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Topological exchange statistics in one dimension
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The standard topological approach to indistinguishable particles formulates exchange statistics by using the
fundamental group to analyze the connectedness of the configuration space. Although successful in two and more
dimensions, this approach gives only trivial or near-trivial exchange statistics in one dimension because two-body
coincidences are excluded from configuration space. Instead, we include these path-ambiguous singular points
and consider configuration space as an orbifold. This orbifold topological approach allows unified analysis of
exchange statistics in any dimension and predicts possibilities for anyons in one-dimensional systems, including
non-Abelian anyons obeying alternate strand groups. These results clarify the nontopological origin of fractional
statistics in one-dimensional anyon models.
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I. INTRODUCTION

Although all fundamental particles and most composite
particles either satisfy Bose-Einstein (BE) or Fermi-Dirac
(FD) statistics, recent measurements provide the strongest
evidence yet that quasiparticle excitations in the fractional
quantum Hall effect (FQHE) obey fractional exchange statis-
tics [1,2]. Wilczek coined the term anyons for particles
that obey fractional exchange statistics [3] and these recent
experiments demonstrate that the excitations in the FQHE
characterized by a ν = 1/3 filling factor exhibit a θ = π/3
exchange phase, satisfying a prediction made nearly 40 years
ago [4–6].

The origin of fractional exchange phases in the FQHE can
be traced to a topological peculiarity: For two-dimensional
systems with two-body coincidences excluded, the configu-
ration space is not simply-connected [7]. Not all paths in
configuration space that exchange particles are equivalent,
and the equivalence classes of possible exchange paths are
described by the braid group. Abelian representations of the
braid group are characterized by an arbitrary exchange phase
θ ∈ [0, 2π ) that determines the fractional exchange statistics
parameter θ [8–11]. Because of their topological origin, the
fractional exchange statistics of these anyons can be trans-
muted into a gauge interaction, i.e., the charged flux-tube
model [11,12]. Quasiparticle excitations obeying non-Abelian
braid group statistics may also exist in the FQHE [13–15], but
unambiguous confirmation remains experimentally elusive.
Adiabatic exchanges of non-Abelian anyons could provide an
implementation for fault-tolerant quantum computing [16,17].
This application, combined with a fundamental interest in
understanding topological states of matter, continues to drive
interest in engineering physical systems that support excita-
tions with nonstandard exchange statistics [15,18,19].

Can the topological approach to exchange statistics in two-
dimensional systems be applied to one-dimensional systems?

There is debate in the literature. Unlike in two or more dimen-
sions, particles in one-dimensional systems must pass through
each other to exchange positions and even short-range (or
zero-range) interactions have dramatic dynamic and thermo-
dynamic effects [20]. Given the inevitable intermingling of
interactions with exchange in one dimension, can a purely
topological exchange phase be separated from the dynamical
phase accumulated along the exchange trajectory [21]? Fur-
ther, for indistinguishable particles, what does pass through
each other even mean? The two-body coincidence is a singular
point in configuration space that introduces ambiguity [22],
so how can one distinguish trajectories in which two particles
reflect from those in which they transmit?

The standard formulation of topological exchange statistics
is not sufficient as it excludes two-body coincidences from
configuration space. In one dimension, the removal of two-
body coincidences makes particle exchanges impossible, and
so the standard formulation of topological exchange statistics
allows only trivial representations [15,23]. To overcome this
technical limitation, we extend the standard formulation of
topological exchange statistics by treating the configuration
space of indistinguishable particles as an orbifold [22,24,25],
a generalization of the idea of a manifold [26,27]. Informally,
an orbifold is locally equivalent to the linear quotient of a Eu-
clidean space by a finite group and remembers that symmetry.
This extension allows trajectories that reflect and transmit at
two-body coincidences to be topologically distinguished by
elements of the orbifold fundamental group, even for indistin-
guishable particles.

We present details about orbifolds in Sec. II, but a simple
example of an orbifold is the configuration space for two
indistinguishable particles on a line, equal to a plane modulo
a reflection, R2/S2. This quotient identifies indistinguishable
configurations (x1, x2) and (x2, x1) in R2 and has singular lo-
cus x1 = x2. In R2, singular points like (x, x) have a Euclidean
neighborhood, but how do they look in the quotient space?

2469-9926/2022/105(5)/052214(15) 052214-1 ©2022 American Physical Society

https://orcid.org/0000-0003-2655-3327
https://orcid.org/0000-0002-5719-6003
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.052214&domain=pdf&date_stamp=2022-05-19
https://doi.org/10.1103/PhysRevA.105.052214


N. L. HARSHMAN AND A. C. KNAPP PHYSICAL REVIEW A 105, 052214 (2022)

One could collapse all identified points to obtain the underly-
ing space, the half-plane |R2/S2|, as a manifold with boundary
[7]. Alternatively, one could consider R2/S2 as an orbifold,
a two-dimensional space with an internal edge of orbifold
singularities on the reflection line. To elucidate the difference,
consider the perspective of an ant sitting on the singular locus
of R2/S2. In the half-plane perspective, there is an edge of the
universe which no path can cross. The half plane is simply
connected and there are no topological exchange statistics.
However, in the orbifold perspective, the ant sees itself as
sitting in the middle of an infinite plane where the view just
happens to be symmetric. Paths that cross (transmit) and do
not cross (reflect) this internal edge can be distinguished by
the local observer. The orbifold fundamental group in this
case is the symmetric group S2, giving the possibility for both
bosonic and fermionic topological exchange statistics.

We first introduced the orbifold extension to the topologi-
cal approach to exchange statistics in Ref. [28]. This analysis
was motivated by the observation that, like two-body inter-
actions in two dimensions, three-body interactions in one
dimension cause codimension two defects in configuration
space. Engineering such interactions could be feasible in
ultracold atomic gases in optical traps and optical lattices
[29–32]. The orbifold fundamental group arising from hard-
core three-body interactions in one dimension is similar to
the braid group: It is an infinite discrete group that descends
from the symmetric group by breaking one of the generating
relations. Further, it is realized by strand diagrams obeying
certain crossing rules. We named it the traid group by analogy,
but mathematicians also had discovered it in other contexts
and given it various other names [33], including the doodle
group [34,35], the planar braid group [36], and the twin group
[37,38].

We extend these results in Sec. III and classify all possible
topological exchange statistics for distinguishable and indis-
tinguishable particles in one dimension. We consider the only
two topological types of path-connected one-dimensional
base manifolds, the interval-type (which includes the infinite
interval of the real line) and circle, and we analyze all possible
topologically nontrivial interactions. This includes hard-core
two-body interactions, three-body interactions, and one other
nontrivial form: a nonlocal four-body interaction for which
pairwise coincidences are allowed, but not pairs of pairwise
coincidences. This interaction leads to another descendent
of the symmetric group that we call the fraid group. It is
realized by strand diagrams with nonlocal relations between
the generators.

Our results in Sec. III B demonstrate that on the twisted
configuration space appropriate for indistinguishable particles
on a ring, the possibility exists for non-Abelian generalized
parastatistics for soft-core particles. We also extend the traid
and fraid group (and their combination) to the ring geometry
and discuss their pure forms that apply to distinguishable
particles.

Although a topological definition for exchange statistics
in one dimension did not previously exist, there is a large
literature of one-dimensional models where the particles are
anyons and/or have fractional statistics. Continuum mod-
els include (references are representative, not exhaustive)
[39]: (1) Leinaas-Myrheim anyons [7,40,41], (2) Calogero-

Sutherland anyon models [21,23,42], (3) hard-core anyon
models with δ-type interactions and fractional exchange
statistics [43–45], and (4) Kundu-Lieb-Liniger anyons with
non-hard-core δ-type interactions and fractional exchange
statistics [41,46–55]. A full survey of these model exceeds the
scope of this article (for a brief review, see Appendix A of
Ref. [41]), but a unifying property of these models is that they
contain a parameter that interpolates between bosonic and
fermionic limits. In Sec. IV, we give a preliminary analysis of
these four classes of continuum models and conclude that any
braidlike exchange phases in models (2)–(4) originate from
dynamics, i.e., they are nontopological in origin and cannot
be absorbed into a statistical gauge interaction.

Finally, in the concluding Sec. V we summarize our results
and point out several directions for future work. In particular,
we highlight two sets of open questions: the mathematical
properties and physical consequences of traid and fraid group
anyons and the conceptual and mathematical shifts required
to formulate the quantum mechanics of indistinguishable par-
ticles on orbifolds.

II. ORBIFOLD APPROACH TO TOPOLOGICAL
EXCHANGE STATISTICS

This section presumes that the reader has some familiarity
with the topological approach to building a quantum theory on
a configuration space X . The key idea is that when a configu-
ration space is not simply connected, then single-valued wave
functions defined on the configuration space may not exhaust
the set of allowed states. The fundamental group π1(X ) of
the configuration space describes the connectivity of the X by
equivalence classes of loops. The irreducible representations
of π1(X ) provide a classification of possible wave functions,
including single-valued and multivalued as well as single
component (Abelian) and multicomponent (non-Abelian). Al-
ternatively, one may work with only-single valued functions
by lifting the quantum system to the unique, simply connected
universal cover of the configuration space X̃ . For complete-
ness, we provide a brief overview of these standard results for
manifolds X in Appendix A. We also provide a brief review of
the main approaches to particle statistics, including exchange
statistics and exclusion statistics, in Appendix B.

As first demonstrated by Leinaas and Myrheim [7], topo-
logical exchange statistics beyond FD or BE are possible
when the base manifold upon which the particles move is
not simply connected or (in one and two dimensions) when
particle interactions create topological defects. They found the
possibility for novel statistics by defining the configuration
space of N indistinguishable particles on a base manifold
M as the quotient of the configuration space manifold of N
distinguishable particles X = MN by the symmetric group
SN of particle permutations [7,56]:

Q = X /SN . (1)

Sometimes called the intrinsic approach to indistinguishabil-
ity [22], taking the quotient removes physically meaningless
particle labels from the mathematical description at the start.
Although taking the quotient precludes making passive per-
mutations of particle identity, active particle exchanges are
realized by loops in Q.
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Taking the quotient also introduces a natural orbifold struc-
ture to Q. Orbifolds have singular points where nontrivial
local symmetries have topological consequences. Tradition-
ally, these singular points have either been removed from
configuration space or trivialized. Instead, we include these
points and describe the particle exchanges of indistinguishable
particles using the orbifold fundamental group π∗

1 (Q).
The generalization to π∗

1 captures the topological impact of
singular points with co-dimension d̃ = 1 or d̃ = 2 on parallel
transport. Loci of singular points with d̃ = 1 are internal mir-
rors and occur at two-body coincidences in one-dimensional
systems. Loci of singular points with d̃ = 2 are either isolated
singularities, called cone points, which occur in the case of
particles in two dimensions, or corners formed by intersec-
tions of d̃ = 1 intersections of internal mirrors and occur in
the case of particles in one dimension.

Using the orbifold fundamental group, we find the relation

π∗
1 (Q) = SN (M) (2)

holds for any path-connected base manifold M. Here SN (M)
is the generalized symmetric group [57],

SN (M) ≡ π1(M)N
� SN ≡ π1(M) � SN , (3)

where � denotes the wreath product, a semidirect product in
which SN acts on the normal subgroup π1(M)N by permuta-
tion of factors [58,59]. For a simply connected base manifold,
SN (M) reduces to the symmetric group SN as expected.

The result (2) was previously derived for d = dim M � 3
in Ref. [57] where exchange statistics given by SN (M) are
called generalized parastatistics. Extending the result (2) to
particles on base manifolds M with dimensions d = 1 and
d = 2 requires the orbifold approach that we develop over
the rest of this section. The classification of topological ex-
change statistics in one dimension presented in Sec. III can
be understood without these details on orbifolds and orbifold
fundamental groups.

A. Distinguishable particle

To understand the orbifold structure of the configuration
space for indistinguishable particles, first consider distin-
guishable particles moving on a path-connected manifold M
with dim M = d . The configuration space is

X = MN ≡
N times︷ ︸︸ ︷

M × · · · × M . (4)

The fundamental group of X ,

π1(X ) = π1(M)N , (5)

is the N-fold direct product of the fundamental group of M.
The universal cover X̃ of X factorizes similarly X̃ = (M̃)N .

Removing particle coincidences may disrupt this product
structure (5) for base manifolds M with dimension d = 1
or d = 2. To see this, note that every point in X can be
classified by its pattern of coinciding coordinates. For generic
points x ≡ {x1, . . . , xN } ∈ X , all N coordinates are different.
In contrast, the set of all points that have at least one pair of
coordinates the same is called the coincidence locus �2 ⊂ X ,
or sometimes the fat diagonal of X [60]. Similarly, one can
define �3 ⊂ �2 as the locus where at least three particle

coordinates are the same, �2,2 ⊂ �2 as the locus where there
are at least two pairs of coinciding particles, etc.

More generally, the space X is stratified by integer par-
titions of N . Each integer partition [n1 . . . nk] ∈ PN is a
collection of positive integers which sum to N , typically
written in nonincreasing order. For example, for N = 5, the
configuration space X = M5 is stratified into seven parti-
tions, including the partition [221] corresponding to points
with two two-particle coincidences and the partition [41] for
points with one four-particle coincidence.

For each partition [ν] = [n1 . . . nk], we define the stra-
tum X[ν] ⊂ X of points with that partition type. The stratum
X[ν] has h[ν] = N!/(n1! · · · nk!) path-connected components
depending on which coordinates are equal. The closure of
each stratum X[ν] is defined by

∑k
j=1(n j − 1) equalities of

d-dimensional variables giving us that X[ν] is codimension
d̃ = ∑k

j=1(n j − 1)d within X .

The fat diagonal �2 = X[21...1] is the union of all X[ν]

except the generic points in X[1...1] and its top-dimensional
stratum has codimension d̃ = d . Therefore, for base mani-
folds M with d = 1 or d = 2, removing �2 from X disrupts
the connectivity and the fundamental group is no longer given
by (5). For d = 1 base manifolds M, the coincidence loci �3

(the closure of X[31...1]) and �2,2 (the closure of X[221...1]) have
codimensions d̃ = 2d = 2, as we discuss in detail Sec. III.

As a final note, when the particles are distinguishable
but identical, then particle permutations are a symmetry of
the Hamiltonian. There is a representation O : SN → Diff(X )
denoted s �→ Os ∈ O(SN ) that acts as a passive coordinate
transformation, exchanging factors in the product (4). Generic
points x ∈ X[1...1] have orbits under permutation {Os(x)|s ∈
SN } with N! members. For all other partitions [ν]„ each point
x ∈ X[ν] has a nontrivial stabilizer subgroup Hx ⊂ SN , i.e.,
the subgroup that exchanges coinciding coordinates. Such
points have orbits with only N!/|Hx| members. The particular
embedding S[ν] = Sn1 × · · · × Snk into SN depends on which
of the h[ν] components of X[ν] contains x, and two points of
different components will will have conjugate stabilizers.

B. Intrinsic approach

In the intrinsic approach, physics happens on the indis-
tinguishable particle space Q rather than X . The quotient
Q = X /SN defines a forgetful map p : X → Q that erases the
particles’ identities and sends each point of X to its SN orbit.
For generic points in X[1...1], the map p : X → Q is N! : 1,
but points in the coincidence locus �2 are singular under this
map.

Reversing this, each possible choice of coordinate labels
is equivalent to a lift of the point q0 ∈ Q to one of its rep-
resentative points x0 ∈ X in the orbit. Since particle labels
are meaningless for indistinguishable particles, any assign-
ment of labels to coordinates of q0 is a choice of gauge. The
diffeomorphisms Os of X permute the representatives of q0

and therefore the particle labels, so they form a discrete gauge
transformation group. From another perspective, these label-
permuting symmetries Os form a generalization of the deck
transformations of a covering space in the orbifold category
[61].
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In contrast to the passive transformations Os of X , closed
loops in Q realize active particle exchanges along continuous
paths. However, paths that pass through the singular points
�2/SN ⊂ Q give an ambiguity. Did the particles exchange at
the coincidence point or not? Especially in one dimension, the
ambiguity between reflection and transmission is essential to
understanding exchange statistics. However, the fundamental
group π1(Q) does not see the path ambiguity embodied in
these singular points [22].

There are two standard solutions to the presence of these
singular points that avoid using orbifolds. First, one can con-
sider the space

Q2 = X2/SN = Q − �2/SN , (6)

where X2 = X − �2. The configuration space Q2 has no
multibody coincidences and without these points, the restric-
tion of p that maps X2 → Q2 forms a covering space in the
usual sense. Therefore, Q2 is a manifold and exchange paths
are described completely by π1(Q2). Famously, for M = R2,
π1(Q2) is the braid group BN and π1(X2) is the pure braid
group PBN . On general d = 2 surfaces M, the fundamental
group π1(Q2) gives the generalized braid groups BN (M) and
pure braid groups PBN (M) [57,62–65]. For M = R3, all
particle exchanges which do not permute the particles are
homotopically trivial and so π1(Q2) = SN , resulting in normal
exchange statistics.

Alternatively, one can consider the underlying space |Q|
of the orbifold Q, which includes a set of singular points
|�2/SN | but ignores their orbifold structure [61]. The space
|Q| is a manifold with certain degeneracies along |�2/SN |
such as a boundary or corners. In this case, one uses the usual
fundamental group π1(|Q|) to describe particle exchanges.
However, trivializing the topology like this removes the possi-
bility for nontrivial exchange statistics. Returning to the case
of M = R2, we find π1(|Q|) = 1. This implies the unsatisfac-
tory result that only trivial topological exchange statistics (i.e.,
only bosons, not even fermions) would be possible for parti-
cles moving on the plane unless interactions exclude �2/SN

[7,8].

C. Configuration space orbifold

Instead of either of these approaches, we include the singu-
lar points �2/SN in the configuration space and consider Q as
an orbifold [26,61]. Orbifolds occur naturally in the context of
classifying spaces of objects with symmetries [27]. The space
Q meets the definition of a good orbifold because it is the
quotient of a manifold by a discrete group acting upon it by
diffeomorphisms [61]. Further, Q is considered very good as it
actually is the global quotient of a manifold by a finite group.

Points in an orbifold are classified as manifold points if
their local symmetry group is trivial and orbifold points if
their local symmetry group is nontrivial. Depending on their
co-dimension, orbifold points form loci that appear as inter-
nal mirrors, cone points, or corners, and other higher order
singular points in the orbifold. Manifolds form a subclass of
orbifolds where all points have trivial local symmetry groups.

For the orbifold Q, the orbifold singular points are pre-
cisely the singular points �2/SN of p : X → Q. In the planar
example, the orbifold locus of R2/S2 has codimension d̃ = 1,

forming an internal mirror edge at the line �2/S2 of two-
body coincidences. The local symmetry group of points on
�2/S2 = p(X[2] ) is isomorphic to S2; all other points on the
half plane p(X[11]) are manifold points.

More generally, the local symmetry group of an orbifold
point in Q comes from its location in the stratification of
X by partitions, X[ν]. Each point of X[ν] is invariant under
a subgroup of SN isomorphic to S[ν] = Sn1 × · · · × Snk . The
stratification X[ν] is invariant under the SN action so the
decomposition descends to a similar stratification p(X[ν] ) =
Q[ν] ∈ Q where the stabilizers S[ν] of points x ∈ X[ν] become
the local symmetry groups of the corresponding point q =
p(x) ∈ Q[ν].

To understand how local symmetries act, first consider the
case of a manifold point q ∈ Q[1...1]. For a sufficiently small
neighborhood U of q in |Q|, the preimage p−1(U ) consists
of N! disjoint sets in X all isomorphic to U via p. Each
connected component V of p−1(U ) is a local model for Q
at q and corresponds to an assignment of N labels to the N
distinct points of M defining q or, equivalently, an unambigu-
ous ordering of those points in the product X = M × · · ·M.
In other words, p : X[1...1] → Q[1...1] is a topological covering
map and the local symmetry group of the point q ∈ Q is
trivial.

However, an orbifold point q ∈ Q[ν], ν 	= [1 . . . 1], lifts to
only h[ν] = N!/|S[ν]| points in X . Therefore, if U is a small
neighborhood of q in |Q|, then p−1(U ) will have h[ν] con-
nected components. Although each connected component V
of p−1(U ) serves as a local model for the orbifold Q at q,
they differ from the neighborhoods of manifold points in that
they are not isomorphic to U . Instead, each component V of
p−1(U ) comes with an action of S[ν] so U = V/S[ν]. The real-
ization of the S[ν] symmetries by particle-label permutations
(i.e., the embedding S[ν] ⊂ SN ) depends nontrivially on the
specific component V . Each of the V do not correspond to
a canonical choice of particle labels but instead correspond to
a choice of particle labels up to an S[ν] ambiguity.

For example, take N = 3 and consider points q ∈ Q[21].
These points q with the form {a, a, b} have preimages
(a, a, b), (a, b, a), and (b, a, a) which have neighborhoods
where the label involution is realized by the permutations
(1,2), (1,3), and (2,3), respectively. These are exactly the gen-
erators of the stabilizer subgroups of the respective points in
X[21] and the resulting copies of S2 ⊂ S3 are all conjugate.

D. Orbifold fundamental group

The orbifold fundamental group π∗
1 classifies based loops

in an orbifold up to continuous deformation, generalizing the
usual fundamental group [26,28,61]. Intuitively, an orbifold
path γ : I → Q consists of a map |γ | : I → |Q| of the un-
derlying spaces together with compatible lifts to local models
on the orbifold. For example, if Q = R2/S2, there are two
types of paths which touch the singular boundary: one which
lifts to the transmitted path in the local model and the other
which lifts to the reflected path. These paths realize, and are
distinguished by, the two elements of π∗

1 (R2/S2) = S2. As
with π1, choice of base point does not affect the isomorphism
type of π∗

1 for path-connected spaces.
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Note that for d � 3 the orbifold singular points have large
enough codimension d̃ � 3 that their presence or absence has
no effect on the connectivity or the (orbifold) fundamental
groups of X , Q, and |Q|. Therefore, each of these (orbifold)
fundamental groups are canonically isomorphic with SN (M).
However, for d = 1 and d = 2, the orbifold fundamental
group feels the disruption to connectedness created by the
local symmetry groups of orbifold loci. Like the fundamental
group, the orbifold fundamental group keeps track of how
paths intersect with d̃ = 1 orbifold loci and wind around
d̃ = 2 loci.

Using the orbifold fundamental group, the same relation
π∗

1 (Q) = SN (M) (2) holds for any dimension. When π1(M)
is trivial, then SN (M) reduces to SN and the universal cover of
Q is the simply connected space Q̃ = X and topological ex-
change statistics reproduces the results of the symmetrization
postulate in any dimension (see Appendix B). For nontrivial
π1(M), the universal covers Q̃ = X̃ = M̃N coincide. The
topology of the base manifold allows multiple exchange paths
supporting the same particle permutation to be distinguished.
Equivalently, there are paths that do not exchange particles
that are not homotopically trivial.

These results can be summarized in a short exact sequence,
a linear sequence of groups connected by homomorphisms
such that the image of one homomorphism is the kernel of
the next, and short in the sense that there are five group
terms beginning and ending with the trivial group. The fol-
lowing short exact sequence holds for any path-connected
base manifold M of any dimension and relates the fun-
damental group of X to the orbifold fundamental group
of Q:

1 → π1(X ) → π∗
1 (Q) → SN → 1, (7a)

which specifies to

1 → π1(M)N → SN (M) → SN → 1. (7b)

The proof of (2) and (7) in Ref. [57] holds when d � 3,
but fails to generalize to the orbifold case. However, we have
an alternate proof that employs a distinct, but isomorphic
definition of the orbifold fundamental group. In this definition,
like the usual fundamental group, the orbifold fundamental
group is defined to be the deck transformation group of the
universal cover [26]. Then the short exact sequence can be
extracted from a series of covers X̃ → X → Q. Here, the
covering X̃ → X is the usual universal covering of the man-
ifold X , which has deck transformation group isomorphic to
π1(X ) and the composition X̃ → Q is the universal cover of
the orbifold Q. Since X → Q comes from a group quotient,
the action of the deck transformation group is transitive, and
thus the cover is regular. This means that π1(X ) includes into
π∗

1 (Q) as a normal subgroup with quotient equal to the deck
transformation group SN of the cover X → Q, giving the short
exact sequence (7).

However, we should warn the reader that we have done
something sneaky here. When passing to the deck transfor-
mation interpretation of the the orbifold fundamental group,
we have changed the object of study! That is, for each cover,
there are two groups at work here. One is the group of

passive transformations, acting as diffeomorphisms of the
covering space, forming a discrete gauge group. In the case
of X → Q, it is the group that permutes choices of particle
labels and in the case of Q̃ = X̃ → Q, it additionally in-
tertwines how the constituent particles have wound around
M. The other group is the point-pushing group of orbifold-
homotopy loops in the configuration space that realizes active
transformations of indistinguishable particles. These groups
are isomorphic and that allows the proof of (2) and (7),
but the methods of action on Q̃ are distinct and commute.
In Sec. III A below, we contrast these actions for the sim-
plest case of indistinguishable particles on a one-dimensional
interval.

III. APPLICATION TO ONE DIMENSION

The orbifold fundamental group (2) of Q describes how
two factors determine the connectedness of configuration
space: indistinguishability and the fundamental group of the
base manifold. In three dimensions and higher, those are
the only two factors that contribute to topological exchange
statistics. However, hard-core or singular interactions exclude
points from configuration space, and in d = 1 and d = 2,
excluding points of coincidence alters π0 (the set of path-
connected components) and π1 of configuration space because
this locus has codimension d̃ � 2.

A codimension d̃ = 1 defect, such as the set of two-body
coincidences �2 in one dimension, locally splits configuration
space into connected components. Recall that �2 is formed as
the union of sets defined by equations of the form xi = x j , so
for a generic point, the local splitting is into two pieces in the
same manner as a point on a line, a line in a plane, or a plane in
a three-dimensional space. When the intersections of all two-
body coincidences �2 are removed to form X2 = X − �2,
particle exchanges through coincidences become impossible
and the particles can be given a consistent order on each
element of π0(X2).

The removal of codimension d̃ = 2 defects, which sit in
configuration space like a point in a plane or a line in a space,
also disrupts the connectivity of configuration space. Paths
that wind around the defects lead to new, nontrivial elements
of π1 that serve as (often non-Abelian) winding numbers.
Such defects occur as the result of the following few-body
coincidences in X [28,66]:

(1) Two-body coincidences �2 defined by x j = xk and
y j = yk in two dimensions.

(2) Three-body coincidences �3 defined by xi = x j = xk

in one dimension.
(3) A nonlocal, partial four body coincidences �2,2

formed by the intersection of two two-body coincidences
xi = x j and xk = xl .

The first case famously leads to the braid group and gen-
eralization (see Sec. II B). We call (orbifold) fundamental
groups that derive from the exclusion of these coincidence
loci strand groups because, like the braid group, they lead
to configuration space described by generalizations of the
symmetric group that can be realized by strand diagrams.
However, we note that for the case of �2,2, this notion of
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strand group involves nonlocal constraints, as we discuss
below.

Therefore, for d = 1 base manifolds M, we define the
additional configuration spaces

X3 = MN − �3,Q3 = X3/SN ,

X2,2 = MN − �2,2,Q2,2 = X2,2/SN ,

X{3;2,2} = MN − �3 ∪ �2,2,Q{3;2,2} = X{3;2,2}/SN , (8)

where the spaces X3,Q3 excluding three-body coincidence
hold interest for N � 3 and spaces excluding double two-body
coincidences are relevant for N � 4. Because these Q spaces
include single two-body coincidence orbifold locus �2/SN ,
we consider them as orbifolds and use π∗

1 .
There are only two homotopy types for manifolds in one

dimension: the interval type with π1(M) = 1 (a type that in-
cludes the infinite interval R) and the circle S1 with π1(M) =
Z. We classify the possible topological exchange statistics for
both manifold types below for indistinguishable and distin-
guishable particles with and without the relevant coincident
loci removed.

A. Particles on interval-type manifolds

When M is of the simply connected interval type, the
configuration space for distinguishable particles X is also
path connected and simply connected and there are no non-
trivial exchange statistics. For a finite interval, X is an
N-dimensional hypercube, but without loss of generality we
extend to the infinite interval and consider M = R and X =
RN . If the particles are distinguishable but identical, then
particle permutations are a symmetry of the Hamiltonian. A
permutation s ∈ SN is represented by an orthogonal transfor-
mation Os ∈ O(SN ) ⊂ O(N ) on X = RN ; see Refs. [59,67]
for a pedagogical introduction. The symmetrization postu-
late uses the representations O(SN ) to decompose the Hilbert
space of wave functions on X into symmetric and antisym-
metric subspaces (see Appendix B).

The intrinsic approach to indistinguishable particles also
gives the symmetric group π∗

1 (Q) = SN , as expected, but with
a different interpretation in terms of exchange loops. The
orbifold fundamental group is generated by N − 1 pairwise
exchanges σ1 through σN−1 satisfying the relations

σ 2
i = 1, (9a)

σiσi+1σi = σi+1σiσi+1, (9b)

σiσ j = σ jσi for j > i + 1. (9c)

Recall that Q is the space of indistinguishable particles, so
the generators σi ∈ π∗

1 (Q) are not the discrete permutations
of labeled particles. Instead, they are continuous paths that
actively exchange particle orderings, where each configura-
tion of points has a natural particle order determined by the
position of the particles in R. The interpretation of σ1 is that
it realizes a loop in Q that exchanges the first and second
particle; σ2 exchanges the second and third particles, etc.
These exchanges are realized as strand diagrams in Fig. 1.

We want to emphasize the difference between these two ap-
pearances of the symmetric group: (1) the active, continuous
particle exchanges π∗

1 (Q) ∼ SN represented as closed loops

FIG. 1. Depiction of the three types of generator relations (9) for
π∗

1 (Q) when N = 4 as strand diagrams, read from the bottom: (a) the
self-inverse relation σ 2

1 = 1 that is broken for the braid group gener-
ators; (b) the Yang-Baxter relation σ1σ2σ1 = σ2σ1σ2 that is broken
for the traid group generators; (c) the locality relation σ1σ3 = σ3σ1

that is broken for the fraid group generators.

on Q and (2) the group of passive particle label permuta-
tions O(SN ) ∼ SN represented as orthogonal transformations
on X . We compare the action of these groups on the points of
X2 = X − �2 by restricting the action of O(SN ) from X to X2

and lifting the action of π∗
1 (Q) from Q to X2. See Fig. 2 for a

depiction of the these different actions for the case of N = 3.

1. Singular two-body interactions

For particles in one dimension with hard-core two-body
interactions, the two-body coincidence locus �2 divides X
into N! simply connected alcoves Yω ∈ π0(X2). Each alcove
Yω is an open subset of X such that the quotient map p(Yω )
consists entirely of manifold points Q2 ⊂ Q. Each simply
connected component Yω has the geometry of an open cone
on an open simplex on the N − 1 sphere [68]. Conversely,
each manifold point q in Q2 lifts to N! points p−1(q) = {xω |
xω ∈ Yω, p(xω ) = q}. Each alcove index ω = [ω1ω2 . . . ωN ] is
a permutation of the set {12 . . . N} that indicates the positional
ordering of labeled particles in R; see Fig. 2. When M is
of interval type, sorting in this manner gives a one-to-one
correspondence between alcove orderings Yω and permuta-
tions in SN . However, as we explore in the next section, when
M = S1 we can only order particles cyclically and so this
correspondence develops a similar cyclic ambiguity.

For indistinguishable particles, Q2 is isomorphic to Yω and
the fundamental group π1(Q2) = 1 is trivial. This provides
a topological perspective on the so-called fermionization of
hard-core bosons [69,70]. Because no exchanges are possible,
there are no topological exchange statistics that differentiate
fermions and bosons from the intrinsic perspective. As we
discuss in Sec. IV below, nontopological exchange statis-
tics that interpolate between bosonic and fermionic solutions
(sometimes called Leinaas-Myrheim anyons) have been de-
fined by imposing Robin boundary conditions on �2/SN

(equivalent to delta interactions on �2 ⊂ X ) [7,41,71].
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FIG. 2. Graphical comparison of the actions of O(SN ) ∼ SN and π∗
1 (Q) ∼ SN on X2 for N = 3. (a) The relative configuration space for

three distinguishable particles on a line with coordinates (x1, x2, x3). The horizontal coordinate is z1 = (x1 − x2)/
√

2 and the vertical coordinate
is z2 = (x1 + x2 − x3)/

√
6. The black lines are the two-body coincidence locus �2 and they section X into six alcoves Yω ∈ π0(X2) where the

particles have different position orders xω1 < xω2 < xω3 . (b) Reflections across each of the three colored lines are orthogonal transformations
Os of X that represent the passive permutation of particle labels. For example, O(12) is a reflection across the vertical line (red) that permutes
the labels of particle 1 and particle 2 and O(23) is a reflection across the diagonal line with positive slope (green) that permutes the labels of
particles 2 and 3. The double-sided arrows (red) connect points xω ∈ p−1(q) and indicate how the Yω ∈ π0(X2) are permuted by O(12). (c) The
relative components of the orbifold Q and a based loop σ1 = π∗

1 (Q) starting and ending at manifold point q. This path realizes an exchange
σ1 of the first two particles. (d) The based loop σ1 in Q is lifted to six paths in X2 that start at xω and end at xω′ . For visual clarity, half of the
path lifts are represented as dashed lines. These six lifts of element σ1 = π∗

1 (Q) define a map σ̃1 on X2 that permutes the Yω ∈ π0(X2).

2. Singular few-body interactions

In contrast to Q2, removing the d̃ = 2 few-body coinci-
dences (8) gives nontrivial tolopogical exchange statistics.
The following strand groups are defined as

π∗
1 (Q3) = TN , (10a)

π∗
1 (Q2,2) = FN , (10b)

π∗
1 (Q{3;2,2}) = WN . (10c)

We call these discrete, infinite, non-Abelian groups the traid
group TN [28] (aka doodle group, planar braid group, twin
group), the fraid group FN , and the free Coxeter group WN

(aka universal Coxeter group [72]).
Like the braid group BN , the strand groups TN , FN , and

WN can be understood as resulting from eliminating generator
relations of the symmetric group [28]. Relaxing relation (9a),
the generators σi give the braid group BN . Relaxing (9b) gives
the traid group TN and relaxing (9c) gives the fraid group FN .
Relaxing both (9b) and (9c) means that only the self-inverse
relations remain and the resulting group is the free Coxeter
group WN . Each of these groups admit natural homomor-
phisms to SN obtained by reintroducing the lost relations.

These relations have a topological basis. When d � 2, each
σi can be represented by a path that avoids the coincidence
locus �2 and the loci �3 and �2,2 are codimension 2d � 4
and their removal does not affect the fundamental group as any
null homotopy of a loop can be arranged to avoid theses sets.
However, for d = 2, the relation σ 2

i = e comes from a null
homotopy of a path which must pass through the codimension
2 locus �2, so the presence of �2 determines the presence
of the relation (9a). In dimension d = 1, paths representing
σi cannot be represented disjointly from �2. However, the
loci �3 and �2,2 are codimension 2d = 2 and the relations
(9b) and (9c) are induced by null homotopies that must pass
through these sets, respectively. For example, any null ho-
motopy of the natural representative of (σiσi+1)3 must pass

through and have a strand diagram which has at least one triple
point. In other words, the null homotopy passes through �3.

The pure version of each of these groups in (10) is defined
by looking at the corresponding distinguishable particle con-
figuration space. For example, we can define the pure traid
as PTN = π1(X3). Following the argument of Sec. II D, we
construct the following short exact sequences analogous to
(7):

1 → PTN → TN → SN → 1, (11a)

1 → PFN → FN → SN → 1, (11b)

1 → PWN → WN → SN → 1. (11c)

Some mathematical results for the pure traid group PTN can
be found in Refs. [37,38,73,74].

The possible topological exchange statistics for these
strand groups are classified by the irreducible representations
of these groups. The irreducible representations of TN and
PTN have not received much attention from mathematicians,
although the Abelian representations of TN are classified
and several non-Abelian representations found in Ref. [28].
However, there is still not a complete classification of the
non-Abelian irreducible representations of the braid group 75
years after the group was first described [75], so one should
expect classifying the non-Abelian representations of the traid
and fraid groups will be a similarly complicated and long-
standing mathematical project.

B. Particles on rings

For M = S1, the distinguishable particle configuration
space X = T N is the N-torus T N = S1 × · · · × S1 with funda-
mental group π1(T N ) = ZN . This Abelian group of N tuples
of integers under addition describes equivalences classes of
paths by how many times each particle winds around the
ring. It is generated by the N translations ti of a single
particle around the circle. All irreducible representations of
ZN are classified by N tuples of phases (φ1, · · · , φN ) with
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FIG. 3. Depictions of six different elements of S4(S1) = Z � S4 =
Z4

� S4 mentioned in the text. In these strand diagrams, the ring has
been cut flattened into a line and the gray dashed lines on either side
are the cut. The elements depicted include: σ4, the pairwise exchange
of the first and fourth particle (relative to the cut) constructed from SN

generators as in first line of (13a); t1, one of the four generators of Z4

subgroup of S4(S1); its inverse t−1
1 ; the around-the-back operator σ0

defined in (13b) and simplified using σ 2
i = 1; the ζ operators defined

in (13c) corresponding to a shift in the center-of-mass by π/2 around
the ring; and ζ−1 its inverse.

φi ∈ [0, 2π ). Only for all φi = 0 are the wave functions on X
single valued. For identical but distinguishable particles, all
phases take the same value φi = φ.

For indistinguishable particles, the orbifold fundamental
group allows generalized parastatistics given by

π∗
1 (Q) = SN (S1) = Z � SN = SN � ZN . (12)

This group is non-Abelian even for N = 2 and, in addition
to multivalued, scalar representations [10], there are multival-
ued, multicomponent wave functions on the orbifold Q that
realize states with generalized parastatistics. In principle, a
complete classification of the irreducible representations of
(12) can be found using the method of induced representations
of the normal subgroup ZN [76].

1. Twisted subgroup

The group π∗
1 (Q) = SN (S1) contains the affine symmetric

group S̃N [72] (also called the twisted symmetric group [77])
as a normal subgroup. To show this, denote the N − 1 gener-
ators of SN by σi as in (9) and the N generators of ZN by ti.
The semidirect action of SN on ZN in the wreath product (12)
implies the generator relations tiσi = σiti+1 and tiσ j = σ jti for
j 	= i and j 	= i + 1. In terms of these generators, we define
the following three elements:

σN = σ1σ2 . . . σN−2σN−1σN−2 . . . σ2σ1 (13a)

= σN−1σN−2 . . . σ2σ1σ2 . . . σN−2σN−1,

σ0 = t1σNt−1
1 = t1t−1

N σN , (13b)

ζ = t1σ1σ2 . . . σN−1 = σ1 . . . σN−1tN . (13c)

These elements are depicted as strand diagrams in Fig. 3. The
element σN is the pairwise exchange of the first and last parti-
cles (with respect to some starting angle on the ring) in which
they pass through all the particles between them. The element

σ0 is the pairwise exchange of the first and last particle around
the back, i.e., without crossing the other particles. With the
addition of σ0, the set of elements {σ0, σ1, . . . , σN−1} satisfies
the defining relations for generators of the affine symmetric
group S̃N [77]. This establishes that S̃N ⊂ SN (S1).

To show S̃N is a normal subgroup, consider the element
ζ . It shifts all particles one place in the order and generates
a subgroup Zζ ⊂ SN (S1) isomorphic to the integers. It also
satisfies the relation

ζσi = σi+1ζ (14)

and, in particular, ζσN−1 = σ0ζ . The element ζ /∈ S̃N acts as
an outer automorphism on the generators of S̃N (and therefore
on all of S̃N ), establishing that S̃N is a normal subgroup of
SN (S1). Therefore, the orbifold fundamental group can be
equivalently expressed as

SN (S1) = Zζ � S̃N , (15)

where the semidirect product is specified by (14). Further note
that ζ N = t1t2 · · · tN realizes a displacement of all particles one
trip around the ring, i.e., a full displacement of the center of
mass. One can show that ζ N commutes with all elements of
S̃N .

2. Singular two-body interactions

Now consider X2. The removal of �2 divides the N-torus
T N into only (N − 1)! sectors Yω ∈ π0(X2) where ω labels
a cyclic order of the particles. There is one cyclic order for
every coset SN/CN of the symmetric group by the cyclic group
CN

∼= Z/N ≡ ZN . For N > 2, hard-core two-body interac-
tions lock the particles into a particular cyclic order ω and X2

is not path connected. Spaces with multiple path components
may, a priori, have nonisomorphic fundamental groups for
each component. However, within each ordering sector Yω,
the fundamental group π1(Yω ) is naturally isomorphic to the
integers. We denote this group as NZζ as it is generated by
a full cycle around the ring by particles ζ N . This full rotation
interpretation also gives a natural isomorphism from π1(Yω )
to the fundamental group of the base space, π1(S1).

As in the interval case, p : X2 → Q2 is not a connected
cover, but unlike the interval case, p is not simply an isomor-
phism from each Yω to Q2. Rather, the restriction of p to Yω

is a connected N : 1 cover. Each point in Q2 corresponds to N
distinct points in Yω that differ by a cyclic rotation c ∈ CN

acting as a deck (gauge) transformation of distinguishable
particles. The fundamental group π1(Q2) = Zζ generated by
ζ naturally contains π1(Yω ) ∼ π1(S1) as its NZζ subgroup
generated by ζ N .

These results establish that the corresponding short exact
sequence of Abelian groups for a connected component Yω ⊂
X2 and Q2 is

1 → π1(Yω ) → π1(Q2) → CN → 1,

1 → NZζ → Zζ → Z/N → 1. (16)

Note that the symmetric group SN no longer appears in this
sequence and therefore there are no FD statistics or paras-
tatistics possible. Instead, the Abelian group π1(Q2) = Zζ

has one-dimensional representations characterized by a single
phase φ.
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(a)

(b) (c)

(d)

(e)

FIG. 4. Depiction of the universal cover Q̃ = X̃ and several use-
ful domains for N = 2 and M = S1. The black dots are all lifts of the
same point in Q and X , the black lines are the lifts of the coincidence
locus �2 to Q̃. The red square (a) is one choice for the fundamental
domain isomorphic to the torus X = T 2. Each congruent square
would then be labeled by a pair of integers in π1(X ) = Z2 describing
the path to fundamental domain. The green triangle (b) and pur-
ple square (c) are equivalent alternate choices for the fundamental
domain isomorphic to the Möbius band Q or Q2. The blue rect-
angle (d) is the double cover of Q or Q2. It is the smallest torus
T

2 = S1
rel × S1

com for which there exists separable and single-valued
center-of-mass and relative coordinates for indistinguishable parti-
cles. Although it has the same area in configuration space, it is not
equivalent to the torus X = T 2. The yellow square (e) is the double
cover of X that is the smallest torus for which exist single-valued
center-of-mass and relative coordinates for distinguishable particles.

The geometry of Q2 provides insights into these results for
π1(Q) and π1(Q2). The manifold Q2 is a Möbius band for the
case N = 2 [7]; see Fig. 4. For N = 3, the space Q2 is a kind
of Penrose triangle, a torus with an equilateral triangle cross
section that makes a 2π/3 twist every rotation; see Fig. 5. For
higher dimensions, there is a generalized simplex hyperprism
with a twist, e.g., for N = 4, the cross section of the hyper-
prism is a rhombic dispheniod. The ordering sector Yω is an
N-fold cover of Q2 that is a also a simplex hyperprism but no
longer twisted. This universal cover of Q2 is the product of
R and an N-simplex (nonregular for N � 4) and is useful for
solving the Schrödinger equation in certain polytopes [78,79].
For Q, the corresponding geometries are the same but the
orbifold singularities at the boundaries are included.

3. Singular few-body interactions

For codimension d̃ = 2 interactions, we define the follow-
ing strand groups:

π∗
1 (Q3) = TN (S1), (17a)

π∗
1 (Q2,2) = FN (S1), (17b)

π∗
1 (Q{3;2,2}) = WN (S1). (17c)

Like the interval versions (10), the equivalent groups (17)
result from breaking the analogous generator relations and
each of these groups admit maps to SN (S1) from relation
reintroduction.

FIG. 5. Two views of a depiction of the universal cover Q̃ = X̃
and several useful domains for N = 3 and M = S1. The black dots
are all lifts of the same point in Q and X , the black planes in the
lower figure are the lifts of the coincidence locus �2 to Q̃. The five
highlighted domains are equivalent to the five domains depicted in
Fig. 4: The red cube is a fundamental domain congruent to X = T 3,
the green 3-orthoscheme tetrahedron and purple triangular prism are
equivalent alternate choices for the fundamental domain isomorphic
to the Penrose triangle Q or Q2. The blue rhombic prism is the mini-
mal separable torus for indistinguishable particles T

3 = T 2
rel × S1

com

and the yellow rhombic prism is the minimal separable torus for
distinguishable particles.

The factorizations (12) and (15) of SN (S1) provide two
alternate ways to view the groups in (17). For the case of
π∗

1 (Q3), the two factorizations are

TN (S1) = TN � ZN , (18a)

= Zζ � T̃N . (18b)

In the first factorization, the normal subgroup ZN of par-
ticle translations around the ring is the same as (12), but TN

replaces SN . The semidirect product in (18a) obeys the same
relations between the generators σi and t j as (12). Similarly, in
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the second factorization the twisted traid group T̃N is defined
from S̃N by breaking the relation (9b) extended to the larger
set of generators {σ0, . . . , σN−1}. The semidirect product is
inferred from the same generator relations as (15).

Equivalent constructions define the twisted fraid group F̃N

and the twisted universal Coxeter group W̃N . In principle,
these forms of the factorization provide a way to construct
and classify irreducible representations of these strand groups
on rings from the irreducible representations of strand groups
on intervals.

Finally, pure versions of (17) can be defined for the fun-
damental groups of the manifolds X3, X2,2, and X{3;2,2} that
satisfy short exact sequences like (11).

IV. TOPOLOGICAL ANALYSIS OF MODELS WITH
ONE-DIMENSIONAL ANYONS

For some physicists, an Abelian anyon model must (by
definition) have fractional exchange statistics, i.e., a pairwise
exchange of particles transforms the wave function by a phase
exp(iθ ) that interpolates between bosons θ = 0 and fermions
θ = π . Therefore, much previous work on anyons in one di-
mension either imposes fractional exchange statistics on wave
functions (or field operators) at the start [21,43,44] or derives
wave functions or field operators with fractional exchange
phases from a Hamiltonian [46,80].

However, in the previous section, we calculated the orb-
ifold fundamental group (including the fundamental group
in the case of Q2) for the configuration space of indistin-
guishable particles for every possible topologically disruptive
interaction on both intervals and rings. For all scenarios, pair-
wise exchanges were either absent (as in Q2) or square trivial
(for Q, Q3, and the rest). In no one-dimensional case is the
(orbifold) fundamental group the braid group or any other
group with Abelian representations that furnish traditional
fractional exchange statistics.

The necessary conclusion is that if fractional exchange
statistics occur in models of particle systems in one dimen-
sion, they have a dynamical origin (i.e., they derive from
interactions) and not a topological origin. In other words,
unlike in two dimensions, fractional exchange statistics do
not derive from the configuration space of indistinguishable
particles on one-dimensional manifolds even accounting for
excluded few-body coincidences. This in no way diminishes
their physical or mathematical interest, but it may alter their
interpretation and application.

To make the contrast clear, first consider the simplest case
where traditional fractional exchange statistics given by a
phase θ occurs: two particles in a plane with two-body co-
incidences excluded. The configuration space Q2 = (R4 −
�2)/S2 can be factored into the product of a plane and cone
with the point at the tip excluded [7,22]. This space is not
simply connected and its fundamental group is π1(Q2) =
B2

∼= Z. The group B2 therefore has Abelian representations
characterized by θ ∈ [0, 2π ). For θ 	= 0, the wave function
considered as a map ψ : Q2 → C is multivalued. Alterna-
tively, one can define single-valued wave functions by the
universal cover Q̃2, which are the product of a plane and
a half plane. On the universal cover Q̃2 particle exchanges
in π1(Q2) are represented by translations. The Hilbert space

on Q̃2 decomposes into Abelian representations of π1(Q2)
labeled by the quasimomentum and θ .

Besides working on Q2 or Q̃2, there is a third option: to
work with single-valued functions on X2 and incorporate the
θ exchange statistics as a gauge interaction potential for either
bosons or fermions [11]. This gauge potential is singular at the
particle coincidence, but because that point is removed from
configuration space Q2, this singularity presents no difficul-
ties. For N = 2, the gauge potential is the vector potential
of a delta-function flux tube at the two-body coincidence
[6,12]. This works for Abelian braid group anyons because
topological exchange statistics derive from flat connections on
fiber bundles over configuration spaces. Therefore, they can
be absorbed into a gauge potential on a covering space and
a trivial gauge on the universal cover [71]. As a result, free
particles with fractional exchange statistics can be modeled
with bosons (or fermions) where the statistics are absorbed
into a statistical gauge interaction.

This strategy of absorbing statistics into a gauge po-
tential motivated Kundu [46] to define a one-dimensional
anyon model (also called the anyon Lieb-Liniger model [41]).
Starting from a bosonic model defined on X with singular in-
teractions described by δ, δ′ and double-δ functions on the �2

and �3 coincidence loci, Kundu performs a density-dependent
gauge transformation [81]. The gauge-transformed model re-
tains δ-interactions on the �2 locus on which the creation and
annihilation operators no longer satisfy bosonic relations. The
wave function that is constructed on X jumps by exp(±iθ )
across �2. Similarly, Girardeau defined a model with similar
‘phase slips’ of exp(±iθ ) from a gauge transformation of
a hard-core, fermion model which does not require singular
interactions [44].

The anyon Lieb-Liniger model has been shown to possess
generalized exclusion statistics [47]. However, the phase slips
exp(±iθ ) on X in either the boson-based Lieb-Liniger model
or fermion-based Girardeau model are the result of a particle-
label dependent gauge transformation and do not have the
same topological interpretation as fractional exchange statis-
tics of indistinguishable particles. For example, in the simplest
case of two particles, unlike the braid anyon case described
above, there are not an infinite number of possible exchange
phases multiplying the entire wave function depending on a
winding number. Instead, there is a single phase difference
between the two different particle orderings of the same wave
function defined on X . The non-topological interpretation
of Kundu-Lieb-Liniger anyons presented here agrees with
several previous analyses that argue that fractional exchange
statistics cannot be absorbed into a gauge potential for one-
dimensional systems [53,82]. In contrast, because of their
similar topological origin from excluded co-dimension d̃ = 2
coincidences, we hypothesize a transmutation from statistics
to dynamics is possible for particles obeying traid or fraid
exchange statistics, and is an avenue of future research.

Two other models sometimes identified as one-dimensional
anyon models also have trivial topological exchange statistics:
Leinaas-Myrhaim anyons and Calogero-Sutherland anyons.
In the Leinaas-Myrheim analysis of one-dimensional particles
systems, the model is built on the exchange-trivial underly-
ing space |Q| [7]. To make the Hamiltonian self-adjoint on
the domain |Q|, boundary conditions must be imposed for

052214-10



TOPOLOGICAL EXCHANGE STATISTICS IN ONE … PHYSICAL REVIEW A 105, 052214 (2022)

the wave function on �2. These self-adjoint extensions are
characterized by an anyonlike parameter that effectively inter-
polates between Neumann boundary conditions with bosonic
symmetry and Dirichlet boundary conditions with fermionic
antisymmetry. The Leinaas-Myrheim model can be lifted to
the Lieb-Liniger bosonic model on X with two-body delta-
interactions, except the wave functions and all observables
are restricted to the underlying space |Q| [41]. Like the
Kundu model, here the interpolating statistics are again from
the dynamics and not the topology, which is trivial. Fur-
ther, we hypothesize that the Leinaas-Myrheim model on
|Q| can also be lifted to X with fermionic antisymmetry or
Kundu-like phase shifts using statistical mapping techniques
[25,53,55,83,84].

Similarly, in the Calogero-Sutherland model, interactions
prevent two-body coincidences and a parameter interpolates
between BE and FD exclusion statistics. For indistinguish-
able particles, the inverse square interaction is sufficiently
singular to exclude �2 and therefore the configuration space
is Q2. Lifting the model to X2, one is free to define arbi-
trary phases to different orderings of particles and define a
Calogero-Sutherland anyon model with fractional exclusion
statistics and order-dependent phase slips [21,23,42]. How-
ever, since there is no exchange possible, such phases are a
gauge symmetry that only has consequences for observables
defined on the (nonuniversal) covering space X2 and as such
do not constitute a statistical gauge interaction.

V. CONCLUSIONS

To summarize, for indistinguishable particles on a one-
dimensional interval, we find the following possibilities for
the group describing topological exchange statistics:

π∗
1 (Q) = SN ,

π1(Q2) = 1,

π∗
1 (Q3) = TN ,

π∗
1 (Q2,2) = FN ,

π∗
1 (Q{3;2,2}) = WN . (19)

The strand groups TN , FN , and WN result when three-body
and certain four-body coincidences are removed from the
configuration space orbifold Q. Unlike the braid group, these
codimension d̃ = 2 exclusions preserve the self-inverse prop-
erty of pairwise exchanges (9a), but break the other defining
relations of the symmetric group (9b) and (9c). These groups
provide the possibility of novel Abelian and non-Abelian
anyons, but their irreducible representations have not been
classified or explored.

For indistinguishable particles on a circle, the underlying
topology of the base space S1 gets mixed up with the symmet-
ric group in the same way the braid group on (for example)
S2 allows different topological exchange statistics than the
more familiar braid group on R2. The equivalent groups to
(19) expressed in two alternate forms are

π∗
1 (Q) = ZN

� SN = Zζ � S̃N ,

π1(Q2) = Zζ ,

π∗
1 (Q3) = ZN

� TN = Zζ � T̃N ,

π∗
1 (Q2,2) = ZN

� FN = Zζ � F̃N ,

π∗
1 (Q{3;2,2}) = ZN

� WN = Zζ � W̃N . (20)

The affine strand groups T̃N , F̃N , and W̃N arise from broken
relations of S̃N in the same way as the nonaffine versions.
We have identified these hyperbolic groups in a physical
system; their group structures and irreducible representations
are largely unexplored. Also, except for the case of Q2, all
of these groups provide the possibility for novel Abelian and
non-Abelian anyons.

In none of these cases does the group giving topological
exchange statistics furnish an Abelian representation with
fractional exchange statistics for an arbitrary θ . Our con-
clusion agrees with Refs. [53,82] that if a one-dimensional
model exhibits fractional exchange statistics, these are of a
dynamical origin and cannot be absorbed into a consistent
gauge potential. In contrast, because they have a topological
origin, the alternate strand groups like TN and T̃N described
above should be transmutable into a gauge potential, and this
looks to be a promising avenue for investigating there phe-
nomenological signatures. Because the traid and fraid group
also derive from codimension two topological defects in con-
figuration space, we hypothesize there could be similarities to
braid group anyons where connections among conformal field
theory, fusion rules, and quantum groups is a productive line
of research; cf. Ref. [85]. A field theoretical formulation of
these alternate strand groups is certainly required for applica-
tions to many-body systems.

Are these alternate strand groups feasible to realize
physically? Ultracold atoms can be confined to effectively
one-dimensional traps and, in principle, hard-core three body
interactions can be engineered in cold atoms systems [29–32].
Density-induced interactions in Floquet-driven lattice models
also show promise [86,87]. Hard-core three-body interactions
would effective exclude �3 from Q, and dynamical models
with three-body interactions have shown signs of unusual
statistics and other thermodynamic properties [80,88–90]. In
Ref. [28], we have described and depicted the lowest energy
wave functions obeying Abelian traid exchange statistics for
three particles in a harmonic trap, but exploring these solu-
tions for more particles and classifying how they transform
under discrete symmetries is an ongoing project.

In contrast, the paired two-body interactions necessary to
exclude �2,2 are nonlocal. A single two-body coincidence
would need to prevent other two-body coincidences anywhere
in the system. As a fundamental interaction, nonlocal inter-
actions are typically excluded, but as an effective theory for
long-range interactions in a many-body system, it may have
interest. More generally, because these strand groups arise
naturally as degenerations of the ubiquitous symmetric group,
one can image that they could emerge in a variety of nonpar-
ticle model contexts.

As a final note, building an intrinsic quantum theory for
indistinguishable particles directly on the quotient space,
without reference to a covering space of distinguishable parti-
cles, is an incomplete project that requires mathematical and
conceptual definitions. Operators that are self-adjoint on X ,
such as the Hamiltonian and the single-particle position and
momentum, no longer have that property when restricted to Q
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[22,71,91]. For relative momentum and other operators that
are not symmetric under particle exchange, self-adjointness
cannot be restored and their interpretation does not seem to
extend unambiguously to indistinguishable particles.
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APPENDIX A: TOPOLOGICAL QUANTIZATION

The topological approach to quantization developed from
several independent directions [3,7,56,92–97]. Possible quan-
tizations of a configuration space X are classified using
irreducible unitary representations of the fundamental group
π1(X ). The fundamental group π1(X ) describes equivalence
classes of based loops on a connected manifold X . Whenever
X is connected, the isomorphism type of π1(X ) is indepen-
dent of the base point.

Abelian representations of π1(X ) characterize flat U (1)
connections on flat line bundles over X and record the holon-
omy of the scalar wave function around closed loops. For
nontrivial representations, the corresponding wave functions
transform by a phase under holonomy and are therefore
considered multivalued wave functions on X , also called
θ structures [96,98]. Similarly, non-Abelian representations,
considered up to conjugation, characterize flat U (μ) connec-
tions on higher-rank fiber bundles leading to multivalued,
multicomponent wave functions [57,71,99].

If working with multivalued wave functions on X is
distasteful or inconvenient, one can instead work with single-
valued wave functions on the simply connected universal
cover of X , denoted X̃ with covering map pX : X̃ → X . This
covering map also defines the original configuration space as
a quotient space,

X = X̃ /D, (A1)

where D is a group of deck transformations (diffeomorphisms
on X̃ compatible with the covering map pX ) isomorphic to
π1(X ). Some basic examples include the universal cover of
a circle S1 by the real line R and the universal cover of
the n torus by Rn. Another famous example is the quan-
tum rotor, whose configuration space SO(3) is not simply
connected. The fundamental group π1(SO(3)) = Z2 has two
irreducible representations. The nontrivial irreducible repre-
sentations correspond to wave functions with half-integer spin
that are double valued on SO(3), but single valued on its
universal cover SU(2) [92]. In these cases, working with
single-valued functions on the universal cover can be simpler
than multivalued functions on the base manifold, but that is
certainly not always the case. For example, the universal cover
of the configuration space whose fundamental group is the
braid group BN is quite complicated for N � 3.

APPENDIX B: PARTICLE STATISTICS IN
QUANTUM MECHANICS

Two main approaches to characterizing particle statistics
are exchange statistics and exclusion statistics. Exchange
statistics considers how wave functions or operators transform
when indistinguishable particles are exchanged. Further, there
are two main approaches to exchange statistics in quantum
mechanical systems: the symmetrization postulate and topo-
logical exchange statistics, and we briefly compare them in
this Appendix. We focus on systems of particles on manifolds
and do not consider the interesting case of particles on graphs
[19,100,101] which may have novel applications to tight-
binding lattice models. We also restrict ourselves to quantum
mechanics in configuration spaces and Hilbert spaces with a
fixed number of particles and do not consider the important
case of field operators and Fock spaces. For completeness,
exclusion statistics is briefly described at the end of this Ap-
pendix.

The first and oldest approach to exchange statistics of
indistinguishable particles in quantum mechanics is the sym-
metrization postulate. For the sake of simplicity, consider a
single-component, single-particle Hilbert space H = L2(M)
of square-integrable wave functions on the manifold M. For
N distinguishable but identical particles, the total Hilbert
space HN can be constructed as the N-fold tensor product
HN = H ⊗ · · · ⊗ H. This space is equivalent to the Hilbert
space HN = L2(X ) of square-integrable functions on the total
configuration space X = MN . Note that the symmetrization
postulate also applies to multicomponent single-particle wave
functions living in H = L2(M) ⊗ Cμ; see Ref. [59] for ex-
amples with spin components.

Indistinguishability is imposed by symmetrizing a system
of identical distinguishable particles. This is accomplished
using representations of particle permutations s ∈ SN as uni-
tary operators U (s) that act on HN . The action of operators
U (s) on HN is induced from the realization of passive particle
permutations s ∈ SN as diffeomorphisms Os acting on X . Note
that when M is an interval in R then X is a box in Rd and the
diffeomorphisms are a representation of s ∈ SN by orthogonal
matrices Os ∈ O(Nd ).

The two Abelian representations of SN provide the tech-
nology relevant to constructing the state space for bosons and
fermions. Wave functions obeying BE exchange statistics are
elements of HN

+, the projection of HN onto the symmetric
subspace, and wave functions in the antisymmetric subspace
HN

− have FD exchange statistics. After symmetrization, each
choice of particle labels is equivalent to a choice of gauge
within HN

± [22,23].
The symmetrization postulate can also be extended to

the non-Abelian irreducible representations of SN for N � 3.
Wave functions belonging to these representations obey so-
called parastatistics [102,103]. These multicomponent wave
functions are useful for constructing states of indistinguish-
able fermions or bosons that have internal degrees of freedom
[23,59,104].

However, the symmetrization postulate approach to indis-
tinguishability presumes single-valued wave functions on X
with SN exchange statistics. As we discuss in Sec. IV, non-SN

exchange statistics can be mimicked by adding interactions
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to fermions or bosons. Alternatively, multivalued wave func-
tions with non-SN statistics arise kinematically (i.e., without
interactions) in the topological approach to exchange statis-
tics when the configuration space is not simply connected
[7,71]. Instead of treating exchanges as global transforma-
tions, exchanges are specific active continuous processes
[103] which can be visualized as strand diagrams, i.e., N
paths on M that connect particle configurations differing
by at most a permutation of identical particles. When the
N paths do not coincide on M, they can be lifted unam-
biguously to one path in MN , up to a label permutation
gauge.

Topological exchange statistics also begins from the con-
figuration space X for N distinguishable particles on a
connected manifold M (4). If the base manifold has di-
mension dim M = d and connectivity described by the
fundamental group π1(M), then X is a manifold with dimen-
sion dim X = Nd and fundamental group π1(X ) = π1(M)N .

On X , paths that start and end at the same place realize
particle exchanges where every particle returns to its original
location, but if M is not simply connected then even these
paths can be topologically nontrivial and wave functions on
M need not be single valued. For each irreducible representa-
tion of π1(M)N there is a class of multivalued solutions. If the
particles on M are distinguishable but identical, then one can
restrict to a diagonal representation of π1(M)N that factors
into the N-fold product of the same irreducible representation
of π1(M).

The configuration space for indistinguishable particles,
Q = X /SN , is the topological quotient of X by the symmetric
group [7,56]. However, as described in Sec. II, the space
Q has singular orbifold points with a nontrivial topological
structure. The standard solution removes these singular points

(and therefore the path ambiguity) from configuration space
entirely [7,8,15,22,56]. The motivation for the orbifold ap-
proach is to resolve this ambiguity.

The orbifold fundamental group allows a derivation of
symmetric group statistics (i.e., bosons, fermions, and paras-
tatistics) for simply connected base spaces and generalized
parastatistics for multiply connected base spaces in a uni-
fied fashion and without needing to exclude path-ambiguous
two-body collisions. For fermions and bosons on simply
connected manifolds with nonsingular interactions, the orb-
ifold approach to topological exchange statistics gives the
same results as the symmetrization postulate in any dimen-
sion, whereas the standard approach to topological exchange
statistics does not for d � 2 without introducing additional
constraints or dynamics [7,22].

Finally, in contrast to either form of exchange statistics,
exclusion statistics [105,106] is a more recent approach to un-
derstanding particle statistics. It employs a fractional statistics
parameter g to describe how the effective dimension of the
single particle Hilbert space changes as the number of parti-
cles increases [107]. This parameter is g = 0 for BE statistics
because any number of bosons can occupy the same state, and
g = 1 for FD statistics because the Pauli exclusion principle
requires an additional state for each fermion. This parameter
is consistent with the fractional exchange statistics parameter
for Abelian representations of the braid group [108]. Unlike
the topological approach to exchange statistics, formulating
indistinguishability in terms of exclusion statistics does not
depend on the dimension of the underlying physical space
M. As a result, it has been especially useful for analyz-
ing one-dimensional dynamical models [21,47,109] for which
the standard (nonorbifold) topological approach gives trivial
results.
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