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Missing quantum number of Floquet states

Cristian M. Le ,1,* Ryosuke Akashi,1 and Shinji Tsuneyuki1,2

1Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033, Japan
2ISSP, University of Tokyo, Kashiwa, Tokyo 277-8581, Japan

(Received 6 November 2021; revised 1 April 2022; accepted 25 April 2022; published 19 May 2022)

We reformulate the Floquet theory for periodically driven quantum systems following a perfect analogy
with the proof of the Bloch theorem. We observe that the current standard method for calculating the Floquet
eigenstates using the quasienergy alone is incomplete and unstable and pinpoint an overlooked quantum number,
the average energy. This new quantum number resolves many shortcomings of the Floquet method stemming
from the quasienergy degeneracy issues, particularly in the continuum limit. Using the average-energy quantum
number, we get properties similar to those of the static energy, including a unique lower-bounded ordering of the
Floquet states, from which we define a ground state, and a variational method for calculating the Floquet states.
This is a first step towards reformulating Floquet first-principles methods, which have long been thought to be
incompatible due to the limitations of the quasienergy.

DOI: 10.1103/PhysRevA.105.052213

I. INTRODUCTION

Periodically driven quantum systems have been gaining
increasing attention, particularly due to the promise of Floquet
engineering [1,2] to control material properties and achieve
exotic states such as laser-induced superconductivity [3–5]
and topological insulators [6,7]. So far these applications have
been investigated only on simple model systems due to the
limitations of the current Floquet methodology. In order to
extend the Floquet formalism to self-consistent first-principles
calculations and bigger, more complex systems, we need to
reevaluate the source of these limitations.

Since the original derivations of the Floquet formalism in
quantum mechanics [8–10], the fundamental methodology of
solving the time-periodic Schrödinger equation using Floquet
theory has remained unchanged, relying on the definition of
the quasienergy eigenstates defined by the eigenproblem

ĤF (t )|�n(t )〉 = εn|�n(t )〉, (1)

where ĤF ,�, and ε denote the Floquet Hamiltonian
[ĤF (t ) = Ĥ (t ) − i∂̂t ], the time-periodic Floquet states [�(t +
T ) = �(t )], and the quasienergies, respectively. However,
we know that there are various limitations to this definition
[11–13]: the quasienergy ordering being meaningless, the
breakdown of this eigenproblem in the continuum system, the
lack of a Hilbert-space truncation method, and so on. These
limitations are currently the main reasons why the Floquet
formalism has not been generalized to various first-principles
calculation methods [14–16].
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As for the similarities between the Floquet and Bloch
theories, they have long been known [1,17], but a detailed
analogy between the two theories has not been thoroughly
explored. If we explore this analogy (Table I), we find that
the current Floquet formalism is apparently incomplete, using
only one quantum number to label the eigenstates as opposed
to the two in Bloch systems. It should be clarified that the
quasienergy ε is analogous to the crystal momentum �k, as
opposed to the common misconception that it corresponds to
the static energy E . Additionally, the Floquet method lacks
a systematic derivation of the Floquet eigenstates from the
fundamental symmetry of the time-periodic Hamiltonian and
discrete time-translation operator, which is otherwise well
established in the Bloch theory [18]. Here we will present
this missing derivation, completing the Floquet picture and
Floquet-Bloch analogy, showing that the average energy [19],
our missing quantum number (QN), is the analog of the static
energy, and as such, we can expect it to fulfill similar roles.

In Sec. II, we rederive the Floquet eigenstates from first
principles, following the same steps as those in Bloch systems
[18]. We discuss the main differences between this method
and the conventional Floquet approach in Sec. III and then the
properties of the average energy as a QN in Sec. IV. A simple
example of the two-level system illustrating these concepts is
given in Sec. V. We conclude in Sec. VI, where we discuss
some potential applications following this reformulation.

II. REDERIVING THE FLOQUET EIGENSTATES

First, we have to bring the time-periodic problem to a
Hilbert space similar to that in the spatially periodic system.
For this we promote the time parameter t to an operator
defined on a Lebesgue space over the whole real domain E =
L2(R, t ). The time-dependent Hamiltonian is then defined as
a self-adjoint operator on the extended Hilbert space H ⊗ E,
where H is the Hilbert space upon which the Hamiltonian
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TABLE I. Perfect analogy of Floquet theory and Bloch’s theorem.

Floquet theory

Bloch theorem Quasienergy only With average energy

Eigenstates (u�kn(�r), �k, E�kn) (�n(t ), εn) (�na(t ), εn, Ēna )

Symmetry QN �̂k|u�kn〉 = �k|u�kn〉 ĤF |�n〉 = εn|�n〉 ĤF |�na〉 = εn|�na〉
Ordering QN Ĥ�k |u�kn〉 = E�kn|u�kn〉 ˆ̄Hn|�na〉 = Ēna|�na〉
Ritz variation E [u] � E0 � Ē [�] � Ē0

Ĥ (t ) acts at any time t . In this representation, the state vectors
are expressed as

|�〉 =
∫ +∞

−∞
|�(t )〉 ⊗ |t〉dt, (2)

〈�|� ′〉 =
∫ +∞

−∞
〈�(t )|� ′(t )〉dt, (3)

and the time-periodic Hamiltonian is naturally extended to the
following form:

Ĥ =
∫ +∞

−∞
Ĥ (t ) ⊗ |t〉〈t |dt . (4)

The physicality of this Hilbert-space extension is a topic
of great debate [20], with the most prominent counterpoint
being that the extended Hilbert space H ⊗ E is overcomplete
[21,22], including unphysical states which do not satisfy the
time-dependent Schrödinger equation. We overcome this is-
sue by focusing on the physical subspace (H ⊗ E)S [23,24],
defined as

� ∈ (H ⊗ E)S ⇔ [Ĥ − i∂̂t ]|�〉 = 0|�〉, (5)

where the time-derivative operator ∂̂t is expressed in the E

Hilbert space as

∂̂t =
∫ +∞

−∞
|t〉∂t 〈t |dt . (6)

Defining the physical subspace as such can be intimidating,
so instead we use the equivalence of the time-dependent
Schrödinger equation with the Floquet Schrödinger equation;
that is, any eigensolution of Eq. (1) corresponds to a physical
state in (H ⊗ E)S:

|�n(t )〉 = e−iεnt |�n(t )〉. (7)

Here we use the already established identities of the
quasienergy eigenstates [1,9] but refrain from defining them
as the final Floquet eigenstates. For the sake of complete-
ness, we include the original derivations of these eigenstates
in Appendix A. As our goal is not to deny the validity of
this definition, but rather to complete it, we will use the
quasienergy eigenbasis to simplify some identities. Therefore,
we can express the projection operator 1S onto the physical
subspace (H ⊗ E)S using the quasienergy basis set as

1S =
∑

n

|�n〉〈�n|, (8)

where we require the orthonormality condition

〈�m|�n〉 = δmn, (9)

or, more explicitly,

|�n〉 = lim
T →∞

1√
2T

∫ T

−T
e−iεnt |�n(t )〉 ⊗ |t〉dt . (10)

For simplicity we have taken the Hilbert space H to be fi-
nite, although the generalization to the continuous space is
straightforward. In order for the projection 1S to be unitary
and complete in (H ⊗ E)S , the summation label n in Eq. (8)
is limited to a single quasienergy Brillouin zone (εn ∈ [0, ω)).

Next, in the Hilbert space E we define the time-translation
operator T̂ that shifts the time parameter by a time period T :

T̂ =
∫ +∞

−∞
|t − T 〉〈t |dt . (11)

This operator trivially commutes with the time-periodic
Hamiltonian Ĥ in the extended space H ⊗ E [Eq. (4)],

[Ĥ, T̂ ] = 0, (12)

and it is the equivalent starting point of the Bloch theorem
proof [18]. However, for our purposes, we need a similar
commutation relation to hold within the physical subspace
(H ⊗ E)S . For that we project and redefine these operators
on the physical subspace and confirm that the commutation
relation still holds there.

The projection of the Hamiltonian Ĥ on the physical sub-
space gives us the average-energy operator ˆ̄H :

ˆ̄H = 1SĤ1S =
∑
mn

H̄mn|�m〉〈�n|, (13)

H̄mn = lim
T →∞

1

2T

∫ T

−T
〈�m(t )|Ĥ (t )|�n(t )〉dt . (14)

We refer to this operator as the average energy because its
expectation value gives us the observable average energy Ē ,
as defined in [19], for any normalized physical wave function
in (H ⊗ E)S:

Ē [�] = 〈�| ˆ̄H |�〉 = lim
T →∞

1

2T

∫ T

−T
〈�(t )|Ĥ (t )|�(t )〉dt .

(15)

Using the definition of Eq. (10) in Eq. (14), we can see that
the average-energy operator ˆ̄H is diagonal with respect to
different quasienergies, and it generally lifts the quasienergy
degeneracy, so that we can simplify it to the following form:

H̄mn =
⎧⎨
⎩

0 if εm �= εn,

1

T

∫ T

0
〈�m(t )|Ĥ (t )|�n(t )〉dt if εm = εn.

(16)
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As for the translation operator T̂ , we can quickly see that
it is diagonal with respect to the quasienergy basis defined in
Eqs. (8) and (10):

T̂S = 1ST̂1S =
∑

n

e−iεnT |�n〉〈�n|. (17)

From the decompositions and identities in Eqs. (13), (16),
and (17), we can conclude that the average-energy operator
ˆ̄H and the time-translation operator T̂S commute nontrivially

in the physical subspace (H ⊗ E)S (see Appendix B for the
proof). We thus define the physical eigenstates �na as the
simultaneous eigenstates of these operators, with n being the
QN of the quasienergy εn and a being the additional QN of the
average-energy eigenvalue Ēna:

[ ˆ̄H, T̂S] = 0, (18)

T̂S|�na〉 = e−iεnT |�na〉, (19)

ˆ̄H |�na〉 = Ēna|�na〉. (20)

This definition of the physical eigentriplet (�na, e−iεnT , Ēna)
is the first major result we want to emphasize in this work.

Finally, we substitute the Floquet state identity [Eq. (7)] of
the eigenstates

|�na(t )〉 = e−iεnt |�na(t )〉, (21)

into Eqs. (19) and (20) to get the equivalent eigenproblem
in the Floquet space H ⊗ T, where T = L2([0, T ], t ) is the
Fourier space,

eiεnt T̂Se−iεnt |�na(t )〉 = e−iεnT |�na(t )〉, (22)

eiεnt ˆ̄He−iεnt |�na(t )〉 = Ēna|�na(t )〉. (23)

Equation (22) is replaced with the usual quasienergy Floquet
eigenproblem [Eq. (1)], and Eq. (23) gives us the equivalent
average-energy operator ˆ̄Hn acting on the Floquet space H ⊗
T (see Appendix C for the derivation),

ˆ̄Hn =
∑

i j

H̄ni j |�ni〉〈�n j |, (24)

H̄ni j = 1

T

∫ T

0
〈�ni(t )|Ĥ (t )|�n j (t )〉dt, (25)

where i and j are the degenerate labels spanning the
quasienergy degenerate subspace:

�ni ∈ (H ⊗ T)εn ⇔ ĤF |�ni〉 = εn|�ni〉. (26)

At this point we should recall the labeling convention used
here in order to not create any confusion with the different
labeling conventions used in Floquet systems. Here we use m
and n for the quasienergy labels, i and j for the quasienergy
degenerate labels, and a and b for the average-energy labels,
which are a subset of the former. We will also point out that
the quasienergy εn dependence of the average-energy operator
ˆ̄Hn is identical to the crystal momentum �k dependence of the

effective Hamiltonian Ĥ�k of the Bloch systems.
Putting it all together, we have the fundamental commuta-

tion relation

[ĤF , ˆ̄Hn] = 0, (27)

from which we redefine the Floquet eigenstates �na to be
the simultaneous eigenstates of both the Floquet Hamiltonian
ĤF and the average-energy operator ˆ̄Hn, having the quan-
tum numbers of the quasienergy εn and average energy Ēna,
respectively. Notice the addition of Eq. (29) to this Floquet
eigenstate definition:

ĤF |�na〉 = εn|�na〉, (28)

ˆ̄Hn|�na〉 = Ēna|�na〉. (29)

III. DIFFERENCE FROM THE CONVENTIONAL
FLOQUET METHOD

Conceptually, the conventional Floquet method of calcu-
lating the quasienergy eigenstates is analogous to calculating
the Brillouin zone in spatially periodic Bloch systems, and the
additional step proposed here in Eq. (29) is analogous to then
calculating the energy bands’ structure. We can imagine the
significance of this step using this analogy, but to be more con-
crete, we will explicitly explore in this section the two main
consequences of this redefinition. In the next section we will
further justify it by looking at the properties of the average
energy.

First, it resolves the quasienergy degeneracy. Traditional
Floquet eigenstates are ill-defined within the quasienergy de-
generate subspace, so that any rotated basis set {�′

n j}, where

|�′
n j〉 =

∑
i

Ci j |�ni〉, (30)

〈�′
ni|�′

n j〉 = δi j, (31)

is an equally valid eigenbasis

ĤF |�′
n j〉 = εn|�′

n j〉 ∀ {�′
n j}. (32)

This makes it impossible to uniquely define the quasienergy
eigenstates in the continuum limit, and numerical calcula-
tions for these states become unstable. Conventionally, one
would use an adiabatic continuation or perturbative method
to resolve this ambiguity; however, the former is ill defined
in the continuum limit [11], and the latter is unstable against
infinitesimal perturbation [25]. The average energy offers an
alternative labeling method that is much more efficient than
the previously mentioned ones because it requires a single
calculation step, and it is applicable in the continuum system.
We comment that the current semiadiabatic Floquet methods
[11,26] are equivalent and more intuitive if we perform the
adiabatic continuation using the average energy [25].

Second, this labeling is robust against infinitesimal pertur-
bations. It is natural to assume that a physical system would
be unaffected by infinitesimally small perturbations within
acceptable measurement constraints; that is, if we take Ĥ0(t )
to be an unperturbed Hamiltonian and v(t ) to be an arbitrary
infinitesimally small perturbation, we expect that

|�n〉 ≈ ∣∣�0
n

〉
, (33)

where the standard notations for the perturbed and unper-
turbed systems are implied. This assumption, however, fails
around the degeneracy, where

∃ v̂(t ) :
∣∣|�ni〉 − ∣∣�0

n j

〉∣∣ = O(1) ∀ i, j. (34)
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It is thus evident how problematic it is when we consider the
continuum system, where we have infinitely dense degenera-
cies, and how numerical computations become unstable.

On the other hand, if we expand the derivation given here to
include the near degeneracies, the labeling of the eigenstates
becomes stable again [25], i.e.,

|�na〉 ≈ ∣∣�0
na

〉
, εn ≈ ε0

n , Ēna ≈ Ē0
na. (35)

The average energy Ē here is redefined to be the time average
over a finite time. More discussions on this topic can be found
in our previous works [19,25].

Outside the quasienergy degeneracies, there are virtually
no differences in the Floquet eigenstates from the conven-
tional Floquet method. Yet there are unique properties that the
average energy brings as a quantum number that we should
consider.

IV. PROPERTIES OF THE AVERAGE ENERGY

First, all of the familiar theorems related to the energy
eigenstates, such as the Hellmann-Feynman theorem, have
analogs with respect to both the quasienergy and the aver-
age energy, as they follow straight from the eigendefinition
in Eqs. (28) and (29). Although the quasienergy ones were
already known [9], because of the infinitely dense quasienergy
degeneracy in the continuum, the usefulness of these theorems
is greatly diminished. On the other hand, upon including the
average energy, these degeneracies are lifted, and we can more
naturally apply these methodologies to the continuum system.

Here we want to highlight that now a Ritz variational
principle is possible:

Ē [�] = 〈�|
∑

n

ˆ̄Hn|�〉 � Ē0 ∀� ∈ H ⊗ T, (36)

where the equality sign occurs at the Floquet ground state.
The lower boundness of Ē0 is guaranteed if the Hamiltonian is
lower bounded at all times t . However, Eq. (36) is impractical
in this form, as it would require the prior calculation of the full
quasienergy eigenspectra through the definition of Eq. (24),
and it is given here as such only for theoretical purposes. In
practice we can exchange it with a more calculable effective
average-energy functional Ē[�] [25] (see Appendix D for
proof), defined as

Ē[�] = 1

T

∫ T

0
〈�(t )|Ĥ (t )|�(t )〉dt, (37)

which becomes equivalent to the average energy Ē [�] when
the quasienergy ε[�] is stationary,

Ē[�] = Ē [�] ⇔ � ∈ {�′ ∈ H ⊗ T | δε[�′] = 0},
(38)

ε[�] = 1

T

∫ T

0
〈�(t )|[Ĥ (t ) − i∂t ]|�(t )〉dt . (39)

So, in practice, the efficient Lagrangian minimization method
becomes

Ē0 = min
�∈H⊗T

{
Ē[�] +

∑
i

λi
δε[�]

δ�i
+ μ(〈�|�〉 − 1)

}
,

(40)

where {�i} is an arbitrary basis spanning the Floquet space
H ⊗ T. We can thus straightforwardly calculate the ground
state by constraint minimization methods in the Floquet space
H ⊗ T using only easily calculable functionals. This offers an
alternative to the conventional perturbation and adiabatic con-
tinuation method, and it does not require any approximation
to the Floquet Hamiltonian ĤF , just adequate parametrization
of the Floquet wave function.

Second, the average energy is robust against infinitesi-
mal perturbations. However, this was already mentioned in
Sec. III. Here we will add that, with the lower-bounded and
unconfined ordering of the eigenstates �na by the average
energy Ēna, we can now systematically truncate the Floquet
space H ⊗ T to a computationally accessible subspace, focus-
ing on the lowest average-energy states. This method would
not require any adiabatic continuation to figure out which
Floquet states are significant or the prior evaluations of the
static energy eigenstates and is thus more computationally
efficient and more generally applicable.

Third, the thermalization process of closed Floquet sys-
tems has to be revisited in light of the Floquet eigenstate
redefinition using the average energy as the main quantum
number. Currently, it is understood, and often overly gener-
alized, that any state of a nonintegrable Floquet system heats
up to a featureless infinite-temperature state [27] due to the
Brillouin zone being infinitely dense with degeneracies and
the quasienergy eigenstates having a vanishing convergence
radius. However, these issues are resolved by the addition
of the average energy as a quantum number and by its ap-
proximate form, respectively. Particularly, the minimization
process in Eq. (40) gives us the stable states with finite average
energies which do not “heat up” to infinite temperature, as its
propagation is well defined by Eq. (7) absent of an arbitrary
mixing of quasienergy eigenstates. This is in contrast to the
arbitrarily chosen degenerate quasienergy basis or arbitrary
superposition state which uncontrollably mixes the average-
energy states.

We expect that more careful analysis of the thermalization
process using the average energy would give us a more intu-
itive understanding of its mechanism, including in the special
cases of the prethermal states [28,29]. But the thermalization
of the average-energy Floquet eigenstates is a complex topic
far beyond the scope of this paper, to which we will return to
in future research.

Finally, as for the physical significance of the average
energy, we expect that it can serve a role similar to the static
energies in the thermal equilibrium. There have already been
attempts to quantify the Floquet steady state by the average
energy [30], although using a different definition for the av-
erage energy, showing how we cannot generally formulate an
equivalent Boltzmann distribution around it. This is mostly
due to the steady state being defined primarily by the energy
spectra and its dependence on the detailed system-bath in-
teraction. So instead we should consider the average energy
as an approximation tool for systematically truncating the
Hilbert space to a finite computable one. We can at the very
least eliminate the highly excited states as long as the energy
spectra are weakly overlapping [25].
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V. EXAMPLE: TWO-LEVEL SYSTEM

The most straightforward example that demonstrates the
difference of using this additional average-energy quantum
number is in the driven two-level system with the time-
dependent Hamiltonian

Ĥ (t ) =
[

ω0
2

V
2 e−iωt

V
2 eiωt −ω0

2

]
. (41)

Here we use the standard notations for ω0,V, ω, δ, and 	,
representing the undriven energy difference, driving strength,
driving frequency, detuning, and Rabi frequency, respectively.
The last two are evaluated as

δ = ω − ω0, 	 =
√

V 2 + δ2. (42)

We will assume that ω > ω0/2 and focus on the resonance
condition 	 = ω. Then we can easily construct an arbitrary
degenerate eigenbasis {�′

±α} with quasienergy ε± = 0:

ĤF (t )|�′
±α (t )〉 = 0|�′

±α (t )〉, (43)

|�′
+α (t )〉 =

⎛
⎝cos α

√
2ω−ω0

2ω
+ sin α

√
ω0
2ω

e−iωt

− cos α
√

ω0
2ω

eiωt + sin α

√
2ω−ω0

2ω

⎞
⎠, (44)

|�′
−α (t )〉 =

⎛
⎝sin α

√
2ω−ω0

2ω
− cos α

√
ω0
2ω

e−iωt

− sin α
√

ω0
2ω

eiωt − cos α

√
2ω−ω0

2ω

⎞
⎠ (45)

for any choice of α ∈ R. If we numerically calculate the
Floquet eigenstates at this resonance condition, we will get an
arbitrary basis of a value α and their Brillouin zone replicas.
Focusing on a single Brillouin zone, we calculate the average-
energy operator ˆ̄H [Eq. (24)] as

ˆ̄H =
[−ω0

2 cos 2α −ω0
2 sin 2α

−ω0
2 sin 2α ω0

2 cos 2α

]
, (46)

which all give the average-energy Floquet eigenstates

|�+(t )〉 =
⎛
⎝

√
2ω−ω0

2ω

−
√

ω0
2ω

eiωt

⎞
⎠, Ē+ = −ω0

2
, (47)

|�−(t )〉 =
⎛
⎝

√
ω0
2ω

e−iωt√
ω−ω0

2ω

⎞
⎠, Ē− = ω0

2
. (48)

In this simple system, it is trivial to confirm that the
eigenvalues Ē± equal the observable average energy calcu-
lated from the propagation of the initial wave functions �(0)
according to Eq. (15). But a more promising sign is that
these eigenstates are equivalent to the adiabatically connected

Floquet eigenstates:

|�+(V, t )〉 =
⎛
⎝

√
	+δ
2	

−
√

	−δ
2	

eiωt

⎞
⎠, (49)

|�−(V, t )〉 =
⎛
⎝

√
	−δ
2	

e−iωt√
	+δ
2	

⎞
⎠, (50)

ε±(V ) = ∓	 − ω

2
, (51)

Ē±(V ) = ∓1

2

(
	 − δω

	

)
. (52)

This is naturally to be expected because the Hellmann-
Feynman theorem is applicable to the average-energy Floquet
eigenstates. The other main property we can show in this sim-
ple system is the applicability of the minimization principle
in Eq. (40), which we will discuss in the remainder of this
section.

First, we confirm that any quasienergy variational method,
such as the minimization of the quasienergy variance [31]

min
�

{〈�|(ĤF )2|�〉 − ε[�]2} = 0, (53)

gives us an arbitrary Floquet state of Eqs. (44) and (45).
And, indeed, we can see this in Fig. 1(b), where we track the
convergence process of this minimization method towards a
quasienergy eigenstate. To track how the trial Floquet wave
function �(t ) within the Floquet space H ⊗ T varies in this
search, we follow the parameter θ derived from the corre-
sponding wave function �(0) at t = 0 such that

|�(0)〉
〈�(0)|�(0)〉 =

(
cos θ

sin θ

)
. (54)

The starting condition for each minimization search is taken
to be the static wave function

|�0(t )〉 =
(

cos θ

sin θ

)
, (55)

with θ being the value at iteration 0 in Fig. 1. The nonconverg-
ing searches are not plotted here, and we have confirmed that
all of the final states correspond to either the respective wave
functions in Eq. (44) or Eq. (45) or a shifted replica of them
in a different Brillouin zone.

Next, the minimization processes in Eq. (40) with the same
initial conditions are shown in Fig. 1(a). Here we see that the
vast majority of calculations converge to the ground state �+
or an equivalent replica in another Brillouin zone. A small
minority of calculations get stuck at the local critical point of
�−, which is naturally expected in such a gradient approach.
The agreement of the final converging wave functions with
the analytic solutions in Eqs. (47) and (48) or their replicas is
close to the 10−12 level of the average energy and constraint
convergence criteria.

We thus see that such a minimization method reliably
converges to the well-defined average-energy ground state
and can be trivially extended to calculate subsequent excited
states. These solutions are consistent with the adiabatically
continued states, which is thanks to the fact that the average
energy and the quasienergy are compatible quantum numbers.
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FIG. 1. Convergence to the Floquet states using the Lagrange minimization of (a) the average energy [Eq. (40)] and (b) the quasienergy
variance [Eq. (53)]. Each line represents a different convergence path starting from the initial states described in Eq. (55), and the final
converging solution is duplicated on the rightmost axes. Only the convergent solutions are plotted, where the convergence criteria for both the
objective function and the constraints are set to a factor of 10−12.

VI. CONCLUSION

To conclude, we reported that a more complete method
for studying the time-periodic quantum systems using Floquet
theory is to decompose the system into the Floquet eigenstates
defined as the eigentriplet with the quasienergy and average
energy. One of the main properties of this formulation is the
introduction of the Ritz variational principle. Its lack has been
a major roadblock in the development of efficient Floquet
first-principles methods, which is most beautifully exempli-
fied in the incompatibility of the Floquet density-functional
theory [14,15]. Now, we can revisit these Floquet first-
principles methods, which would bring us one step closer to
efficiently simulating the steady state of a many-body electron
system under constant laser irradiation. Indeed, the Floquet
Hartree-Fock method is straightforward to derive [25].

The main physical significance of the average energy
would be in calculating the steady state. We do not expect it
to play exactly the same role as the static energy, and instead
it should have a supporting one, such as limiting the Hilbert
space to the physically significant states. To that end, the
average-energy ground state might not have direct physical
significance, but we conjecture that it generally approximates
the steady state with dense thermal baths. Indeed we can check
the validity of these statements in various model systems,
while a quantitative proof is still being developed.

Finally, we should revisit the various ingrained understand-
ings of the Floquet systems that have been based solely on
the dynamics of the quasienergy eigenstates, such as the ap-
plicability of the eigenstate thermalization hypothesis. Here
we provided a more robust definition of the Floquet eigen-
states free from the infinite degeneracy issues of the previous
definition, which gives a more intuitive understanding of var-
ious phenomena, such as the prethermalized states. We look
forward to seeing research revisiting these well-established
Floquet concepts and finding how they hold up without the
infinite-degeneracy problem.
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APPENDIX A: ORIGINAL FORMULATION OF THE
QUASIENERGY EIGENSTATES

The original derivation of the Floquet formalism [1,8] had
only one goal of solving the time-dependent Schrödinger
equation with the most general form,

i∂tÛ (t, 0) = Ĥ (t )Û (t, 0), (A1)

where Û is the usual propagator operator. Applying Floquet
theory to Eq. (A1), we get the following identity of the prop-
agator:

Û (t + T, 0) = Û (t, 0)Û (T, 0), (A2)

which we use to separate the micromotion Û (t, 0) from the
Floquet Hamiltonian effects generalized by Û (T, 0). The lat-
ter is decomposed into its eigenstates, with the quasienergy
exponents as eigenvalues:

Û (T, 0) =
∑

n

e−iεnT |�n(0)〉〈�n(0)|. (A3)

Combined with the micromotion, this gives us the well-
established propagator form of the time-periodic propagator,

Û (t, 0) =
∑

n

e−iεnt |�n(t )〉〈�n(0)|, (A4)

and all of its related identities such as Eq. (1).
But here we note that the only guaranteed property of the

quasienergy eigenstates �n(t ) and their superposition states
is that they satisfy the time-dependent Schrödinger equation.
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There is no mechanism introduced in this formulation to select
or distinguish among these states the different dynamics of
a stable, slowly propagating state from the myriad of highly
excited states. This original derivation is not linked to any
observable from which we can deduce the physical signifi-
cance of these states beyond the relation in Eq. (A4) and its
derivatives.

APPENDIX B: PROOF OF [ ˆ̄H, T̂S] = 0

We can rewrite the operators ˆ̄H and T̂S as

ˆ̄H =
∑
ni j

H̄ni j |� ′
ni〉〈� ′

n j |, (B1)

T̂S =
∑

ni

e−iεnT |� ′
ni〉〈� ′

ni| (B2)

using an arbitrary quasienergy eigenbasis {� ′
ni} [Eq. (26)], for

which we will reserve the primed notation here for clarity.
This basis satisfies

|� ′
ni〉 = lim

T →∞
1√
2T

∫ T

−T
e−iεnt |�′

ni(t )〉 ⊗ |t〉dt, (B3)

[Ĥ (t ) − i∂t ]|�′
ni(t )〉 = εn|�′

ni(t )〉, (B4)

so that we retain the orthonormality conditions

〈� ′
mi|� ′

n j〉 = δmnδi j . (B5)

Combining this orthonormality condition with the definitions
in Eqs. (B1) and (B2), we straightforwardly get

[ ˆ̄H, T̂S
] =

∑
mni jk

[H̄mi je
−iεnT δmnδ jk − e−iεmT H̄n jkδmnδi j]|� ′

mi〉〈� ′
nk| (B6)

=
∑
ni j

[H̄nike−iεnT − e−iεnT H̄nik]|� ′
ni〉〈� ′

nk| = 0. (B7)

The commutation of the effective operator ˆ̄Hn and the Flo-
quet Hamiltonian ĤF in the Floquet space follows the same
steps.

APPENDIX C: DERIVATION OF H̄n

Starting from the physical eigenstate definition,

ˆ̄H |�na〉 = Ēna|�na〉, (C1)

|�na〉 = lim
T →∞

1√
2T

∫ T

−T
e−iεnt |�na(t )〉 ⊗ |t〉dt, (C2)

we operate 〈t | on the left of Eq. (C1), where t is an arbitrary
time:

〈t | ˆ̄H |�na〉 = Ēna〈t |�na〉. (C3)

We expand the definition of ˆ̄H from Eq. (B1),∑
mi j

H̄mi j〈t |� ′
mi〉〈� ′

m j |�na〉 = Ēna〈t |�na〉. (C4)

The inner product of the state vectors is simplified as

〈� ′
m j |�na〉 = lim

T →∞
1

2T

∫ T

−T
ei(εm−εn )t 〈�′

mi(t )|�na(t )〉dt

(C5)

= δmn
1

T

∫ T

0
〈�′

mi(t )|�na(t )〉dt . (C6)

Now it is helpful to introduce a double bra-ket notation for
the vectors in the Floquet space H ⊗ T, such that the inner
product is defined by

〈〈�|�′〉〉 = 1

T

∫ T

0
〈�(t )|�′(t )〉dt ∀�,�′ ∈ H ⊗ T.

(C7)

Using Eqs. (C6) and (C7) in Eq. (C4) and rearranging some
terms, we get∑

i j

H̄ni j |�′
ni(t )〉〈〈�′

n j |�na〉〉 = Ēna|�na(t )〉. (C8)

As this relation holds at all times t , we can expand it to the
whole Floquet space T:[∑

i j

H̄ni j |�′
ni〉〉〈〈�′

n j |
]
|�na〉〉 = Ēna|�na〉〉. (C9)

Defining the bracketed expression as ˆ̄Hn, we get the original
equation in Eq. (29). Repeating this process for all physical
eigenstates �na and for all quasienergy Brillouin zones, we
get the complete definition of ˆ̄Hn spanning all Floquet space
H ⊗ T.

APPENDIX D: EQUIVALENCE OF Ē AND Ē

Expanding the functionals Ē [�] and Ē[�] on an arbitrary
quasienergy basis {�′

ni}, we find the differences between them
to be in the nondegenerate components with respect to the
quasienergy labels, i.e.,

Ē [�] =
∑
ni j

C∗
niCn jH̄ni j, (D1)

Ē[�] =
∑
mni j

C∗
miCn jH̄mni j, (D2)

where H̄mni j is the more general uncontracted form of H̄ni j

[Eq. (25)], representing the matrix element of the Hamilto-
nian,

H̄mni j = 1

T

∫ T

0
〈�′

mi(t )|Ĥ (t )
∣∣�′

n j (t )
〉
dt, (D3)
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and Cn j is the usual overlap matrix with the arbitrary Floquet
state �:

Cn j = 1

T

∫ T

0
〈�′

n j (t )|�(t )〉dt . (D4)

So the condition for the two functionals to be equal simplifies
to

Ē [�] = Ē[�] ⇔ C∗
miCn j = δmnC

∗
niCn j . (D5)

This condition is satisfied by the quasienergy variation
δε[�] = 0, which we will show explicitly here. For this we
decompose the Floquet state � using two parameters, θ and
ϕ, so that we focus on the two states �′

mi and �′
n j as follows:

|�〉=cos(θ ) cos(ϕ)|�′
mi〉+cos(θ ) sin(ϕ)|�′

n j〉+sin(θ )|�′⊥〉.
(D6)

Here �′⊥ is the remaining projection of the Floquet state
� orthogonal to both �′

mi and �′
n j . We will also ignore the

complex phase as it does not affect the quasienergy variation.
As the variation δε[�] = 0 has to hold for all parameters, the
following condition has to hold:

δε[�]

δϕ
= −(εm − εn) cos2(θ ) sin(2ϕ) = 0. (D7)

So the necessary condition for the quasienergy variation to
hold is

δε[�] = 0 ⇒

⎡
⎢⎣

εm = εn ⇔ m = n ∀Cmi,Cn j,

sin(2ϕ) = 0 ⇔ Cmi = 0 or Cn j = 0,

cos(θ ) = 0 ⇔ Cmi = Cn j = 0.

(D8)

Applying this for all pairs, we get the equivalence with
Eq. (D5),

δε[�] = 0 ⇔ C∗
miCn j = δmnC

∗
niCn j, (D9)

and thus, Eq. (38) holds.
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