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This paper proposes a generalized Bell-like inequality (GBI) for multiparticle entangled Schrödinger cat states
of arbitrary spin s. Based on quantum probability statistics, the GBI and violation are formulated in a unified
manner with the help of a state density operator, which can be separated into local and nonlocal parts. The local
part gives rise to the inequality, while the nonlocal part is responsible for the violation. The GBI is not violated
at all by the quantum average, except the spin-1/2 entangled states. If the measuring outcomes are restricted
in the subspace of the spin coherent state (SCS), namely, only the maximum spin values ±s, the GBI is still
meaningful for the incomplete measurement. With the help of SCS quantum probability statistics, it is proved
that the violation of GBI can occur only for half-integer spins and not integer spins. Moreover, the maximum
violation bound depends on the number parity of the entangled particles, which is 1/2 for the odd particle
numbers and 1 for the even numbers.
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I. INTRODUCTION

Nonlocality [1–3] is regarded as the most peculiar charac-
teristic of quantum mechanics since it does not coexist with
the relativistic causality in our intuition of space and time.
The quantum entangled state was originally introduced by
Einstein-Podolsky-Rosen as a critical example for the nonlo-
cality [4] showing apparently contradictory results with the
locality and reality criterion in classical theory. The quantum
entanglement now has become a key concept of quantum
information and computation [5–9]. Quantum correlations
between entangled systems are fundamentally different from
classical correlations [10,11], especially when these systems
are spatially separated. It was Bell who proposed, for the first
time, an inequality known as the Bell inequality (BI) to test
this difference [12]. The BI is actually a constraint on the
correlations compatible with local hidden-variable (or local
realistic) theories. Great attention has been paid to theoretical
and experimental studies of the inequality [13–17]. Much
experimental evidence [18–24] confirms the violation of BI,
which provides an overwhelming superiority for the nonlo-
cality in quantum mechanics [25,26].

Stimulated by the original work of Bell, various extensions
have been proposed, such as Clauser-Horne-Shimony-Holt
(CHSH) [27] inequality and Wigner inequality (WI) [28], in
which only the particle-number probability of the positive spin
is measured [28,29]. A loophole-free experiment was reported
recently to verify the violation of CHSH inequality with the
electronic spin of the nitrogen-vacancy defect in a diamond
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chip [30,31]. The violation was also confirmed experimentally
with two-photon entangled states of mutually perpendicular
polarizations [32]. By closing the two main loopholes (the
“locality loophole” and “detection loophole”) at the same
time, some teams have independently confirmed that we must
definitely renounce local realism [30,33–35].

Theoretical analysis for the violation of BI was presented
in the beginning of the 1990s [36,37]. It is certainly of impor-
tance that the BI and its violation can be formulated together
in the framework of quantum probability statistics in order
to have a better understanding of the entanglement nature. In
particular, the maximum violation is of significance in the
entangled Schrödinger cat states, which play a crucial role
in the test of macroscopic quantum effects. Moreover, the
measurement of maximum violation may be developed to a
device of independent entanglement witnesses. In terms of
spin-coherent-state (SCS) quantum probability statistics, the
BI, WI, and their maximum violation bounds are studied for
arbitrary two-spin entangled states with antiparallel and par-
allel spin polarizations [38–42] . The density operator of the
entangled state is separated into the “local” (classical prob-
ability state) and “nonlocal” (quantum interference between
two components of entangled state) parts. The local part gives
rise to the BI or WI, while the nonlocal part is responsible for
the violation.

The Bell correlation for a two-particle entangled state of
arbitrary spin s, called the Schrödinger cat state, is also in-
vestigated with the SCS quantum probability statistics. The
BI is not violated by the entangled Schrödinger cat states at
all, except the spin-1/2 case [42]. If, on the other hand, the
measuring outcomes are confined in the subspace of SCS, a
universal BI is formulated in terms of the local part of the
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density operator. The maximum violation bound is found for
the entangled cat states with both antiparallel and parallel
polarizations [38,39]. In particular, a spin-parity effect [42]
is observed in which the universal BI can be violated only by
the entangled cat states of the half-integer and not the integer
spins. The violation of universal BI is seen to be a direct
result of a nontrivial Berry phase between the SCSs [38–42]
of the south- and north-pole gauges for the half-integer spin,
while the geometric phase is trivial for the integer spins. This
observation [42] provides an example to relate the violation of
BI with the geometric phase.

In the present paper, we study the multiparticle entan-
gled cat states, which are just the well-known Greenberger,
Horne, and Zeilinger (GHZ) [43–45] state in the spin-1/2 case
[46,47]. The quantum entanglement was originally general-
ized to the GHZ state for four spin-1/2 particles, while later
it was simplified to three spin-1/2 particles [48] and was veri-
fied experimentally [49,50]. The violations of inequalities for
n spin-1/2 particles have been studied extensively [51–61].
Bell’s inequality has been proposed for n spin-s particles by n
distant observers [62].

The main goal of the present study is to extend the two-
particle universal BI to a multiparticle entangled cat state of
arbitrary spin s. The entanglement in many-particle systems
has been thoroughly investigated with significant progress
achieved [61,63–69]. The many-particle nonlocal correlation
plays an important role in phase transitions and criticality
in condensed matter [70]. It might also enhance our under-
standing of entanglement application in quantum information
theory.

Although the nonlocal correlation for a two-particle entan-
gled cat state was investigated, a suitable inequality for an
arbitrary many-particle state was not found in our previous
paper [42]. In the present paper, a generalized Bell-like in-
equality (GBI) is discovered to characterize the nonlocality of
a multiparticle entangled cat state with arbitrary spin s. The
GBI and the maximum violation bound are formulated in a
unified formalism with SCS quantum probability statistics.

In Sec. II, we present a brief review of the SCS quantum
probability statistics with the BI as an example. The GBI and
its maximum violation bound are formulated for n-particle
entangled states of spin-1/2 in Sec. III. It is demonstrated in
Sec. IV that the GBI and the maximum violation exist for the
n-particle entangled cat states if the measuring outcomes are
restricted in the subspace of SCS. Moreover we observe inter-
esting spin and particle-number parity effects in the violation
of GBI. The conclusion and discussion are given in Sec. V,
where a possible experiment is proposed to test the spin-parity
effect.

II. SCS QUANTUM PROBABILITY STATISTICS AND BI

The original BI is derived based on classical statistics
with a hidden-variable assumption. In previous publications
[38–42], the Bell-type inequalities and their violation were
formulated by means of the SCS quantum probability statis-
tics in a unified manner. The density operator of an entangled
state for a bipartite system can be separated to the local
(or classical) and nonlocal (or quantum coherent) parts. The
former part gives rise to the local realist bound of measuring-

outcome correlation, namely, the BIs, while the latter part
leads to the violation of the inequalities.

A. Spin-1/2 measuring outcome correlation and violation of BI

We begin with an arbitrary two-spin entangled state of
antiparallel polarization in the bases σ̂z|±〉 = ±|±〉,

|ψ〉 = c1|+,−〉 + c2|−,+〉, (1)

where the normalized coefficients can be generally parame-
terized as c1 = eiη sin ξ , c2 = e−iη cos ξ . We assume that two
spins are separated to a spacelike distance when the entangled
state is prepared. The density operator ρ̂ of the entangled state
can be divided into two parts,

ρ̂ = ρ̂lc + ρ̂nlc. (2)

The local part,

ρ̂lc = sin2 ξ |+,−〉〈+,−| + cos2 ξ |−,+〉〈−,+|,
which is the classical two-particle probability-density oper-
ator, describes the individual spin of the bipartite system
separated remotely, while what we called the nonlocal part,

ρ̂nlc = sin ξ cos ξ (e2iη|+,−〉〈−,+| + e−2iη|−,+〉〈+,−|),
is the quantum coherence density operator between two re-
mote spins.

The measurements of two spins are performed indepen-
dently along two arbitrary directions, say, a and b. The
measuring outcomes fall into the eigenvalues of projection
spin operators σ̂ · a and σ̂ · b, i.e.,

σ̂ · a| ± a〉 = ±| ± a〉, σ̂ · b| ± b〉 = ±| ± b〉,
according to the quantum measurement theory. Solving the
eigenvalue equation for each direction denoted by r = a, b,
we have two orthogonal eigenstates given by

|+r〉 = cos
θr

2
|+〉 + sin

θr

2
eiφr |−〉,

|−r〉 = sin
θr

2
|+〉 − cos

θr

2
eiφr |−〉. (3)

In the above solutions, the general unit vector r =
(sin θr cos φr, sin θr sin φr, cos θr ) is parameterized by the po-
lar and azimuthal angles θr, φr in the coordinate frame
with the z axis along the direction of the initial spin po-
larization. The two orthogonal states | ± r〉 are known as
spin-coherent states of the north- and south-pole gauges [42].
The eigenstate product of operators σ̂ · a and σ̂ · b forms an
outcome-independent vector basis for measuring two spins,
respectively, along the a, b directions. We label the four basis
vectors as

|1〉 = |+a,+b〉, |2〉 = |+a,−b〉,
|3〉 = |−a,+b〉, |4〉 = |−a,−b〉, (4)

for the sake of simplicity. The measurement correlation oper-
ator is denoted by

	̂(a, b) = (σ̂ · a) ⊗ (σ̂ · b). (5)

The correlation probability is obtained as

P(a, b) = Tr[	̂(a, b)ρ̂], (6)
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which can also be separated into local and nonlocal parts,

P(a, b) = Plc(a, b) + Pnlc(a, b),

with

Plc(a, b) = Tr[	̂(a, b)ρ̂lc]

and

Pnlc(a, b) = Tr[	̂(a, b)ρ̂nlc].

In terms of the outcome-independent basis vectors given by
Eq. (4), we derive the local correlation

Plc(a, b) = ρ lc
11 − ρ lc

22 − ρ lc
33 + ρ lc

44

= − cos θa cos θb,

which is independent of the state parameters ξ , η, and is valid
for the arbitrary normalized entangled states given by Eq. (1).
And

ρii = 〈i|ρ̂|i〉 = ρ lc
ii + ρnlc

ii

( i = 1, 2, 3, 4 ) denotes matrix elements of the density oper-
ator. The BI is recovered with the local correlation. The BI is
[12]

1 + Plc(b, c) � |Plc(a, b) − Plc(a, c)| (7)

for the antiparallel entangled states given by Eq. (1).
The nonlocal part found as

Pnlc(a, b) = sin (2ξ ) sin θa sin θb cos (φa − φb + 2η),

however, depends on the specific states. The violation of BI
is seen to be a direct result of the nonlocal correlation. In
particular, when the initial entangled state is the two-spin
singlet,

|ψs〉 = 1√
2

(|+,−〉 − |−,+〉),

with the state parameters ξ = (3π/4)mod2π and η =
0mod2π , the total correlation P(a, b) becomes a scaler prod-
uct of the two unit vectors,

P(a, b) = −a · b,

from which the BI is violated. For example, we let vector b be
perpendicular to c, then P(b, c) = −b · c = 0 and the greater
side of BI is 1 + P(b, c) = 1. On the other hand, if the vector
a is parallel to b − c, the less side |P(a, b) − P(a, c)| = |a ·
(b − c)| = √

2 becomes greater than 1 + P(b, c).
The BI and violation have been extended to the spin-1/2

entangled state of parallel polarization [39].

B. Nonviolation of BI for spin-1 entangled states

The BI is not violated by the quantum statistics average of
the measuring-outcome correlation for the spin-1 entangled
state,

|ψ〉 = c1| + 1,−1〉 + c2| − 1,+1〉.
The local part of the density operator is

ρ̂lc = sin2 ξ | + 1,−1〉〈+1,−1| + cos2 ξ | − 1,+1〉〈−1,+1|,

and the nonlocal part is

ρ̂nlc = sin ξ cos ξ (e2iη| + 1,−1〉〈−1,+1|
+ e−2iη| − 1,+1〉〈+1,−1|).

The eigenstates of the spin projection operator obtained from
the three equations, ŝ · r| ± r〉 = ±1| ± r〉 and ŝ · r|r0〉 = 0
(in the unit convention h̄ = 1), are found as

|+r〉 = cos2 θr

2
|+1〉 + 1√

2
sin θr exp (iφr )|0〉

+ sin2 θr

2
exp (i2φr )|−1〉,

|−r〉 = sin2 θr

2
|+1〉 − 1√

2
sin θr exp (iφr )|0〉

+ cos2 θr

2
exp (i2φr )|−1〉,

|r0〉 = − 1√
2

sin θr |+1〉 + cos θr exp (iφr )|0〉

+ 1√
2

sin θr exp (i2φr )|−1〉.

The two-spin measuring-outcome correlation, respectively,
along the a, b directions is evaluated by the quantum prob-
ability statistics over the nine eigenstates 	̂(a, b)|am, bm′ 〉 =
mm′|am, bm′ 〉, where

	̂(a, b) = (ŝ · a) ⊗ (ŝ · b),

with m, m′ = 1, 0,−1, respectively. The local part of the cor-
relation is

Plc(a, b) = Tr[	̂(a, b)ρ̂lc]

=
∑
m,m′

〈am, bm′ |	̂(a, b)ρ̂lc|am, bm′ 〉

= − cos θa cos θb,

while the nonlocal part of the correlation vanishes in the
quantum probability average,

Pnlc(a, b) =
∑
m,m′

〈am, bm′ |	̂(a, b)ρ̂nlc|am, bm′ 〉 = 0.

Thus the quantum correlation is equal to the classical one,

P(a, b) = Plc(a, b).

It is also proven that the nonlocal correlation vanishes [42],
Pnlc

s (a, b) = 0, for Schrödinger cat states of spin-s (s >

1/2) with both antiparallel and parallel spin polarizations
[41,42,71],

|ψ〉 = c1| + s,∓s〉 + c2| − s,±s〉. (8)

The reason is that the transition elements 〈±s|Ŝ · n|∓s〉 = 0
(n = a, b) induced by the spin projection operator vanish in
the quantum probability average. The BI is not violated at all.

C. Universal BI and spin-parity effect

When the measurement, however, is restricted in the sub-
space of SCS, namely, only the maximum spin values ±s are
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measured [42], a universal BI,

plc(a, b)plc(b, c) � |plc(a, c)|, (9)

is proposed [42] for the incomplete measurements. The uni-
versal BI is suitable for complete and partial measurements.
It is also valid for entangled states with both antiparallel and
parallel spin polarizations, given by Eq. (8).

The SCSs for projection spin operator ŝ · r in the direction
of unit vector r (r = a, b) can be derived from the eigenstate
equations

ŝ · r|±r〉 = ±s|±r〉.
The explicit forms of SCSs in the Dicke-state representation
are given by [71–73]

|+r〉 =
s∑

m=−s

(
2s
s + m

) 1
2

Ks+m
r �s−m

r exp [i(s − m)φr]|m〉,

|−r〉 =
s∑

m=−s

(
2s
s + m

) 1
2

Ks−m
r �s+m

r exp [i(s − m)(φr + π )]|m〉,

(10)

in which

Ks±m
r =

(
cos

θr

2

)s±m

and

�s±m
r =

(
sin

θr

2

)s±m

.

The two orthogonal states | ± r〉 are known as SCSs of
the north- and south-pole gauges, in which a phase factor
exp[i(s − m)π ] difference between the two gauges plays a
key role in the spin-parity effect. The eigenstates of the
projection spin operators ŝ · a and ŝ · b form measuring-
outcome-independent basis vectors, if the measurements are
restricted in the maximum spin values, ±s. The nonlocal part
of measuring the outcome correlation evaluated by the trace
over the subspace of SCSs, Pnlc(a, b) = Tr[	̂(a, b)ρ̂nlc], is
found as

pnlc(a, b) = ρnlc
11 − ρnlc

22 − ρnlc
33 + ρnlc

44 ,

in which four eigenvectors labeled by |i〉 (i = 1, 2, 3, 4) are
the same as in Eq. (4), where

ρnlc
ii = 〈i|ρ̂nlc|i〉

denotes the matrix elements of the density operator.
The density matrix elements of the nonlocal part are ob-

tained as

ρnlc
11 = ρnlc

44

= sin (2ξ )K2s
a �2s

a K2s
b �2s

b cos [2s(φa ∓ φb) + 2η], (11)

respectively, for antiparallel and parallel spin polarizations,
and

ρnlc
22 = ρnlc

33 = (−1)2sρnlc
11 . (12)

It may be worthwhile to remark that the two-spin density
matrix elements of the same spin polarizations (ρnlc

11 , ρnlc
44 )

differ from that of opposite polarizations (ρnlc
22 , ρnlc

33 ) by a
phase factor,

(−1)2s = exp(i2sπ ), (13)

which resulted from the geometric phase or Berry phase be-
tween SCSs of the north- and south-pole gauges. The nonlocal
part of the correlation is simply

pnlc(a, b) = 2[1 − (−1)2s]ρ lc
11, (14)

which vanishes for integer spin s, but does not vanish for the
half-integer spin. The Berry phase is trivial for the integer
spins and the nonlocal parts of measuring-outcome correlation
cancel each other, while the nontrivial Berry phase for half-
integer spins leads to the constructive interference of nonlocal
correlations. Thus the universal BI given by Eq. (9) can be
violated only by half-integer spins and not by the integer
spins. A maximum violation bound of universal BI is found
for half-integer spin-s states [42]. In the following, we extend
the two-particle universal BI to GBI for n particles.

III. MAXIMUM VIOLATION OF GBI FOR N-PARTICLE
ENTANGLED STATE OF SPIN-1/2 AND
PARTICLE-NUMBER PARITY EFFECT

In the present paper, we consider the n-particle entangled
cat state of spin s,

|ψ〉 = c1| + s〉⊗n + c2| − s〉⊗n, (15)

in which c1 = eiη sin ξ, c2 = e−iη cos ξ characterize the nor-
malized coefficient with two arbitrary real parameters ξ, η.
The state density operator can be separated into the local and
nonlocal parts,

ρ̂ = ρ̂lc + ρ̂nlc,

with

ρ̂lc = sin2 ξ | + s〉⊗n〈+s|⊗n + cos2 ξ | − s〉⊗n〈−s|⊗n,

ρ̂nlc =sin ξ cos ξ
(
ei2η| + s〉⊗n〈−s|⊗n + e−i2η| − s〉⊗n〈+s|⊗n

)
.

The normalized outcome correlation from n observers can
also be separated as the local and nonlocal parts,

p(a1, a2, . . . , an) = 1

sn
Tr[ρ̂	̂(a1, a2, . . . , an)]

= plc(a1, a2, . . . , an)+pnlc(a1, a2, . . . , an),
(16)

measured, respectively, along the a1, a2, . . . , an directions.
The measuring correlation operator is

	̂(a1, a2, . . . , an) = (ŝ · a1) ⊗ (ŝ · a2) ⊗ · · · ⊗ (ŝ · an).

The universal BI for the two-particle entangled state [42]
is then extended directly to a GBI for an n-particle entangled
cat state of spin s given by Eq. (15),

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)plc(a3, a4, . . . , an+2)

× · · · × plc(an, an+1, . . . , am)

� |plc(a1, a3, . . . , am)|, (17)
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with total measuring directions m = 2n − 1. The validity of
GBI given by Eq. (17) is obvious according to the hidden-
variable classical statistics [42] following Bell [12] since
any two-particle normalized measuring outcomes (denoted by
A = ±1 and B = ±1) have the relation |A(a)| = |B(a)| along
the same direction a and A2(a) = B2(a) = 1. The derivation
of GBI given by Eq. (17) is presented in the Appendix.

A. Three-particle entangled state of spin-1/2

As a simple example, we consider the three-particle entan-
gled state of spin-1/2,

|ψ〉 = eiη sin ξ |+,+,+〉 + e−iη cos ξ |−,−,−〉,
where |+〉 and |−〉 are the spin-up and -down states along the
z axis. The local part of density operator ρ̂ = |ψ〉〈ψ |,
ρ̂lc = sin2 ξ |+,+,+〉〈+,+,+| + cos2 ξ |−,−,−〉〈−,−,−|,
results in the GBI, while the nonlocal part,

ρ̂nlc = sin ξ cos ξ

(
ei2η|+,+,+〉〈−,−,−|

+e−i2η|−,−,−〉〈+,+,+|
)

,

which describes the quantum interference [38–42] between
the two components of the entangled state, leads to the vio-
lation of the GBI.

1. Verification of GBI with the local part of correlation

Let us suppose that three spins are measured independently
by three observers along arbitrary directions a1, a2, and a3.
The measuring outcomes of each spin fall into the eigenvalues
of projection spin operator ŝ · r (r = a1, a2, a3), i.e.,

ŝ · r|±r〉 = ± 1
2 |±r〉 (18)

(in the unit convention h̄ = 1), for the case s =
1/2. The unit vector of arbitrary direction r =
(sin θr cos φr, sin θr sin φr, cos θr ) is parameterized with the
polar and azimuthal angles θr, φr in spherical coordinates.
Two eigenstates of Eq. (18) are given in Eq. (3), which are
known as the spin-coherent states of the north- and south-pole
gauges [38–41]. The independent measuring-outcome basis
vectors are labeled as

|1〉 = | + a1,+a2,+a3〉, |2〉 = | + a1,−a2,−a3〉,
|3〉 = | − a1,+a2,−a3〉, |4〉 = | − a1,−a2,+a3〉, (19)

|5〉 = | + a1,+a2,−a3〉, |6〉 = | + a1,−a2,+a3〉,
|7〉 = | − a1,+a2,+a3〉, |8〉 = | − a1,−a2,−a3〉,

for the sake of simplicity. The basis vectors are the eigenstates
of the correlation operator such that

	̂(a1, a2, a3)|i〉 = ±
(

1

2

)3

|i〉,

respectively, for i = 1, 2, 3, 4 and 5,6,7,8. Thus we have the
(normalized) total correlation probability evaluated from the
matrix elements of the density operator only,

p(a1, a2, a3) =
4∑

i=1

ρii −
8∑

i=5

ρii.

From the local matrix elements of the density operator,

ρ lc
11 = sin2 ξ

3∏
i=1

K2
ai

+ cos2 ξ

3∏
i=1

�2
ai
,

ρ lc
22 = sin2 ξK2

a1
�2

a2
�2

a3
+ cos2 ξ�2

a1
K2

a2
K2

a3
,

ρ lc
33 = sin2 ξ�2

a1
K2

a2
�2

a3
+ cos2 ξK2

a1
�2

a2
K2

a3
,

ρ lc
44 = sin2 ξ�2

a1
�2

a2
K2

a3
+ cos2 ξK2

a1
K2

a2
�2

a3
,

ρ lc
55 = sin2 ξK2

a1
K2

a2
�2

a3
+ cos2 ξ�2

a1
�2

a2
K2

a3
,

ρ lc
66 = sin2 ξK2

a1
�2

a2
K2

a3
+ cos2 ξ�2

a1
K2

a2
�2

a3
,

ρ lc
77 = sin2 ξ�2

a1
K2

a2
K2

a3
+ cos2 ξK2

a1
�2

a2
�2

a3
,

ρ lc
88 = sin2 ξ

3∏
i=1

�2
ai

+ cos2 ξ

3∏
i=1

K2
ai
, (20)

in which Kr = cos θr/2, �r = sin θr/2 for r = a1, a2, a3, the
local part of the correlation is found as

plc(a1, a2, a3) = − cos (2ξ )
3∏

i=1

cos θai . (21)

The GBI of Eq. (17) for n = 3 can be verified with the local
part of the correlation probability given by Eq. (21) such that

plc(a1, a2, a3)plc(a2, a3, a4)plc(a3, a4, a5)

= cos2 (2ξ )

(
4∏

i=2

cos2 θai

)
plc(a1, a3, a5)

� |plc(a1, a3, a5)|.

2. Maximum violation of GBI

The nonlocal parts of the density operator are evaluated as

ρnlc
11 = 1

23
sin (2ξ )

(
3∏

i=1

sin θai

)
cos

(
3∑

i=1

φai + 2η

)
,

with

ρnlc
ii = ρnlc

11 ,

for i = 2, 3, 4, and

ρnlc
j j = −ρnlc

11 ,

for j = 5, 6, 7, 8. The nonlocal part of the correlation is

pnlc(a1, a2, a3) = sin (2ξ )

(
3∏

i=1

sin θai

)
cos

(
3∑

i=1

φai + 2η

)
.

(22)
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The entire (normalized) quantum correlation probability be-
comes

p(a1, a2, a3) = − cos (2ξ )

(
3∏

i=1

cos θai

)

+ sin (2ξ )

(
3∏

i=1

sin θai

)
cos

(
3∑

i=1

φai + 2η

)
.

(23)

In order to find the maximum violation of the GBI, we define
a quantum correlation-probability difference,

pGB = p(a1, a2, a3)p(a2, a3, a4)p(a3, a4, a5)

− |p(a1, a3, a5)|. (24)

The GBI becomes

plc
GB � 0. (25)

Thus any positive value of pGB indicates the violation of
GBI. The maximum violation appears with the polar angles
θa1 = θa2 = θa3 = π/2, where the local part of the correlation
vanishes. Thus the correlation probability is simplified as

p(a1, a2, a3) = sin (2ξ ) cos

(
3∑

i=1

φai + 2η

)
.

The probability difference given by Eq. (24) reads

pGB = sin3 (2ξ ) cos

(
3∑

i=1

φai + 2η

)

× cos

(
4∑

i=2

φai + 2η

)
cos

(
5∑

i=3

φai + 2η

)

−
∣∣∣∣∣sin (2ξ ) cos

(
2∑

i=0

φa2i+1 + 2η

)∣∣∣∣∣,
which becomes

pGB = − sin

(
3∑

i=1

φai

)
sin

(
4∑

i=2

φai

)
sin

(
5∑

i=3

φai

)

−
∣∣∣∣∣sin

(
2∑

i=0

φa2i+1

)∣∣∣∣∣,
for the state parameters ξ = η = π/4mod2π . With the az-
imuthal angles of five measuring directions φa2i+1 = 0 (i =
0, 1, 2), φa2 = φa4 = 3π/4, we have the maximum violation

pmax
GB = 1

2 . (26)

B. Four-particle entangled state of spin-1/2

For the four-particle entangled state, there are 16 inde-
pendent basis vectors for the arbitrary measuring directions
denoted by a1, a2, a3, and a4,

|1〉 = |+a1,+a2,+a3,+a4〉, |2〉 = |+a1,+a2,−a3,−a4〉,
|3〉 = |+a1,−a2,+a3,−a4〉, |4〉 = |+a1,−a2,−a3,+a4〉,
|5〉 = | − a1,+a2,+a3,−a4〉, |6〉=| − a1,+a2,−a3,+a4〉,

|7〉 = |−a1,−a2,+a3,+a4〉, |8〉 = |−a1,−a2,−a3,−a4〉,
|9〉 = |+a1,+a2,+a3,−a4〉, |10〉 = |+a1,+a2,−a3,+a4〉,

|11〉 = |+a1,−a2,+a3,+a4〉,|12〉 = |+a1,−a2,−a3,−a4〉,
|13〉=| − a1,+a2,+a3,+a4〉, |14〉=| − a1,+a2,−a3,−a4〉,
|15〉 = |−a1,−a2,+a3,−a4〉, |16〉 = |−a1,−a2,−a3,+a4〉.

(27)

They are the eigenstates of the spin correlation operator,

	̂(a1, a2, a3, a4) = (ŝ · a1) ⊗ (ŝ · a2) ⊗ (ŝ · a3) ⊗ (ŝ · a4),

with the eigenvalues ±(1/2)4 for the states labeled, respec-
tively, from 1–8 and 9–16. The average of the measuring-
outcome correlation from four observers becomes the al-
gebraic sum of the density operator. The local part of the
correlation,

plc(a1, a2, a3, a4) =
8∑

i=1

ρ lc
ii −

16∑
i=9

ρ lc
ii =

4∏
i=1

cos θai , (28)

gives rise to the four-particle GBI such that

plc(a1, a2, a3, a4)plc(a2, a3, a4, a5)

× plc(a3, a4, a5, a6)plc(a4, a5, a6, a7)

=
(

4∏
i=1

cos2 θa2i−1

)(
6∏

i=2

cos2 θai

)
cos2 θa4

� |plc(a1, a3, a5, a7)|.
It may be worthwhile to remark that the four-particle local part
of the correlation given by Eq. (28), which is independent of
the state parameters ξ , η, has a positive sign compared with
the three-particle case given by Eq. (21).

Maximum violation

The nonlocal elements of the density operator are

ρnlc
ii = ± 1

24
sin (2ξ )

(
4∏

i=1

sin θai

)
cos

(
4∑

i=1

φai + 2η

)
,

respectively, for i = 1–8 and 9–16.
The nonlocal part of the correlation is

pnlc = sin (2ξ )

(
4∏

i=1

sin θai

)
cos

(
4∑

i=1

φai + 2η

)
.

The four-particle quantum correlation-probability difference
is defined by

pGB = p (a1, a2, a3, a4)p (a2, a3, a4, a5)p (a3, a4, a5, a6)

× p (a4, a5, a6, a7) − |p (a1, a3, a5, a7)|,
any positive value of which indicates the violation of GBI. The
maximum violation appears when θa1 = θa2 = θa3 = θa4 =
π/2, where we have

p(a1, a2, a3, a4) = sin (2ξ ) cos

(
4∑

i=1

φai + 2η

)
.
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Then the quantum correlation-probability difference becomes

pGB = sin

(
4∑

i=1

φai

)
sin

(
5∑

i=2

φai

)
sin

(
6∑

i=3

φai

)

× sin

(
7∑

i=4

φai

)
−

∣∣∣∣∣sin

(
3∑

i=0

φa2i+1

)∣∣∣∣∣,
with parameters ξ = η = π/4. For the azimuthal angles
φa2i+1 = 0, with i = 0, 1, 2, 3, we have

pGB = sin2 (φa2 + φa4 ) sin2 (φa4 + φa6 ).

The maximum violation is

pmax
GB = 1, (29)

with the azimuthal angles φa2i = π/4 (i = 1, 2, 3) or φa4 = 0,
φa2 = φa6 = π/2.

C. N-particle entangled state

For the n-particle entangled state,

|ψ〉 = c1|+〉⊗n + c2|−〉⊗n,

the GBI is satisfied by the local realistic mode with correlation

plc(a1, a2, . . . , an) =
2n−1∑
i=1

ρ lc
ii −

2n∑
i=2n−1+1

ρ lc
ii ,

which gives rise to

plc(a1, a2, . . . , an) = − cos (2ξ )
n∏

i=1

cos θai , (30)

for n being an odd number, and

plc(a1, a2, . . . , an) =
n∏

i=1

cos θai , (31)

for even n.

1. Odd n

When n is odd, the local part of the normalized correlation
probability given by Eq. (30) satisfies GBI that

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)

× plc(a3, a4, . . . , an+2) · · · plc(an, an+1, . . . , a2n−1)

= cosn−1 (2ξ )
n+1∏
i=2

cos2 θai

n+3∏
i=4

cos2 θai

n+5∏
i=6

cos2 θai

× · · · ×
2n−2∏

i=n−1

cos2 θai plc(a1, a3, . . . , a2n−1)

� |plc(a1, a3, . . . , a2n−1)|. (32)

With the nonlocal part of the correlation,

pnlc(a1, a2, . . . , an)

= sin (2ξ )

(
n∏

i=1

sin θai

)
cos

(
n∑

i=1

φai + 2η

)
, (33)

the total correlation becomes

p(a1, a2, . . . , an)

= − cos (2ξ )
n∏

i=1

cos θai

+ sin (2ξ )

(
n∏

i=1

sin θai

)
cos

(
n∑

i=1

φai + 2η

)
.

For the polar angles θai = π/2 and state parameters ξ =
π/4mod2π and η = π/4mod2π , it is simplified as

p(a1, a2, . . . , an) = − sin

(
n∑

i=1

φai

)
.

Then the quantum correlation-probability difference becomes

pGB = p(a1, a2, . . . , an)p(a2, a3, . . . , an+1)

× p(a3, a4, . . . , an+2) · · · × p(an, an+1, . . . , a2n−1)

− |p(a1, a3, . . . , a2n−1)|

= − sin

(
n∑

i=1

φai

)
sin

(
n+1∑
i=2

φai

)
× · · ·

× sin

(
2n−1∑
i=n

φai

)
−

∣∣∣∣∣sin

(
n∑

i=1

φa2i−1

)∣∣∣∣∣.
When φa2i−1 = 0 (i = 1, 2, . . . , n), we have

pGB = − sin

((n−1)/2∑
i=1

φa2i

)
sin

((n+1)/2∑
i=1

φa2i

)

× sin

( (n+1)/2∑
i=2<n−1

φa2i

)
sin

( (n+3)/2∑
i=2<n−1

φa2i

)

× sin

( (n+3)/2∑
i=3<n−1

φa2i

)
sin

( (n+5)/2∑
i=3<n−1

φa2i

)

× · · · × sin

(
n−1∑

i=(n+1)/2

φa2i

)
, (34)

which possesses a maximum value with the azimuthal angles
given by φa2i = 0, except i = (n ± 1)/2, and φan−1 = φan+1 =
3π/4. Along these measuring conditions, the correlation-
probability difference given by Eq. (34) approaches the
maximum bound,

pmax
GB = − sin φan−1 sin φan+1 sinn−2 (φan−1 + φan+1 )

= 1
2 . (35)

2. Even n

For even n, the local part of the n-particle correlation prob-
ability satisfies the GBI that

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)

× plc(a3, a4, . . . , an+2) · · · plc(an, an+1, . . . , a2n−1)
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=
n∏

i=1

cos θai

n+1∏
i=2

cos θai

n+2∏
i=3

cos θai · · ·
2n−1∏
i=n

cos θai

=
n∏

i=2

cos2 θai

n+2∏
i=4

cos2 θai

n+4∏
i=6

cos2 θai · · ·
2n−2∏
i=n

cos2 θai

× plc(a1, a3, . . . , a2n−1)

� |plc(a1, a3, . . . , a2n−1)|. (36)

The nonlocal part of the correlation pnlc(a1, a2, . . . , an) is the
same as that of odd n given in Eq. (33).

The normalized total correlation,

p(a1, a2, . . . , an) =
n∏

i=1

cos θai + sin (2ξ )

×
(

n∏
i=1

sin θai

)
cos

(
n∑

i=1

φai + 2η

)
,

is simplified as

p(a1, a2, . . . , an) = − sin

(
n∑

i=1

φai

)
,

with the state parameters ξ = η = π/4mod2π , and polar
angles θai = π/2 of the measuring directions. Then the cor-
relation difference becomes

pGB = sin

(
n∑

i=1

φai

)
sin

(
n+1∑
i=2

φai

)
sin

(
n+2∑
i=3

φai

)

× · · · × sin

(
2n−1∑
i=n

φai

)
−

∣∣∣∣∣sin

(
n∑

i=1

φa2i−1

)∣∣∣∣∣.
The maximum value of pGB appears when φai = 0, for i =
1, 3, 5, . . . , 2n − 1, and we have

pGB = sin2

(
n/2∑
i=1

φa2i

)
sin2

(
n/2+1∑

i=2

φa2i

)

× sin2

(
n/2+2∑

i=3

φa2i

)
· · · sin2

(
n−1∑

i=n/2

φa2i

)
.

The maximum bound of the violation is

pmax
GB = 1, (37)

under the condition of φa2i = π/n with i = 1, 2, 3, . . . , n − 1.
For the n-particle entangled state of spin-1/2, the GBI is
always satisfied by the local correlation. The nonlocal part
of the correlation gives rise to the violation of GBI. The
maximal violation bound is pmax

GB = 1/2 for the odd n and
1 for the even n. The maximum violation appears when the
2n − 1 measuring directions are perpendicular to the spin
polarization (z axis); the maximum bound depends on the
sin function of n/2 azimuthal angles φa2i for the even n. We
always have the possibility to choose the equal value of the
angles φa2i = π/n to approach the maximum bound pmax

GB = 1,
which is in agreement with the previous observation that the
violation is larger [54] for even n .

IV. SPIN-PARITY EFFECT IN THE VIOLATION OF GBI
FOR N-PARTICLE ENTANGLED SCHRÖDINGER CAT

STATE OF SPIN S

For entangled Schrödinger cat states of spin s, the GBI
is always satisfied since the nonlocal correlation vanishes by
quantum average. We now consider the measuring outcomes
restricted in the subspace of SCS instead, namely, only the
maximum spin values ±s are measured along arbitrary direc-
tions.

A. Three-particle case

The local and nonlocal parts of density operator ρ̂ are,
respectively, written as

ρ̂lc = sin2 ξ | + s,+s,+s〉〈+s,+s,+s|
+ cos2 ξ | − s,−s,−s〉〈−s,−s,−s|,

ρ̂nlc = sin ξ cos ξ

(
ei2η| + s,+s,+s〉〈−s,−s,−s|

+e−i2η| − s,−s,−s〉〈+s,+s,+s|
)

,

for the three-particle entangled cat state,

|ψ〉GHZ = c1| + s,+s,+s〉 + c2| − s,−s,−s〉.
The SCSs of the projection spin operator in direction r =
a1, a2, a3 found from the eigenequations ŝ · r| ± r〉 = ±s| ±
r〉 are given by Eq. (10). With the independent measuring-
outcome basis vectors labeled in Eq. (19), the local part of the
measuring-outcome correlation is

Plc(a1, a2, a3) = s3

(
4∑

i=1

ρ lc
ii −

8∑
i=5

ρ lc
ii

)
,

in which the elements of the local density operator are given
by the same formulas as Eq. (20), however, with the power
index “2” replaced by “4s”; for example, the first one is

ρ lc
11 = sin2 ξ

3∏
i=1

K4s
ai

+ cos2 ξ

3∏
i=1

�4s
ai

.

The normalized local correlation is found as

plc(a1, a2, a3)

= Plc

s3

= − cos (2ξ )
(
K4s

a1
− �4s

a1

)(
K4s

a2
− �4s

a2

)(
K4s

a3
− �4s

a3

)
,

which gives rise to the GBI such that

plc(a1, a2, a3)plc(a2, a3, a4)plc(a3, a4, a5)

� − cos (2ξ )
(
K4s

a1
− �4s

a1

)(
K4s

a3
− �4s

a3

)(
K4s

a5
− �4s

a5

)
� |plc(a1, a3, a5)|.

The nonlocal elements of the density operator are seen to be

ρnlc
11 = sin (2ξ )K2s

a1
�2s

a1
K2s

a2
�2s

a2
K2s

a3
�2s

a3

× cos [2s(φa1 + φa2 + φa3 ) + 2η]

= ρnlc
ii ,

for i = 2–4, and

ρnlc
j j = (−1)2sρnlc

11 , (38)
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with j = 5–8. It may be worthwhile to notice that the density
matrix elements of the nonlocal part differ by the same phase
factor,

(−1)2s = exp(i2sπ ),

as Eq. (13), which resulted from the geometric phase or Berry
phase between SCSs of the north- and south-pole gauges. For
integer spin s, the nonlocal correlation vanishes,

pnlc(a1, a2, a3) =
4∑

i=1

ρnlc
ii −

8∑
i=5

ρnlc
ii = 0, (39)

which leads to nonviolation of GBI. For half-integer spin s,
the nonlocal correlation becomes

pnlc(a1, a2, a3) = 2−3(2s−1) sin (2ξ )

(
3∏

i=1

sin2s θai

)

× cos

[
2s

(
3∑

i=1

φai

)
+ 2η

]
.

The whole quantum correlation probability p(a1, a2, a3)
can approach the maximum violation bound with polar angle
θr = π/2,

p(a1, a2, a3) = 2−3(2s−1) sin (2ξ ) cos

[
2s

(
3∑

i=1

φai

)
+ 2η

]
.

(40)

The correlation probability for the measurement in the SCS
subspace decreases with the increase of spin s since the di-
mension of the whole Hilbert space is (2s + 1)3, while the
number of measuring outcome states is only 8. The correlation
probability vanishes when s → ∞, in agreement with the
known observations [74–77]. We may consider the relative or
scaled correlation probability

prl (a1, a2, a3) = p(a1, a2, a3)

N
,

where the normalization constant,

N =
8∑

i=1

|〈i|ψ〉|2 =
8∑

i=1

ρii = 2−3(2s−1),

is the total probability of entangled state |ψ〉 in the eight
measuring basis vectors of SCS given by Eq. (19).

The relative or scaled correlation probability is

prl (a1, a2, a3) = sin (2ξ ) cos

[
2s

(
3∑

i=1

φai

)
+ 2η

]
. (41)

In the following, the scaled correlation probabilities of
Eq. (41) are adopted without the subscript “rl” for the sake
of simplicity.

The quantity of the correlation difference is found as

pGB = − sin (2sφa2 ) sin [2s(φa2 + φa4 )] sin (2sφa4 ),

with parameters ξ = η = π/4, and azimuthal angles of mea-
suring directions φa1 = φa3 = φa5 = 0. The maximum bound

of the violation is

pmax
GB = 1

2 , (42)

when φa2 = φa4 = 3π/(8s), consistent with the case of spin
1/2.

B. Four-particle case

For the four-particle entangled Schrödinger cat state,

|ψ〉GHZ = c1| + s,+s,+s,+s〉 + c2| − s,−s,−s,−s〉,
we have 16 independent basis vectors for measuring along
four arbitrary directions a1, a2, a3, a4. Following the same
procedure, we have the local correlation probability,

plc(a1, a2, a3, a4) =
4∏

i=1

(
K4s

ai
− �4s

ai

)
,

which gives rise to the GBI that

plc(a1, a2, a3, a4)plc(a2, a3, a4, a5)

× plc(a3, a4, a5, a6)plc(a4, a5, a6, a7)

�
3∏

i=0

(
K4s

a2i+1
− �4s

a2i+1

)

� |plc(a1, a3, a5, a7)|.
The nonlocal correlation vanishes for integer spin s. For

half-integer s, it is

pnlc(a1, a2, a3, a4) = 2−4(2s−1) sin (2ξ )

(
4∏

i=1

sin2s θai

)

× cos

[
2s

(
4∑

i=1

φai

)
+ 2η

]
.

The total quantum correlation probability is

p(a1, a2, a3, a4) = 2−4(2s−1) sin (2ξ )

× cos

[
2s

(
4∑

i=1

φai

)
+ 2η

]
,

under the condition of polar angles equal to θi = π/2. We
again consider the relative or scaled correlation probabil-
ity prl (a1, a2, a3, a4) = p(a1, a2, a3, a4)/N ( N = 2−4(2s−1)),
which becomes

prl (a1, a2, a3, a4) = sin (2ξ ) cos

[
2s

(
4∑

i=1

φai

)
+ 2η

]
.

Then the quantum correlation-probability difference is

pGB = p(a1, a2, a3, a4)p(a2, a3, a4, a5)p(a3, a4, a5, a6)

× p(a4, a5, a6, a7) − |plc(a1, a3, a5, a7)|
= sin2 [2s(φa2 + φa4 )] sin2 [2s(φa4 + φa6 )],

with parameters ξ = η = π/4, and azimuthal angles φa1 =
φa3 = φa5 = φa7 = 0. The maximum violation bound is ob-
viously

pmax
GB = 1,
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when φa2 = φa4 = φa6 = π/(8s).

C. N-particle case

For the n-particle state,

|ψ〉 = eiη sin ξ | + s〉⊗n + e−iη cos ξ | − s〉⊗n,

the local part of the n direction measuring-outcome correla-
tion,

plc(a1, a2, . . . , an) =
2n−1∑
i=1

ρ lc
ii −

2n∑
i=2n−1+1

ρ lc
ii ,

is found, respectively, as

plc(a1, a2, . . . , an) = − cos (2ξ )
n∏

i=1

(
K4s

ai
− �4s

ai

)
, (43)

for odd n, and

plc(a1, a2, . . . , an) =
n∏

i=1

(
K4s

ai
− �4s

ai

)
, (44)

for even n. The expressions of Eqs. (43) and (44) have the
same forms compared with the n-particle state of the spin-1/2
local correlation given by Eqs. (30) and (31), where cos θai is
replaced by (K4s

ai
− �4s

ai
). The GBI is satisfied by the n-particle

local correlations,

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)

· · · plc(an, an+1, . . . , a2n−1)

= cosn−1 (2ξ )
n+1∏
i=2

(
K4s

ai
− �4s

ai

)2
n+3∏
i=4

(
K4s

ai
− �4s

ai

)2

×
n+5∏
i=6

(
K4s

ai
− �4s

ai

)2 · · ·
2n−2∏

i=n−1

(
K4s

ai
− �4s

ai

)2

× plc(a1, a3, . . . , a2n−1)

� |plc(a1, a3, . . . , a2n−1)|,
with odd n, and

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)

· · · plc(an, an+1, . . . , a2n−1)

=
n∏

i=2

(
K4s

ai
− �4s

ai

)2
n+2∏
i=4

(
K4s

ai
− �4s

ai

)2
n+4∏
i=6

(
K4s

ai
− �4s

ai

)2

× · · · ×
2n−2∏
i=n

(
K4s

ai
− �4s

ai

)2
plc(a1, a3, . . . , a2n−1)

� |plc(a1, a3, . . . , a2n−1)|,
with even n. In the following, we find the maximum violation
bound including the nonlocal correlations. Since the nonlocal
correlation of integer spin s vanishes, the violation of GBI
appears only for the half-integer spin s.

Maximum violation bound for odd n

Including the nonlocal part of the correlation,

pnlc(a1, a2, . . . , an)

= 2−n(2s−1) sin (2ξ )

×
(

n∏
i=1

sin2s θai

)
cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
,

the quantum correlation is

p(a1, a2, . . . , an) = − cos (2ξ )
n∏

i=1

(
K4s

ai
− �4s

ai

)

+ 2−n(2s−1) sin (2ξ )

(
n∏

i=1

sin2s θai

)

× cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
.

With polar angle θr = π/2, where the maximum violation
appears, we have the simplified quantum correlation,

p(a1, a2, . . . , an) = 2−n(2s−1) sin (2ξ )

× cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
.

The decreasing number factor with s can be scaled
out by prl (a1, a2, . . . , an) = p(a1, a2, . . . , an)/N , with N =∑2n

i=1 |〈i|ψ〉|2 = ∑2n

i=1 ρii = 2−n(2s−1). The relative or scaled
correlation probability becomes

prl (a1, a2, . . . , an) = sin (2ξ ) cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
.

(45)
In the following, the scaled correlation probabilities of
Eq. (45) are adopted without the subscript “rl” for the sake
of simplicity.

With state parameters ξ = π/4mod2π and η =
π/4mod2π , Eq. (45) becomes

p(a1, a2, . . . , an) = − sin

(
2s

n∑
i=1

φai

)
.

The quantum correlation-probability difference for the spin-s
case is seen to be

pGB = − sin

(
2s

n∑
i=1

φai

)
sin

(
2s

n+1∑
i=2

φai

)

× · · · × sin

(
2s

2n−1∑
i=n

φai

)
−

∣∣∣∣∣sin

(
2s

2n−1∑
i=1,3,5

φai

)∣∣∣∣∣,
which reduces to

pGB = − sin

(
2s

(n−1)/2∑
i=1

φa2i

)
sin

(
2s

(n+1)/2∑
i=1

φa2i

)

× sin

(
2s

(n+1)/2∑
i=2

φa2i

)
sin

(
2s

(n+3)/2∑
i=2

φa2i

)
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× sin

(
2s

(n+3)/2∑
i=3

φa2i

)
sin

(
2s

(n+5)/2∑
i=3

φa2i

)

× · · · × sin

(
2s

n−1∑
i=(n+1)/2

φa2i

)
,

with vanishing angles φai = 0 (i = 1, 3, 5, . . . , 2n − 1) of
measuring directions. We, furthermore, let all other angles
be zero that φa2i = 0, except the two angles φan−1 = φan+1 =
3π/(8s); then the maximum violation bound is approached,

pmax
GB = − sin (2sφan−1 ) sin (2sφan+1 )

× sinn−2 [2s(φan−1 + φan+1 )]

= 1
2 . (46)

1. Even n

For even n, the quantum correlation including the nonlocal
part is

p(a1, a2, . . . , an) =
n∏

i=1

(
K4s

ai
− �4s

ai

) + 2−n(2s−1)

× sin (2ξ )

(
n∏

i=1

sin2s θai

)

× cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
,

which reduces (after rescale) to

p(a1, a2, . . . , an) = sin (2ξ ) cos

[
2s

(
n∑

i=1

φai

)
+ 2η

]
, (47)

with the polar angle θr = π/2. For the state parameters ξ =
η = π/4mod2π , Eq. (47) becomes

p(a1, a2, . . . , an) = − sin

(
2s

n∑
i=1

φai

)
,

with which the quantum correlation-probability difference is

pGB = sin

(
2s

n∑
i=1

φai

)
sin

(
2s

n+1∑
i=2

φai

)
sin

(
2s

n+2∑
i=3

φai

)

× · · · × sin

(
2s

2n−1∑
i=n

φai

)
−

∣∣∣∣∣sin

(
2s

2n−1∑
i=1,3,5

φai

)∣∣∣∣∣.
Choosing azimuthal angles φai = 0 (i = 1, 3, 5, . . . , 2n − 1)
of the measuring directions, we have

pGB = sin2

(
2s

n/2∑
i=1

φa2i

)
sin2

(
2s

n/2+1∑
i=2

φa2i

)

× sin2

(
2s

n/2+2∑
i=3

φa2i

)
· · · sin2

(
2s

n−1∑
i=n/2

φa2i

)
,

which becomes

pGB = sinn (nsφ)

under the condition that all azimuthal angles are of equal
value, φa2i = φ. The maximum violation bound is

pmax
GB = 1, (48)

when φ = π/(2ns).
The spin-parity effect in the violation of GBI exists for

the n-particle entangled Schrödinger cat state of spin s if the
measurements are restricted only in the subspace of SCSs.
Moreover, a particle-number parity effect is also demonstrated
in which the maximal violation bound is pmax

GB = 1/2 for odd
number and pmax

GB = 1 for even number.
We have seen that maximum violation appears when the

two components of the entangled states have equal probabil-
ity |c1|2 = |c2|2 = 1/2, and the measuring directions are all
perpendicular to the initial spin polarization, i.e., θai = π/2.
Then, the maximum violation depends on the state phase
angles ξ , η and the azimuthal angles φai only. The state
phase angles are fixed as ξ = η = π/4 in the above evalu-
ation. However, this is not the only choice. It may be more
convenient in experiment that ξ = π/4, η = 0, and the state
coefficients are real, c1 = c2 = 1/

√
2. The particle-number

parity effect is invariant in this case. The azimuthal angles
of the measuring directions for even n become φai = π/(4ns)
with i = 1, 3, 5, . . . , 2n − 1, and φai = 3π/(4ns) with i =
2, 4, 6, . . . , 2(n − 1), while for odd n the angles should be
chosen as φan = π/(4s), φan−1 = φan+1 = 3π/(8s), and the
rest of the angles are all zero.

V. CONCLUSION AND DISCUSSION

We propose in this paper a GBI [plc
GB � 0, Eq. (25)] for the

n-particle entangled Schrödinger cat state of spin s. It needs
n observers and total 2n − 1 measuring directions following
the original BI with n = 2 and s = 1/2. The GBI and its
violation can be formulated in a unified way by means of the
SCS quantum probability statistics. The density operator of
the entangled states is divided into a local part and nonlocal
part, which describes the quantum interference of the coherent
superposition of entangled multiparticle states. The local part
leads to the GBI, while the nonlocal part is responsible for the
violation in quantum average.

For the n-particle entangled state of spin 1/2, the maxi-
mum violation bound depends on the particle number that
pmax

GB = 1/2, 1, respectively, for odd and even n, consistent
with the known observation of a larger violation [54] for even
n. The GBI is never violated by the n -particle entangled
Schrödinger cat state with higher spin s under the quantum
average. When the measuring outcomes are restricted to the
subspace of SCSs, namely, only the maximum spin values ±s
are taken into account, the GBI is violated only by half integer
and not integer spin s. This spin-parity effect is seen to be
a direct result of the Berry phase between the SCSs of the
north- and south-pole gauges. The maximum violation bound
of GBI also depends on the particle number, which is the same
as the spin-1/2 case. The particle-number parity effect may
have some applications in quantum information associated
with many-particle entanglement.

Our generic predictions could be tested experimentally
with the orbital angular momentum entangled photons [20],
macroscopic quantum entanglement of electronic spins of
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nitrogen-vacancy defect in a diamond chip [30], and super-
conducting qubits [79] as well. The violation of the BIs
or not is related to the quantum probabilities, depending
basically on the quantum coherence features. The measure-
ment of maximum violation, which is caused entirely by
the nonlocal coherence, indeed should be useful to develop
device-independent entanglement witnesses. The two-particle
entangled state of spin 1/2 is easily prepared with the usual
polarization entanglement of photons. And, for the spin-s en-
tangled Schrödinger cat state, one needs to use the orbital an-
gular momentum entangled states [20,78], for example, |ψ〉 =
(|l1 = +1, l2 = ∓1〉 + |l1 = −1, l2 = ±1〉)/

√
2. The angular

momentum values ±1 can be measured along three arbitrary
directions a1, a2, and a3 independently by two detectors. The
violation of BIs should not appear [38,39] at all for this state
and thus the spin-parity effect is justified in this example.
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APPENDIX

We present the derivation of GBI for an n-particle spin-s
entangled Schrödinger cat state in terms of hidden-variable
classical statistics following Bell [12]. For the entangled
Schrödinger cat state of n = 2,

|ψ〉 = c1| + s,+s〉 + c2| − s,−s〉, (A1)

with |c1|2 + |c2|2 = 1, the normalized measuring-outcome
values of two observers are denoted by

A1(a1) = ±1,

A2(a2) = ±1,

respectively, along the measuring directions a1 and a2. The
measuring-outcome correlation according to Bell [12] is eval-
uated by the classical statistics,

plc(a1, a2) =
∫

ρ(λ)A1(a1, λ)A2(a2, λ)dλ

≡ 〈A1(a1)A2(a2)〉,
in which ρ(λ) is the probability density distribution of hidden
variable λ. The product of two correlations is

plc(a1, a2)plc(a2, a3)

=
∫∫

ρ(λ)ρ(λ′)A1(a1, λ)A2(a2, λ)A1(a2, λ
′)A2(a3, λ

′)dλdλ′

�
∣∣∣∣
∫∫

ρ(λ)ρ(λ′)A1(a1, λ)A2(a3, λ
′)dλdλ′

∣∣∣∣
= |〈A1(a1)〉〈A2(a3)〉|, (A2)

since A2(a2) = A1(a2) for the parallel spin polarization of the
entangled state given by Eq. (A1) and A2

2(a2) = 1. We define
the classical probability mean deviation by

A1 ≡ A1(a1) − 〈A1(a1)〉,
A2 ≡ A2(a3) − 〈A2(a3)〉,

with 〈A1(a1)〉 = ∫
ρ(λ)A1(a1, λ)dλ, and 〈A2(a3)〉 =∫

ρ(λ)A2(a3, λ)dλ being the average values of the measuring
outcomes. The average of the deviation product is evaluated
as

〈A1A2〉 = 〈[A1(a1) − 〈A1(a1)〉][A2(a3) − 〈A2(a3)〉]〉
= 〈A1(a1)A2(a3)〉 − 〈A1(a1)〉〈A2(a3)〉,

from which the right-hand side of Eq. (A2) equals

|〈A1(a1)〉〈A2(a3)〉| = |〈A1(a1)A2(a3)〉 − 〈A1A2〉|.

Because 〈A1(a1)A2(a3)〉, 〈A1A2〉 have the same sign and

|〈A1(a1)A2(a3)〉| � |〈A1A2〉|,

we have the inequality

|〈A1(a1)〉〈A2(a3)〉| � |〈A1(a1)A2(a3)〉|. (A3)

Then, Eq. (A2) becomes

plc(a1, a2)plc(a2, a3) � |〈A1(a1)〉〈A2(a3)〉|
� |〈A1(a1)A2(a3)〉|
= |plc(a1, a3)|. (A4)

Also, the validity of the GBI given by Eq. (A4) for n = 2 can
be easily verified in terms of our quantum probability average
with the local part of the density operator,

plc(a1, a2) = 1

s2
Tr

[
ρ̂lc	̂(a1, a2)

]
.

The explicit forms of the local correlation probabilities for s =
1/2 are given by plc(a1, a2) = cos θa1 cos θa2 , plc(a2, a3) =
cos θa2 cos θa3 , and plc(a1, a3) = cos θa1 cos θa3 . We then have

plc(a1, a2)plc(a2, a3) = cos θa1 cos2 θa2 cos θa3

� | cos θa1 cos θa3 |
= |plc(a1, a3)|, (A5)

which is valid in general for three arbitrary directions
a1, a2, a3 measured by two observers.

For n = 3,

|ψ〉 = c1| + s,+s,+s〉 + c2| − s,−s,−s〉,

the measuring-outcome correlations for three observers along
the directions a1, a2, a3 are

plc(a1, a2, a3) =
∫

ρ(λ)A1(a1, λ)A2(a2, λ)A3(a3, λ)dλ

≡ 〈A1(a1)A2(a2)A3(a3)〉.

052212-12



GENERALIZED BELL-LIKE INEQUALITY AND MAXIMUM … PHYSICAL REVIEW A 105, 052212 (2022)

The product of three correlations is

plc(a1, a2, a3)plc(a2, a3, a4)plc(a3, a4, a5)

=
∫∫∫

ρ(λ)ρ(λ′)ρ(λ′′)

⎡
⎢⎢⎢⎣

A1(a1, λ)A2(a2, λ)
A3(a3, λ)A1(a2, λ

′)
A2(a3, λ

′)A3(a4, λ
′)

A1(a3, λ
′′)A2(a4, λ

′′)
A3(a5, λ

′′)

⎤
⎥⎥⎥⎦dλdλ′dλ′′

�
∣∣∣∣
∫∫∫

ρ(λ)ρ(λ′)ρ(λ′′)A1(a1, λ)A2(a3, λ
′)

×A3(a5, λ
′′)dλdλ′dλ′′

∣∣∣∣
= |〈A1(a1)〉〈A2(a3)〉〈A3(a5)〉|,

since A2(a2) = A1(a2), A3(a3) = A1(a3), A3(a4) = A2(a4),
and A2

i (ai ) = 1. From the inequality given by Eq. (A3), it is
easy to have

plc(a1, a2, a3)plc(a2, a3, a4)plc(a3, a4, a5)

� |〈A1(a1)〉〈A2(a3)〉〈A3(a5)〉|
� |〈A1(a1)A2(a3)〉〈A3(a5)〉|
� |〈A1(a1)A2(a3)A3(a5)〉|
= |plc(a1, a3, a5)|. (A6)

For arbitrary n,

|ψ〉 = c1| + s〉⊗n + c2| − s〉⊗n,

we need total 2n − 1 independent measuring directions la-
beled, respectively, by a1, a2, a3,..., a2n−1 for n observers. The
product of n correlations leads directly to the GBI that

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)plc(a3, a4, . . . , an+2)

× · · · plc(an, an+1, . . . , a2n−1)

=
∫

· · ·
∫ (

n∏
i=1

ρ(λi )dλi

)
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A1(a1, λ1)A2(a2, λ1)
A3(a3, λ1) . . . An(an, λ1)
×A1(a2, λ2)A2(a3, λ2)

A3(a4, λ2) . . . An(an+1, λ2)
× · · ·

×A1(an, λn)A2(an+1, λn)
A3(an+2, λn) . . . An(a2n−1, λn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�
∣∣∣∣∣
∫

· · ·
∫ (

n∏
i=1

ρ(λi)dλi

)

× [A1(a1, λ1)A2(a3, λ2) . . . An(a2n−1, λn)]

∣∣∣∣∣
= |〈A1(a1)〉〈A2(a3)〉 . . . 〈An(a2n−1)〉|,

with Ai(ai ) = Aj (ai ), A2
i (ai ) = 1. According to Eq. (A3), the

above equation becomes

plc(a1, a2, . . . , an)plc(a2, a3, . . . , an+1)plc(a3, a4, . . . , an+2)

× · · · plc(an, an+1, . . . , a2n−1)

� |〈A1(a1)〉〈A2(a3)〉 · · · 〈An(a2n−1)〉|
� |〈A1(a1)A2(a3) · · · An(a2n−1)〉|
= |plc(a1, a3, . . . , a2n−1)|. (A7)
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