t+dt

) = ε2dt2

= 1

h̄2

(
�E2

t − h̄2||ψ̇+
t ||2)dt2, (B3)

where �E2
t is the energy variance associated with ψ̂t and

|ψ̇+
t 〉 is the time derivative of the representative defined by the

standard (dynamical) gauge along the variational trajectory
(i.e., by the condition 〈ψt |ψ̇+

t 〉 = 0). This result follows from
the McLachlan variational principle, upon exploiting Eqs. (4)
and (6) of Ref. [29]. In Eq. (B3) the first term on the r.h.s. is
related to the squared velocity of the exact system evolution
[46],

D2
FS

(
ψ̂exact

t , ψ̂exact
t+dt

) = �E2
t

h̄2 dt2 + O(dt3), (B4)

and the second term connects similarly to the squared velocity
of the variationally evolved state ψ̂t , as becomes apparent for
complex-analytic manifolds which admit a variational effec-
tive Hamiltonian as generator of the time evolution. In other
words, we have that Pythagoras’ identity

D2
FS

(
ψ̂t , ψ̂

exact
t+dt

) = D2
FS(ψ̂t , ψ̂t+dt )

+ D2
FS

(
ψ̂t+dt , ψ̂

exact
t+dt

)
(B5)

holds locally, up to second order in dt , for the elementary
basic triangles formed by the points ψ̂t , ψ̂t+dt , and ψ̂exact

t+dt in
the projective Hilbert space of the system.
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APPENDIX C: EXACT FACTORIZATION
AND FORMULATION BY ABEDI ET AL. [31]

The exact-factorization equations for the nuclear and elec-
tronic “wave functions” given in Sec. III are identical to those
given in Refs. [31,32]. This is evident for the nuclear equa-
tion but not for the electronic equation since the authors of
Refs. [31,32] wrote the latter in a rather different form which,
in our notation, would read

ih̄ |∂t u〉 =
[

Hel −
(

Ē − h̄A0 + h̄2

2

∑
i j

ξ i jqi j

)]
|u〉

+
[∑

i j

ξ i j

2
( p̂i − h̄Ai )( p̂ j + h̄A j )

+
∑

i j

ξ i j

(
p̂iψ

ψ

)
( p̂ j + h̄A j )

]
|u〉 .

Here (Ē − h̄A0 + h̄2

2

∑
i j ξ

i jqi j ) = ε is the effective energy
introduced by the authors of Ref. [31,32], and the second
bracket, denoted F in the following, contains Hamiltonian
momentum terms p̂i’s rather than π̂i’s or v̂i’s (which are gauge
tensorial). However, it is only a matter of simple algebra to
show that indeed

F − ε = K[ψ] + h̄A0 − Ē

as required by the equation above or, equivalently,

F = K[ψ] + h̄2

2

∑
i j

ξ i jqi j .

To see this notice that

F ≡
∑

i j

ξ i j

(
π̂i

2
+ π̂iψ

ψ
+ h̄Ai

)
( p̂ j + h̄A j )

=
∑

i j

ξ i j

(
p̂i + h̄Ai

2
+ π̂iψ

ψ

)
( p̂ j + h̄A j )

=
∑

i j

ξ i j

2
p̂i p̂ j +

∑
i j

ξ i j

2
h̄ p̂iA j +

∑
i j

ξ i j

2
h̄Ai p̂ j

+ h̄2

2

∑
i j

ξ i jAiA j +
∑

i j

v̂ jψ

ψ
( p̂ j + h̄A j ),

where

( p̂ j + h̄A j ) |u〉 = −ih̄(∂ j − 〈u|∂ ju〉) |u〉 ≡ −ih̄Q∂ j |u〉
gives ∑

j

v̂ jψ

ψ
( p̂ j + h̄A j ) |u〉 = −ih̄

∑
j

v̂ jψ

ψ
Q∂ j |u〉

and, on the other hand,∑
i j

ξ i j

2
h̄( p̂iA j + Ai p̂ j ) |u〉

= −ih̄2
∑

i j

ξ i j

2
(∂iA j ) |u〉

− ih̄2
∑

i j

ξ i j

2
(Ai |∂ ju〉 + Aj |∂iu〉)

= −ih̄2
∑

i j

ξ i j

2
(AiQ |∂ ju〉 + AjQ |∂iu〉)

− ih̄2
∑

i j

ξ i j

2
(∂iA j ) |u〉 − h̄2

∑
i j

ξ i jAiA j |u〉 .

Hence,

F |u〉 = − ih̄
∑

j

v̂ jψ

ψ
Q∂ j |u〉

− ih̄2
∑

i j

ξ i j

2
(AiQ |∂ ju〉 + AjQ |∂iu〉)

+
∑

i j

ξ i j

2
p̂i p̂ j − ih̄2

∑
i j

ξ i j

2
(∂iA j ) |u〉

− h̄2

2

∑
i j

ξ i jAiA j |u〉 .

Finally, upon observing that

AiAj + qi j = 〈∂iu|u〉 〈u|∂ ju〉 + 〈∂iu|Q∂ ju〉
≡ 〈∂iu|∂ ju〉 ≡ ∂i(〈u|∂ ju〉) − 〈u|∂i∂ ju〉 ,

we write

− h̄2

2

∑
i j

ξ i jAiA j |u〉 − ih̄2
∑

i j

ξ i j

2
(∂iA j ) |u〉

= h̄2

2

∑
i j

ξ i jP |∂i∂ ju〉 + h̄2

2

∑
i j

ξ i jqi j |u〉

and obtain

F |u〉 = − ih̄
∑

j

v̂ jψ

ψ
Q∂ j |u〉

− h̄2

2

∑
i j

ξ i j (iAiQ |∂ ju〉 + iA jQ |∂iu〉 + Q |∂i∂ ju〉)

+ h̄2

2

∑
i j

ξ i jqi j |u〉 ,

where

iAiQ |∂ ju〉 + iA jQ |∂iu〉 + Q |∂i∂ ju〉 ≡ Di j |u〉
i.e.,

F |u〉 = −ih̄
∑

j

v̂ jψ

ψ
Q∂ j |u〉 − h̄R |u〉 + h̄2

2

∑
i j

ξ i jqi j |u〉

as we intended to show.

APPENDIX D: EQUIVALENCE OF THE BARE FRICTION
KERNEL [Eq. (43)] WITH DMS FRICTION [26] at T = 0 K

Here, we prove the equivalence of the T = 0 K limit of
the DMS expression for the friction [Eq. (2)] with the one
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obtained in Eq. (43). When the electronic bath is not carrying
any current the steady-state density operator is the canonical
one, and in the limit T → 0 we have ρ → |u0〉 〈u0| = P0 and
∂ jρ = |∂ ju0〉 〈u0| + |u0〉 〈∂ ju0|. This gives two terms,

γ DMS
k j = −

∫ ∞

0
tre[(∂kHel )e

− i
h̄ H ′

elτ |∂ ju0〉 〈u0|]dτ

−
∫ ∞

0
tre[(∂kHel ) |u0〉 〈∂ ju0| e+ i

h̄ H ′
elτ ]dτ,

which are the complex conjugate of each other, i.e.,

γ DMS
k j = −2Re

∫ ∞

0
〈u0|(∂kHel )e

− i
h̄ H ′

elτ |∂ ju0〉 dτ.

Then, upon noticing that

(∂kH ) |u0〉 = (E0 − Hel ) |∂ku0〉 + (∂kE0) |u0〉
and introducing the projector Q0 = 1 − P0, we find

γ DMS
k j = 2Re

∫ ∞

0
〈∂ku0|Q0H ′

ele
− i

h̄ H ′
elτ |∂ ju0〉 dτ

− 2(∂kE0)
∫ ∞

0
Re 〈u0|∂ ju0〉 dτ,

where the first term is precisely the real part of γ̄k j intro-
duced above, and the second term vanishes identically since
〈u0|∂ ju0〉 is pure imaginary. Note that the usual converging
factor has been tacitly assumed.

APPENDIX E: MARKOV LIMIT

We detail here how to correctly interpret the zero-
frequency limit that appears in the Markovian regime. We are
interested in expressions of the kind

I (t ) = Re
∫ +∞

−∞
h(τ )V (t − τ ) dτ, (E1)

where V (t ) is a complex-valued velocity field and h(t ) is a
causal memory kernel. The Fourier transform of the latter,
h̃(ω), is taken to be nonzero only for ω > 0, a feature that
makes the ω → 0 limit ambiguous and h(t ) necessarily com-
plex [otherwise Reĥ(ω) = Reh̃(−ω) would hold]. Let us then
rewrite I in the form

I (t ) =
∫ +∞

−∞
hr (τ )Vr (t − τ ) dτ −

∫ +∞

−∞
hi(τ )Vi(t − τ ) dτ,

(E2)
where the subscripts r and i denote the real and imag-
inary parts, respectively, and assume that V is Fourier-
transformable, in such a way that∫ +∞

−∞
ha(τ )Va(t − τ ) dτ = 1

2π

∫ +∞

−∞
Ṽa(ω)h̃a(ω)e−iωt dω

holds for a = r, i. In the Markov limit, the Ṽa(ω)’s can be
taken sharply and symmetrically peaked around ω = 0, so that

1

2π

∫ +∞

−∞
Ṽa(ω)h̃a(ω)e−iωt dω

≈ Reh̃a(0)
1

2π

∫ +∞

−∞
Ṽa(ω)e−iωt dω = Reh̃a(0) Va(t )

irrespective of whether the Imh̃a(ω)’s (which are odd func-
tions of ω) are continuous or not at ω = 0. The limit ω → 0
is now unambiguous,

Reh̃r (ω) = 1
2 Re[h̃(ω) + h̃∗(−ω)],

Reh̃i(ω) = 1
2 Im[h̃(ω) − h̃∗(−ω)],

and, upon recalling that h̃(ω) = 0 for ω < 0, takes the form

lim
ω→0

Reh̃r (ω) = 1
2 lim

ω→0
Reh̃(|ω|),

lim
ω→0

Reh̃i(ω) = 1
2 lim

ω→0
Imh̃(|ω|).

In other words, in the Markov limit one can write I (t ) ≈
Re(γV (t )) with

γ = 1
2 lim

ω→0+
h̃(ω),

thereby justifying the factor of 2 in Eq. (50).
The definition of the friction kernel γk j (ω) as given by

Eqs. (50) and (51) is further consistent with the usual descrip-
tion of the non-Markovian dynamics given by the real (i.e.,
“truly frictional”) part of h(t ). To show this, let us consider
the spectral representation of the causal kernel h(t ) in terms
of Reh̃(ω)

h(t ) = �(t )

[
1

π

∫
R

e−iωt Reh̃(ω) dω

]
,

and let us focus on the “ordinary” memory kernel g(t ) =
Reh(t ). From

g(t ) = h(t ) + h∗(t )

2
≡ �(t )

π

∫
R

e−iωt Reh̃(ω) + Reh̃(−ω)

2
dω

the spectral function Reg̃(ω) follows as

Reg̃(ω) = Reh̃(ω) + Reh̃(−ω)

2
≡ Reh̃(|ω|)

2
,

where in the last step we have made use of the fact that
Reh̃(−|ω|) = 0. In other words, the spectral function Reh̃(ω)
of an “excitation” kernel (i.e., a kernel that is nonzero only for
positive ω) can be converted into an ordinary spectral function
by halving the value it attains at the magnitude of the given
frequency. The ordinary spectral density then reads for any
ω ∈ R:

J (ω) = ωReg̃(ω) = ωReh̃(|ω|)
2

.

For comparison, notice that in the main text, it is the second
term of Eq. (50), i.e., 2γk j (ω), that plays the role of h̃(ω).

APPENDIX F: INDEPENDENT OSCILLATOR MODEL

We show in this Appendix that the real part of Eq. (55)
reduces to a familiar expression when the bath is a collec-
tion of independent oscillators coupled linearly to a “system”
coordinate s. This common model of dissipation [42,43] fits
well within the setup described in the main text, provided the
electronic bath is replaced by a phononic one. The coupling
is linear in the oscillator coordinates qk , and takes the form
Hint = ∑

k cksqk in the simplest coupling model that gives rise
to classical and quantum generalized Langevin equations for
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s. Hence, the on-shell projector appearing in Eq. (55) can be
restricted to one-phonon states,

δ(E0 + h̄ω − Hbath) = 1

h̄

∑
b

δ(ω − ωb)a†
b |0〉 〈0| ab,

where the sum runs over the oscillator modes, |0〉 is the
vacuum state of the (local) bath Hamiltonian and a†

b is the
phonon-creation operator. There is only one degree of free-
dom for the system, whose interaction with the environment
is described by the spectral density J (ω) = Re�ss(ω). Using
Eq. (55) the latter reads as

J (ω) = π

h̄

∑
b,k

δ(ω − ωb)ck 〈
0|(∂sH )a†
b|
0〉 〈
0|abqk|
0〉

≡ π

h̄

∑
b

�qbcbδ(ω − ωb) 〈
0|(∂sH )a†
b|
0〉 ,

where ∂s denotes differentiation w.r.t. s and qk = �qk (ak +
a†

k ) has been used. Here �qk is the “width” of the ground-
state harmonic oscillator wave function for the kth mode,
namely, (�qk )2 = h̄/(2mkωk ). Hence, upon making explicit
the remaining coupling, we obtain

J (ω) = π

h̄

∑
b

δ(ω − ωb)
∑

k

c2
k

h̄

2mkωk
δkb

≡ π

2

∑
k

c2
k

mkωk
δ(ω − ωk ),

which is the known expression of the spectral density for this
kind of model [42] (for ω ∈ R+).
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