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Emulation of quantum measurements with mixtures of coherent states
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We propose a methodology to emulate quantum phenomena arising from any nonclassical quantum state using
only a finite set of mixtures of coherent states. This allows us to successfully reproduce well-known quantum
effects using resources that can be much more feasibly generated in the laboratory. We present a simple procedure
to experimentally carry out quantum-state emulation with coherent states, illustrate it emulating multiphoton
NOON states with few phase-averaged coherent states, and demonstrate its capabilities in observing fundamental
quantum mechanical effects, such as the Hong-Ou-Mandel effect, violating Bell inequalities and witnessing
quantum nonclassicality.
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I. INTRODUCTION

Understanding the extent to which classical elements can
be used to reveal nontrivial quantum effects in experiments
can offer a deeper perspective on the interplay between
classical and quantum resources. On the one hand, there
are cornerstone results obtained with essentially nonclassi-
cal states, such as antibunching of photons and suppression
of the field amplitude noise below the classical level [1,2],
exceeding the standard quantum limit in measurement preci-
sion [3], violating Bell inequalities [4], and the exhibition of
nonclassicality signatures [5–7]. On the other hand, interest-
ing new research on how these quantum effects can still be
observed using classical resources has emerged. For example,
recently it was shown that Bell inequalities violation and other
quantumlike signatures may be brought to light by “classical
entanglement,” that is, by local classical correlations of differ-
ent degrees of freedom [8–13].

In this work we investigate the potential of emulating ex-
periments over a quantum state using a set of “classical” probe
states, i.e., those possessing non-negative Glauber-Sudarshan
P functions [6,14], examples of which include mixtures of
coherent states. The underlying principle behind emulating
an arbitrary state with the density matrix ρ is the linear-
algebraic fact that ρ is expressible as a linear combination
of a set of nonorthogonal basis states, where some of the
coefficients in such a linear combination can be negative.
This approach underlies the so-called “data pattern” method
developed for quantum tomography [15–19], and allows one
to avoid calibrating the measurement setup by fitting a re-
sponse from an unknown state to the responses from other
known probe states [20]. We suggest the scheme that works
in a somewhat opposite way: we fit the state with “probes”
aiming to produce the same measured response as the true
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quantum state. In a typical scenario in quantum mechanics,
the observer has access to the complete quantum state ρ, with
which the probabilities of all possible experimental outcomes
can be predicted. The essence of our quantum-state emulation
is to employ a classical preparation procedure that samples
the basis states we want in order to reproduce measurement
results obtained with this ρ: either of a particular measurement
or of an arbitrary one (under certain reasonable constraints).
The respective coefficients that go with the basis states are
incorporated through postprocessing. Our emulation scheme
may be understood as an a priori assignment of classical
information that specifies the components of ρ during state
preparation, and is otherwise absent in a nonemulation (usual)
scenario. Noticeably, fitting of a particular measurement does
not require high fidelity of the representation with the true
quantum state. On the other hand, high-fidelity representa-
tion implies accurate fitting of the measurement results for
any observable with limited eigenvalues. We show how to
achieve such representation of exquisitely quantum multipho-
ton NOON states by using just a few phase-averaged coherent
states.

To demonstrate the feasibility of our approach, we show
how to emulate fundamental quantum results such as an-
tibunching, violation of Bell inequalities, and witnessing
nonclassicality, and provide an estimation of the classical
resources required for it. Our scheme has important practi-
cal applications. For example, it allows one to test quantum
effects when it is problematic or too expensive to generate
“true” nonclassical states, such as the NOON states with sev-
eral photons or, for example, for low wavelengths (such as
the microwave spectral region, where one needs to implement
superconducting circuits [21]).

The outline of the paper is as follows. In Sec. II, we discuss
the ideology of our emulation scheme and show how one
includes classical information on the state preparation in the
emulation setup. In Sec. III, we discuss high-fidelity repre-
sentations of several few-photon states, including Fock and
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NOON states. In Sec. IV, we describe the way to witness the
nonclassicality of emulated states with realistic single-photon
detectors. In Secs. V, VI, and VII, we discuss a demonstration
of the Hong-Ou-Mandel effect, phase estimation, and Bell
testing with our emulated states. Section VIII presents our
conclusions.

II. EMULATION SCHEME

Now let us demonstrate how it is possible to emulate an
arbitrary measurement over an arbitrary quantum state using
information about the state preparation. We assume emulating
the measurement of the observable A. Let us consider a state
described by the density matrix ρtrue and approximate it by the
operator ρ represented through a set of probe states {ρi} in the
following way:

ρ =
∑

j

c jρ j,
∑

j

c j = 1, (1)

where the coefficients c j can be negative for nonorthogonal
ρ j . The emulation of the measurement results is faithful if, for
an arbitrary small ε > 0, we can find such representation (1)
that

|Tr{A(ρ − ρtrue )}| < ε.

For any A with limited eigenvalues, |λi| � M (M = 1 if the
photon(s) detection probability is measured, as in the exam-
ples below), and the faithfulness condition is satisfied when
the representation fidelity is high enough (see Sec. 1 of the
Appendix):

F (ρ, ρtrue) = [Tr
√√

ρρtrue
√

ρ]2 � 1 − ε2/(4M2).

It is well known that one can always build such a repre-
sentation with a mixture of coherent-state projectors, either
by a continuous Glauber-Sudarshan P representation [6,14]
or its “coarse-grained” discrete version [22,23]. Recently, in
papers discussing the data pattern approach, it was shown
how to approximate a given state (or its projection on some
subspace) with high fidelity by a finite (and rather small) num-
ber of coherent-state projectors on some predefined lattice
[15,16,18,19].

To incorporate classical information on the signs of c j , we
build the following combined state of our signal and the two-
state ancilla labeling the prepared states:

ρc = ζ+
ζ+ + ζ−

ρ+ ⊗ |+〉〈+| + ζ−
ζ+ + ζ−

ρ− ⊗ |−〉〈−|, (2)

where

ζ+(−) =
∑

c j>0(<0)

|c j |, ρ+(−) = ζ−1
+(−)

∑
c j>0(<0)

|c j |ρ j,

and the two mutually orthonormal ancilla states |±〉 encode
classical information about the sign of the coefficient c j before
the sampled signal state ρ j . Notice that all the weights in
the mixture of combined probe states (2) are positive. To
utilize the knowledge about the state preparation for mea-
suring the observable A, we suggest measuring the combined
observable A ⊗ B, where the ancilla observable allowing one

FIG. 1. The measurement of (a) a regular quantum statistical
mixture and (b) a general emulation representation stated in (1).
In both kinds of state preparation, the component ρi is produced
by the source with probability proportional to |ci|. In the case of a
statistical mixture state, estimation of the expectation value 〈A〉 of
an observable A requires no knowledge about how ρ is prepared
(ρi ). In the emulation of ρ that requires some negative ci’s, classical
information concerning state preparation is necessary: The observer
measures either A or −A depending on the ancillary measurement of
ρC with B.

to infer the information about the state preparation is

B = (ζ+ + ζ−)(|+〉〈+| − |−〉〈−|). (3)

Thus, up to the accuracy of the representation,

〈A〉 = Tr{(A ⊗ B)ρc}.
Notice that for the positive-weighted mixtures of coherent-
state projectors, the state (2) becomes trivial and the mea-
surement procedure is the same as for a usual, preparation-
indifferent measurement. The scheme for measuring ρC

defined in Eq. (2) for general mixed states and emulated states
is shown in Fig. 1. As follows from Eq. (2), the described
measurement can be realized in the following simple way. One
samples the probes ρ j according to the probability distribution

p j = |c j |/(ζ+ + ζ−),

labels each probe state by the ancilla state |+〉 or |−〉 de-
pending on sgn(c j ), and performs the measurement of the
observable A on the signal state and B on the ancilla. If the kth
sample is the probe ρ jk , let us denote the particular measure-
ment result of the observable A as Ak and the classical weight
(measurement result for B) as Bk . For N samples, we calculate
the following combination of the measurement results:

〈A〉N = 1

N

∑
k

AkBk = ζ+ + ζ−
N

∑
k

sgn(c jk )Ak, (4)

with 〈A〉 = 〈A〉N + O(1/
√

N ) (for details, see Sec. 2 of the
Appendix). Equations (1)–(4) show that by using just coherent
states, it is possible to emulate the results of any measure-
ments on the quantum state, ρtrue, with arbitrary precision.
However, one needs to pay for it by the necessity of additional
measurements of the ancilla resulting in positive and negative
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weights Bk , which leads to an increase in statistical errors.
Indeed, from Eqs. (1)–(3) and using ζ+ − ζ− = 1, one can get
the following expressions for the variances:

�AB = (ζ+ + ζ−)(ζ+Tr{ρ+A2} + ζ−Tr{ρ−A2}) − 〈A〉2,

�A = (ζ+ − ζ−)(ζ+Tr{ρ+A2} − ζ−Tr{ρ−A2}) − 〈A〉2,

where the variance �AB is of A ⊗ B evaluated with the mixed
state ρc, and the variance �A is of the observable A evaluated
with ρ. Thus, one has, for the difference,

�AB − �A = 2ζ+ζ−(Tr{ρ+A2} + Tr{ρ−A2}) � 0. (5)

The price for the ability to model quantum states by mix-
tures of non-negative P-function states is a larger number of
the measurement runs for getting the same statistical error
(some consideration of the sampling accuracy in a nonclas-
sical quantum-state emulation is provided in Sec. 2 of the
Appendix). However, as we shall see below, the emulation
procedure might be quite economical in terms of the used
resources.

III. EMULATION FEASIBILITY

It is already established that for few-photon and few-
mode nonclassical states, one can achieve higher than 0.99
fidelity of the approximation (1) and reproduction of the ex-
periment results with just a few tens of the probe coherent
states [15,16,19]. For few-photon Fock states, it is possible to
develop quite economical representations in terms of phase-
averaged coherent states. Let us show here how it is possible
to represent even entangled states using few phase-averaged
coherent states and a set of simple optical devices such as
beam splitters and phase shifters.

A. Emulation of single-photon and two-photon states

First of all, let us show examples of representations for
single-photon and two-photon states. In general, given a fixed
set of ρ j’s, the coefficients c j , which approximate ρtrue in
the best way, can be determined by solving the following
numerical problem:

max
{c j}

F (ρtrue, ρ)

subject to
∑

j

c j = 1, ρ � 0, (6)

where the fidelity

F (ρtrue, ρ) = (Tr{
√√

ρtrue ρ
√

ρtrue})2

is maximized over the coefficients c j conditioned on the pos-
itive semidefiniteness of ρ [19]. The solution to this problem
can be found using semidefinite programming.

When ρtrue = |1〉〈1| is the single-photon state, the set of
probes can be chosen in the form of five phase-averaged
coherent states with amplitudes αi = 0, 0.25, 0.5, 0.75, 1.0

FIG. 2. Representation of the single-photon state in terms of
phase-averaged coherent states: (a) decomposition coefficients, and
(b) diagonal elements of the optimal linear combination of the coher-
ent states, shown in different scales in the main plot and the inset.

[Fig. 2(a)],

ρ j = |α j〉〈α j | ≡ 1

2π

∫ 2π

0
dϕ|α je

iϕ〉〈αie
iϕ |

=
∞∑

n=0

|α j |2n

n!
e−|α j |2 |n〉〈n|. (7)

The semidefinite program in (6) produces the resulting opti-
mal coefficients c j = −21.8, 25.6,−3.1, 0.33,−0.0028. The
fidelity of the constructed representation for the single photon
state exceeds 0.9996 [Fig. 2(b)].

Similarly, as it is shown in Fig. 3, just seven phase-
averaged coherent states allow one to represent two-photon
Fock states with the representation fidelity exceeding 0.998.

B. NOON state emulation

Now let us demonstrate a potential of our approach by em-
ulating entangled bipartite states, namely, the NOON states,

|
N 〉ab = 1√
2

(|N〉a|0〉b − |0〉a|N〉b), (8)

with only the phase-averaged coherent states and with
practically the same effort as the (N − 1)-photon Fock states
(for N � 2). For N = 1, 2, it is trivially accomplished by
50/50 beam splitters (BSs) and single-photon (vacuum) or
two single-photon inputs. Let us show that beam splitting and
phase shifting allows for easy production of the NOON states
with an arbitrary N.

We have already shown above that Fock states can be
decomposed in terms of phase-averaged coherent states and
require affordable resources. Linear optical transformation of
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FIG. 3. Representation of the two-photon state in terms of
phase-averaged coherent states: (a) decomposition coefficients, and
(b) diagonal elements of the optimal linear combination of the coher-
ent states, shown in different scales in the main plot and the inset.

the Fock states corresponds to trivial arithmetic operations
with the amplitudes of the coherent states used for their repre-
sentation. Therefore, finding a way to represent a NOON state
as a result of some linear operations applied to Fock states will
be sufficient for construction of its efficient decomposition.

First, let us consider the linear optical transformation

a† → (a† + eiθ b†)/
√

2, b† → (a† − eiθ b†)/
√

2 (9)

applied to the two-mode Fock state |n〉a|m〉b with n + m = N .
The density matrix of the resulting state is

ρ(n, m, θ ) =
N∑

j=0

N∑
l=0

R( j)
nmR(l )

nmeiθ (l− j)

× | j〉a〈l| ⊗ |N − j〉b〈N − l|, (10)

where

R( j)
nm =

min(n, j)∑
k=max(0, j−m)

√
n!m! j!(N − j)!(−1)m− j+k

k!(n − k)!( j − k)!(m − j + k)!
2−N/2.

(11)
In the symmetric case n = m = N/2, only even indices j = 2s
yield nonzero coefficients (it can be considered as a general-
ization of the Hong-Ou-Mandel effect),

R(2s)
nn =

√
(2s)!(N − 2s)!(−1)n−s

s!(n − s)!
2−N/2. (12)

To generate the target NOON state, we need to remove all
the terms from Eq. (10), except for those with j and l equal to

0 or N . Here, we can use the equality

1

N

N−1∑
k=0

ei 2π jk
N =

[
1, k = 0,±N,±2N, . . .

0 otherwise. (13)

Therefore,

1

N

N−1∑
k=0

ρ(n, m, θ0 + 2πk/N )

= N!

n!m!
2−N+1|
N (θ0, m)〉ab〈
N (θ0, m)|

+
N−1∑
j=1

(
R( j)

nm

)2| j〉a〈 j| ⊗ |N − j〉b〈N − j|, (14)

where

|
N (θ0, m)〉ab = 1√
2

(|N〉a|0〉b + (−1)meiNθ0 |0〉a|N〉b). (15)

By the choice θ0 = π/N for even m and θ0 = 0 for odd m,
one can ensure that the first term of Eq. (14) corresponds to
the target state (8): |
N (θ0, m)〉ab = |
N 〉ab.

Finally, the target state can be expressed from Eq. (14),

|
N 〉ab〈
N | = n!m!2N−1

N!

[
1

N

N−1∑
k=0

ρ

(
n, m, θ0 + 2πk

N

)

−
N−1∑
j=1

(
R( j)

nm

)2| j〉a〈 j| ⊗ |N − j〉b〈N − j|
]
.

(16)

As discussed above, the derived expression implies that em-
ulation of the NOON state is not much more complex than
emulation of the Fock state with N − 1 photons.

When N is even, the procedure can be simplified. Equa-
tion (12) implies that only even multipliers (l − j) of the
parameter θ are present in Eq. (10) if n = m = N/2. There-
fore, ρ(n, n, θ + π ) = ρ(n, n, θ ), and the summation over j
can be limited by N/2 − 1 instead of N − 1:

|
N 〉ab〈
N |

= (n!)22N−1

N!

[
2

N

N/2−1∑
k=0

ρ

(
n, m, θ0 + 2πk

N

)

−
N/2−1∑

k=1

(
R(2k)

nm

)2|2k〉a〈2k| ⊗ |N − 2k〉b〈N − 2k|
]
.

(17)

In comparison with Eq. (16), the derived expression contains
an almost twice smaller number of terms and requires emula-
tion of Fock states with up to max(N/2, N − 2) photons only.

The expressions (16) and (17) have exactly the same form
as required by Eq. (1). Therefore, the emulation of the target
NOON state can be performed as discussed above, but applied
in two steps. First, one randomly chooses one of the states
from the right-hand side of Eq. (16) or (17), with their prob-
abilities being proportional to the decomposition coefficients.
Then, the selected state is emulated “classically” according
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to its decomposition in terms of coherent states. Let us con-
sider the emulation of the states from the right-hand side of
Eqs. (16) and (17) in more detail.

Suppose that the Fock states |n〉 can be approximated by
linear combinations of phase-averaged coherent states in the
following way:

|n〉〈n| ≈
∑

i

cni|αni〉〈αni|. (18)

Therefore, two-mode Fock states can be emulated as

|n〉a〈n| ⊗ |m〉b〈m| ≈
∑
i, j

cnicm j |αni〉a〈αni| ⊗ |αm j〉b〈αm j |.

(19)
Finally, the states ρ(n, m, θ ) can be decomposed as

ρ(n, m, θ ) =
∑
i, j

cnicm jρi j (n, m, θ ), (20)

where

ρi j (n, m, θ )

= 1

2π

∫ 2π

0
dϕ1

∫ 2π

0
dϕ2

∣∣∣∣ |αni|eiϕ1 + |αm j |eiϕ2

√
2

〉
a

×
〈 |αni|eiϕ1 + |αm j |eiϕ2

√
2

∣∣∣∣ ⊗
∣∣∣∣eiθ |αni|eiϕ1 − |αm j |eiϕ2

√
2

〉
b

×
〈
eiθ |αni|eiϕ1 − |αm j |eiϕ2

√
2

∣∣∣∣. (21)

Technically, the generation of a phase-averaged coherent state
corresponds to the generation of a coherent state with the
given amplitude and addition of a random uniformly dis-
tributed phase shift. That is, to emulate the state ρ(n, m, θ ),
one chooses the pair of indices (i, j) with the probabili-
ties proportional to cnicm j , then choose two random phases
ϕ1, ϕ2 ∈ [0, 2π ), and finally generates the two-mode coherent
state according to the integrand of Eq. (21).

For N = 1, n = 1, and m = 0, Eq. (16) yields

|
−〉ab〈
−| = ρ(1, 0, π ), (22)

which completely agrees with the previously obtained results.
For N = 2, n = 1, and m = 1, one can use Eq. (17) to

obtain the representation

|
2〉ab〈
2| = ρ(1, 1, 0), (23)

known from the Hong-Ou-Mandel effect.
For N = 3, n = 2, m = 1 and N = 4, n = 2, m = 2, the

results are

|
3〉ab〈
3| = 4
9 [ρ(2, 1, 0) + ρ(2, 1, 2π/3) + ρ(2, 1, 4π/3)]

− 1
6 (|1〉a〈1| ⊗ |2〉b〈2| + |2〉a〈2| ⊗ |1〉b〈1|)

(24)

and

|
4〉ab〈
4| = 2
3 [ρ(2, 2, π/4) + ρ(2, 2, 3π/4)]

− 1
3 |2〉a〈2| ⊗ |2〉b〈2|, (25)

respectively.
So, we can see that for emulation of NOON states with

N � 4, it is sufficient to implement representation of just

TABLE I. Results for “classical” emulation of NOON states.

N = 1 N = 2 N = 3 N = 4

Fidelity 0.9996 0.9992 0.99 0.982
ζ+ + ζ− 51 2.6×103 2.8×104 1.8×105

a single- and two-photon states considered in the previous
section. The final fidelity of the NOON states’ decomposition
with the considered representations are listed in Table I.

As mentioned above, the derived expression implies that
emulation of the NOON state is not much more complex than
emulation of the Fock state with N − 1 photons.

Below it is shown how to perform phase estimation with
emulated NOON states. By experimenting with such NOON
states, one can confirm the expected quantum effects with-
out the troubles related to the generation and preservation of
complex nonclassical quantum states. Here it is also useful
to mention that decoherence very quickly deteriorates the
metrological advantage expected from the true NOON states
[24].

One should emphasize that the measurement-oriented rep-
resentation might be more economical that the one discussed
above. Indeed, for faithful emulation of measuring the ob-
servable A diagonal in the Fock-state basis, it is sufficient to
emulate Fock-state mixtures instead of superpositions. Also,
the complexity of representation is not connected with the
state energy, but rather with the number of required basis
states. For example, to represent the “cat-state” |α〉 + |α + δ〉
with |δ| � |α| and an arbitrary α, one might need only a few
coherent projectors with amplitudes close to α.

Also, the choice of state mixtures for emulation is not
limited to coherent states or their phase-averaged version.
One might guess that the representations akin to those dis-
cussed above can be developed with other states and tailored
for a particular measurement. For example, thermal states
were used to represent Fock states in Ref. [16]. Some
considerations on choosing the best mixtures for particular
measurements are given in Sec. 4 of the Appendix.

IV. NONCLASSICALITY WITNESS

Now let us demonstrate how one can certify the nonclassi-
cality of the emulation results.

A. Witnessing theory

To prove the nonclassicality of a given state (or a class
of states), one can construct a witness operator W , find the
classical limit

W0 = max
ρ ′∈C

Tr{W ρ ′}, (26)

where C is the set of non-negative P-function states, and check
that the investigated state ρ yields

Tr{W ρ} > W0. (27)

For example, to prove the nonclassicality of the single-
photon state, one can build the following witness operator:

W = 2|1〉〈1| − |0〉〈0| − |2〉〈2|. (28)
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FIG. 4. The values of the nonclassicality witness operator W
[Eq. (28)] for the coherent states of the single-photon state repre-
sentation depicted in Fig. 2(a). The dashed horizontal line shows
the expectation value of the nonclassicality witness operator for the
single-photon state.

Using the the developed representation for ρ ′ and tak-
ing into account the diagonality of the operator W in the
Fock-state basis, one can show that

W0 = max
ρ ′∈C

Tr{W ρ ′} = max
P:P(α)�0

∫
d2αP(α)W (|α|), (29)

where

W (|α|) = 〈α|W |α〉 =
(

2|α|2 − 1 − |α|4
2

)
e−|α|2 , (30)

and the normalization condition holds:∫
d2αP(α) = 1. (31)

A non-negativity of P(α) implies that the maximal clas-
sical value W0 corresponds to the maximum of the function
W (|α|), which equals

W0 = max
α

W (|α|) = 0.206 (32)

and is reached for the coherent state with the amplitude
|α(0)| = 1.134.

For the single-photon state, the expectation value of the
witness operator is 〈1|W |1〉 = 2 > W0.

The mean value 〈W 〉 for the emulated state (7) equals
1.9992, which clearly exceeds the classical limit W0 = 0.206.
On the other hand, Fig. 4 shows that the values Tr{W ρ j} fit
into the classical region [−1,W0] for all j. The two reasons
for the final result exceeding the classical limit are as follows:

(i) minus sign for certain ρ j : classical maximum of −W is
1 > 0.206 (but still less than 2);

(ii) the measurement results are multiplied by the factor
ζ+ + ζ− = 50.8.

The excess variance of a single-trial measurement [given
by Eq. (5) of the main text] is 2.0×103. Therefore, to demon-
strate the nonclassicality reliably, one needs about 105 copies
of the state.

FIG. 5. Approximation of the single-photon nonclassicality wit-
ness by the four-detector measurement setup: (a) detection scheme,
(b) Fock-basis decomposition coefficients of the POVM elements
m, and (c) comparison of the ideal witness W (gray bars) and
the constructed witness W4 (blue line). The inset in (c) shows the
found decomposition coefficients zm in Eq. (35). The detection effi-
ciency η = 0.8 and the dark count rate ε = 0.001 were used for the
calculations.

B. Nonclassicality witnessing under realistic
measurement conditions

The nonclassicality witness W , described by Eq. (28), re-
quires a photon number resolving measurement. To stay more
realistic, it is worthwhile to construct a witness, which can be
measured with the usual single-photon detectors, possessing
final efficiency and dark count rate.
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Let us consider the measurement setup, shown in Fig. 5(a),
consisting of four single-photon detectors with the detection
efficiency η and the dark count rate ε. The five possible out-
comes of the measurement correspond to detection of m = 0,
1, 2, 3, and 4 counts, respectively, and can be described by
the positive operator-valued measure (POVM) {0, . . . ,4}.
The POVM elements have the following Fock-state basis
representation:

m =
∞∑

n=0

|n〉〈n|p(m|n), (33)

where

p(m|n) =
m∑

k=0

4!(−1)m−k (1 − ε)4−k

(4 − m)!k!(m − k)!

(
1 − 4 − k

4
η

)n

(34)

is the probability of detecting m counts if the input state
of the measurement scheme in Fig. 5(a) is the Fock state n
[Fig. 5(b)].

Following the ideas from Eq. (1), one can try to approxi-
mate the witness operator W , introduced by Eq. (28), in terms
of the available POVM elements,

W ≈ W4 ≡
4∑

m=0

zmm, (35)

where the coefficients zm [see the inset in Fig. 5(c)] can be
found, for example, by minimization of the quadratic distance
between W and W4 (the fidelity F cannot be used here because
neither W nor W4 are positive semidefinite operators),

min
{zm}

∞∑
n=0

(〈n|W |n〉 − 〈n|W4|n〉)2. (36)

Figure 5(c) shows the resulting witness operator W4. While
being different from the ideal witness W because of the
detectors’ nonideality, it is still suitable for detection of non-
classicality. During the performed numerical calculations, we
assumed that the detection efficiency equals η = 0.8 and the
dark count probability is ε = 0.001.

Similarly to Eq. (32), the maximal classical value W40 of
the constructed witness corresponds to the coherent state |α〉
with α = 1.176, maximizing W4(|α|) = 〈α|W4|α〉:

W40 = max
α

W4(|α|) = 0.248. (37)

The witness value, reached for the single-photon state, is
〈1|W4|1〉 = 1.538 > W40. Unlike the ideal witness W yielding
zero variance for the state |1〉, the variance of the observable
W4 for the single-photon state is 1.59. Therefore, one needs to
perform at least several repetitions of the measurement to be
sure that the results are incompatible with the assumption of a
non-negative P-function input state if the state |1〉 is supplied.

The “classically” emulated single-photon state, discussed
in the previous sections, yields the mean value 〈W4〉 = 1.537,
which still noticeably exceeds the classical limit. The excess
variance of the observable W4 is 1.8×103. Therefore, the num-
ber of the measurement repetitions, required for reliable proof
of the single-photon state nonclassicality, remains approxi-
mately the same as for the measurement of the ideal witness
W .

FIG. 6. (a) Scheme of observing the Hong-Ou-Mandel effect
with single photons and (b) the setup for its “classical emulation.”.
Gray dashed lines show how the phase-averaged coherent states can
be generated by variable splitting of a reference coherent state with
subsequent application of a random phase shift ϕ in one of the arms.

V. HONG-OU-MANDEL EFFECT

Let us illustrate a measurement emulation scheme by an
archetypal quantumness demonstrator: the Hong-Ou-Mandel
single-photon interference. If one has a single photon per each
entry port of the 50/50 BS [Fig. 6(a)], in the case of the ideal
interference of both input fields a and b, the probability p12

of having the detectors D1 and D2 clicking simultaneously is
zero. If the interference is not ideal (for example, due to im-
perfect overlapping of the pulses or misaligned polarization),
p12 = 0 and increases with worsening of interference [25,26].
If the detectors have the efficiency η and do not distinguish
modes in the impinging fields, a registration of a click on the
jth detector is described by the expression [26]

 j = 1 − : exp
{
−η

2
(a†a + b†b ± f a†b ± f ∗b†a)

}
:,

where the signs “+” and “−” correspond to j = 1 and 2,
respectively; the operators x† and x are the creation and an-
nihilation operators for the xth mode, x = a, b; :: denotes the
normal ordering, and the parameter f describes the degree
of the overlap. Upon considering, for simplicity, a real and
positive f , the probability of both detectors clicking is

p12 = 〈1a, 1b|12|1a, 1b〉 = (1 − f 2)η2/2,

where |1a, 1b〉 describes the single-photon Fock states in the
modes a and b.

The following scheme reproduces the Hong-Ou-Mandel
effect [Fig. 6(b)]: the randomly chosen phase-averaged coher-
ent states are produced by appropriate splitting of an input
coherent state, while the additional random phase shift ϕ

introduces the effect of the phase averaging. In this manner,
the representation of ρ ′ for the input single-photon states can
be built in terms of the phase-averaged coherent states,

ρ ′ =
∑
k,l

ckcl ρa
k ρb

l . (38)

For the probe state ρa
k ρb

l with a nonideal overlap, the two-
detector click probability now reads

pkl
12 = 1

2π

∫
dϕ[1 − pkl

+(ϕ)][1 − pkl
−(ϕ)], (39)

where

pkl
±(ϕ) = exp

[
−η

2
(|αk|2 + |αl |2 ± 2 f |αk||αl | cos ϕ)

]
.
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FIG. 7. Scheme of interferometer for phase estimation using a
two-photon NOON state.

Let us now estimate to which extent the representation (38)
is more expensive in terms of the necessary number of state
copies. From Eq. (38), for η = 0.8 and the overlap f 2 = 0.95,
one gets p12 = 0.017. For the input states being true single
photons, a single-trial variance is less than unity. However,
the single-trial variance, estimated according to Eq. (5), is
Var(p12) = 1.5×104. So, one needs the number of measure-
ment runs (samples of probe states), N , of about 106 for a
reliable demonstration of the Hong-Ou-Mandel effect. How-
ever, it is worth remembering here that to generate just a single
photon, for example, by the spontaneous down conversion,
one needs about 105–1012 pumping photons [27].

VI. PHASE ESTIMATION WITH TWO-PHOTON
NOON STATE

Here we show how one can emulate the phase estimation
with NOON states using our scheme.

The state obtained after the interference of two photons
at a beam splitter is the two-photon NOON state (|2〉a|0〉b −
|0〉a|2〉2)/

√
2 and, therefore, can be used for sensitivity en-

hancement in phase estimation. For the scheme, shown in
Fig. 7, the probability of encountering both photons in one
arm (coupled to either D1 or D2) equals

p(0)
2 (θ ) = 1 + f

4
sin2 θ, (40)

while the probability of having one photon in each arm is

p(0)
11 (θ ) = 1 − f

2
+ 1 + f

2
cos2 θ, (41)

where θ is the phase shift to be measured.
Similarly to the previous section, one can calculate the

probability of coincidence count p11 and the unconditional
probabilities of single-photon detection p1· and p·1 and intro-
duce the normalized coincidence rate,

g2(θ ) = p11

p1· p·1

= 16(η(1 − ε)(z + η(3 − f − 4ε) + 8ε) + 4ε2)

(η(1 − ε)z + η(1 − ε)(8 − f η − η) + 8ε)2 ,

(42)

where z = (1 + f )η cos 2θ . The solid line in Fig. 8(a) shows
the dependence of g2(θ ) on the phase shift θ .

FIG. 8. Dependence of normalized coincidence rates g2(θ ) on
the measured phase shift θ . Solid lines indicate the dependence
for interference of two single-photon states. Points and error bars
show the values and the standard deviations for classically emulated
single-photon states for N = 108 repetitions.

For the two-mode probe state ρi ⊗ ρ j , the probabilities of
clicks on both detectors are

p11(i, j; θ ) = 1

2π

∫
dϕ[1 − p−(|αi|, |α j |, θ, ϕ)]

× [1 − p+(|αi|, |α j |, θ, ϕ)], (43)

p1·(i, j) = 1

2π

∫
dϕ[1 − p−(|αi|, |α j |, θ, ϕ)], (44)

and

p·1(i, j) = 1

2π

∫
dϕ[1 − p+(|αi|, |α j |, θ, ϕ)], (45)

where

p±(x, y, θ, ϕ) = (1 − ε) exp
{
−η

2
[x2(1 ± cos θ )

+ y2(1 ∓ cos θ ) ± 2
√

f xy sin θ sin ϕ]
}
.

(46)

The results of the calculation of the normalized second-
order functions for the true and emulated states are shown
in Fig. 8. The values η = 0.8, ε = 0.001, f = 0.95, and
N = 108 repetitions were assumed.

VII. BELL INEQUALITIES VIOLATION

Another famous manifestation of quantumness is the Bell-
type inequalities violation for distinguishable (for example,
spatially separated) quantum systems. Let us show here how
it is possible to emulate the state of two entangled modes a
and b sharing a single-photon state |
ab〉〈
ab|, where |
ab〉 =
(|1〉a|0〉b − |0〉a|1〉b)/

√
2, and to demonstrate violation of the

Clauser-Horn inequality [28] using a modification of the
scheme discussed in Ref. [29]. In Ref. [29], the coherently
displaced signals are measured with simple on-off detectors
and the following inequality is considered:

−1 � j0 = q(α, γ ) − q(α, δ) + q(β, γ ) + q(β, δ)

− qa(β ) − qb(γ ) � 0, (47)
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FIG. 9. Detection scheme for classical emulation of two-mode
entanglement and Bell-type measurements with phase-averaged
probe coherent states. Alice and Bob prepare the same amplitudes
and opposite phases of the coherent states.

where the single-detector no-click probabilities and coincid-
ing two-detector no-click probabilities to be measured for the
coherently displaced input state are defined as

qx(μ) = 〈Qx(μ)〉 = 〈
Dx(μ)(x)

offD
†
x (μ)

〉
and

q(μ, ν) = 〈Qa(μ)Qb(ν)〉,
where the operator Dx(μ) = exp{μx† − μ∗x} describes co-
herent displacement of the xth mode by the amplitude μ,
x = a, b, implemented by mixing the mode with a local os-
cillator (LO) field at a beam splitter (Fig. 9). The operator


(x)
off describes the appearance of count absence on the detector

measuring the xth mode. For the detectors with the efficiency
η, this operator can be expressed as


(x)
off = (1 − η)nx

in terms of the number operator nx = x†x. The value of j0
can be minimized for all possible shifts α, β, γ , and δ. To
have the minimal j0, one needs to set α = −δ = μ1 and
γ = −β = μ2. Particular values of μ1,2 depend on the effi-
ciency. For example, the minimal value of j0 and the optimal
amplitudes μ1 and μ2 for ideal detectors (η = 1) are equal to
(−1.172, 0.563, 0.165); for η = 0.95, the optimal values are
(−1.118, 0.587, 0.177), and for η = 0.90, they are (−1.066,
0.615, 0.191). Taking into account the relations between the
optimal amplitudes and inequality (47), one can introduce the
observable

J0 = Qa(−μ2)Qb(μ2) − Qa(μ1)Qb(−μ1)

− Qa(−μ2)[1 − Qb(−μ1)] − [1 − Qa(μ1)]Qb(μ2),

corresponding to the quantity j0 = 〈J0〉. To emulate
|
ab〉〈
ab|, it is convenient to represent this state as a result of
beam splitting of a single-mode one-photon state. Emulating
this single-photon state with a mixture of phase-averaged
coherent states, |
ab〉〈
ab| can be rewritten in the form of

Eq. (1) with

ρ j = 1

2π

∫ 2π

0
dϕ| f j (ϕ)〉〈 f j (ϕ)|,

where the states | f j (ϕ)〉 are products of the coherent states of
the modes a and b,

| f j (ϕ)〉 = |α je
iϕ/

√
2〉a| − α je

iϕ/
√

2〉b.

Factorization of the probe states implies that in contrast to
the emulated splitting of a single-photon state, they can be
generated separately by Alice and Bob.

A scheme, suitable for implementation of the discussed
emulation of the state |
ab〉〈
ab|, is shown in Fig. 9. For each
trial, the two parties choose the same random index j of the
probe state and the same random phase shift ϕ and prepare the
coherent states |α jeiϕ/

√
2〉a and | − α jeiϕ/

√
2〉b of the modes

a and b, respectively. The input BS’s in Fig. 9 allows one to
realize the required coherent shifts. The expectation values of
J0 over such probe states can be found using the rules

Tr {ρ jQa(μ)Qb(ν)} = 1

2π

∫
dϕq j (μ, ϕ)q j (−ν, ϕ)

and

Tr {ρ jQa(b)(μ)} = 1

2π

∫
dϕq j (±μ, ϕ),

where q j (ν, ϕ) = exp(−η|α jeiϕ/
√

2 − ν|2). Since Alice’s
and Bob’s parts of the probe states interfere with their LO
fields only, the phase stability between Alice’s and Bob’s
coherent-state sources is not required.

As it is to be expected, the mean value of the measured ob-
servable remains approximately the same as for the true state,
〈J0〉 = −1.118,−1.077 for η = 0.95, 0.9, while the single-
trial variances are expectedly large: Var(J0) = 5.1×103 and
5.0×103, respectively. The numbers of the measurement
repetitions required for a reliable nonclassicality demonstra-
tion are N � 1.5×106 for η = 0.95 and N � 3.4×106 for
η = 0.90.

VIII. CONCLUSIONS

We have shown that the results of quantum measurements
can be emulated using only quantum states with non-negative
P functions. For that purpose, one just needs to know how
the quantum state can be prepared with a set of non-negative
P-function states by binary labeling each probe and using
that classical information during the measurement. The price
for the ability to use such “classical” light sources is the
necessity to tailor our method for each particular state, and
the larger number of measurement runs required for getting
reliable results. Generally, this number might become so large
as to render our emulation procedure unfeasible. However,
we have demonstrated that for some important and interesting
states and measurement schemes, our approach is feasible and
can be even more efficient in terms of the classical resources
necessary to generate and measure the state. The proposed
approach is likely to be a handy toolbox for proof-of-principle
experiments for testing quantum effects, verification of proper
functioning of measurement setups for fundamental quantum
experiments before the required nonclassical states become
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available, and design of affordable demonstration breadboards
for education and science dissemination. The presented pro-
cedure provides a systematic tool for “quantum-inspired”
metrology by translating quantum measurement protocols
into their classical counterparts, where the non-negative P-
function state signals are combined in the optimal way in
order to enhance the sensitivity.

ACKNOWLEDGMENTS

A.M. and D.M. gratefully acknowledge support from
The Belarusian Republican Foundation for Fundamental
Research (Grants No. F21KOR-002 and No. F21IKR-
003), the EU project PhoG 820365 and the NATO
project NATO SPS-G5860. Y.S.T. and H.J. acknowledge
support by the National Research Foundation of Ko-
rea (NRF) (Grants No. NRF-2019R1A6A1A10073437, No.
NRF2019M3E4A1080074, No. NRF-2020R1A2C1008609,
and No. 2020K2A9A1A06102946) via the Institute of Ap-
plied Physics at Seoul National University and by Institute of
Information & communications Technology Planning & Eval-
uation (IITP) grant funded by the Korea government (MSIT)
(Grants No. 2021-0-01059 and No. 2021-2020-0-01606).

APPENDIX: DEVELOPING CLASSICAL
REPRESENTATIONS

1. Representation fidelity and systematic error of emulation

Let us consider the emulation of measuring an observable
A in a quantum state ρtrue by using the representation

ρtrue ≈ ρ =
∑

i

ciρi

in terms of semiclassical probe states {ρi}. The systematic
error of the emulation equals

δsys. = |〈A〉ρ − 〈A〉true| = |Tr{A(ρ − ρtrue )}|. (A1)

If the exact operator A, describing the measured observable, is
known when the emulation protocol is designed, Eq. (A1) can
be used directly for assessment of the particular representation
quality since it defines the distance between ρ and ρtrue that is
appropriate for the particular measurement. Otherwise, it is
instructive to connect the upper bound of the systematic error
for an arbitrary observable A, satisfying certain reasonable
constraints, with the representation fidelity

F (ρ, ρtrue) = [Tr
√√

ρρtrue
√

ρ]2. (A2)

Measurement of an observable A is characterized by a set
of projective operators Ei, forming a positive operator-valued
measure (POVM) {Ei} with the ith outcome being mapped to
the eigenvalue λi of the operator A,

〈A〉ρ =
∑

i

λi pi, pi = Tr(Eiρ), (A3)

〈A〉true =
∑

i

λiqi, qi = Tr(Eiρtrue), (A4)

and

δsys. =
∣∣∣∣∣ ∑

i

λi(pi − qi )

∣∣∣∣∣. (A5)

The fidelity of the representation is connected to the dis-
tinguishability of the states ρ and ρtrue by the optimal POVM
measurement [30], which is at least as sensitive as the par-
ticular measurement characterized by the POVM {Ei} and
associated with the observable A,

F (ρ, ρtrue) = min
POVM {E ′

i }
F 2

B ({Tr(E ′
i ρ)}, {Tr(E ′

i ρtrue)})

�F 2
B (p, q), (A6)

where FB(u, v) = ∑
i
√

uivi is the Bhattacharyya coefficient
of classical probability distributions u and v; and p = {pi} and
q = {qi} are the probability distributions for the measurement
of A for ρ and ρtrue.

The right-hand side of Eq. (A6) depends on the particu-
lar choice of the measured observable A. To get a universal
bound, one can maximize FB(p, q) over appropriate measure-
ments,

F (ρ, ρtrue) � max
p,q,λ

F 2
B (p, q), (A7)

conditioned by

∑
i

pi = 1,
∑

i

qi = 1,

∣∣∣∣∣∑
i

λi(pi − qi )

∣∣∣∣∣ = δsys. (A8)

Let us assume that any considered observable A is known
a priori to have limited eigenvalues: |λi| � M. For example,
if the probability of detecting a photon or a coincidence count
is measured, we have M = 1.

Optimization of Eq. (A7) over λ immediately shows that
the choice

λi = Msgn(pi − qi )

is optimal for maximization of FB(p, q). The last constraint in
Eq. (A8) is transformed into∑

i

|pi − qi| = δsys./M.

Pairwise variations of (pi, qi ) and (p j, q j ) for all such i and j
that sgn(pi − qi ) = sgn(p j − q j ) lead to the optimality con-
dition pi : qi = p j : q j . Finally, one arrives at the condition∑

i: pi>qi

(pi + qi ) =
∑

i: pi<qi

(pi + qi ) = 1, (A9)

yielding the maximal value

max
p,q,λ

F 2
B (p, q) = 1 − δ2

sys./(2M )2. (A10)

Combining Eqs. (A7) and (A10) and solving for δsys., we
arrive at the following upper bound for the systematic error of
emulation:

δsys. � 2M
√

1 − F (ρ, ρtrue). (A11)
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2. Rate of convergence of 〈A〉N

Suppose that the set of classical component probe states
{ρ j} is used to emulate the target true state ρtrue ≈ ∑

j c jρ j .
In the perspective of statistical inference, one can rewrite 〈A〉N

defined in Eq. (3) of the main text as

〈A〉N = ζ

N

∑
j

∑
l

sgn(c j )aln jl , (A12)

where

ζ =
∑

j

|c j | = ζ+ + ζ−,

and now 〈A〉N is a double sum over all probe states em-
ployed and eigenvalues al of the observable A measured. The
frequencies n jl of having the lth result of the measurement
with the jth probe are summed to the total number of trials,
N :

∑
j,l n jl = N . Thus the relative frequencies ν jl = n jl/N

inherently follow a multinomial distribution with respect to
the indices j and l , with the statistical average

ν jlν j′l ′ =
{

[δl,l ′ p̃ jl + (N − 1) p̃ jl p̃ jl ′ ]/N when j = j′,

(N − 1) p̃ jl p̃ j′l ′/N otherwise,

(A13)

determined by the observation ν jl = p̃ jl = p j p jl , p j =
|c j |/ζ , and p jl = alρ jal . These immediately give

(〈A〉N − 〈A〉)2

=
∑

j, j′,l,l ′
sgn(c j )sgn(c j′ )al al ′ (ν jlν j′l ′ − p̃ jl p̃ j′l ′ )

= ζ 2

N

[∑
j

p jTr{ρ jA
2} −

(∑
j

p jsgn(c j )Tr{ρ jA}
)2]

= 1

N
[ζ Tr{(ζ+ρ+ + ζ−ρ−)A2} − 〈A〉2] = �AB

N
. (A14)

Alternatively, one arrives at this result by considering the ex-
tended model [〈A〉 = Tr{(A ⊗ B)ρC}] discussed in the text and
recognizing the fact that each independently sampled eigen-
value incurs a quantum variance of �AB, such that scaling �AB

with N gives the right answer. Hence, in the limit of large N ,
we indeed expect that

〈A〉 − 〈A〉N = O(1/
√

N ).

On the other hand, for the same number of copies N , if
one can generate ρtrue directly, then the naive linear estimator
〈A〉LIN = ∑

l alνl for 〈A〉, where νl = nl/N → pl = alρtrueal ,
leads to

(〈A〉LIN − 〈A〉)2 = �A

N
, (A15)

owing to the basic multinomial rule

(ν j − p j )(νk − pk ) = 1

N
(p jδ j,k − p j pk ).

As argued in the text, the fact that �AB > �A simply reiterates
that nonclassical state emulation using classical component
states reduces the complexity of quantum-state generation at

the expense of a larger N to estimate 〈A〉 up to some fixed
accuracy.

3. Sampling accuracy in nonclassical quantum-state emulation

Let us show how well sampling of the probe states from the
set with the help of ρC (equivalent to using a classical random-
number generator) can approximate the state ρ from Eq. (1)
of the main text.

After a multinomial sampling of Ns copies of ρ (not to
be confused with N , the total number of copies used to esti-
mate 〈A〉N ), one obtains the estimator ρ̂ = ζ

∑
j ν jsgn(c j )ρ j ,

where the relative frequencies ν j of the probe states ρ j tend to
the probabilities p j = |c j |/ζ for Ns � 1. We may consider the

mean squared error (MSE), MSE = Tr{(̂ρ − ρ)2}, with · de-
noting the statistical mean (expectation value), as the figure of
merit for determining the accuracy of such a sampling with a
given value of Ns with respect to the actual state ρ = ∑

j c jρ j

being classically emulated. For a multinomial distribution, as
ν j = p j and

(ν j − p j )(νk − pk ) = 1

Ns
(p jδ j,k − p j pk ),

the MSE can be easily computed to be

MSE = 1

Ns

∑
j, j′

(|c j ||c j′ |Tr
{
ρ2

j

} − c jc j′Tr{ρ jρ j′ }
)
. (A16)

An important special case corresponds to pure probe states
(Tr{ρ2

j } = 1). They allow one to see more clearly into the
essence of statistical noise introduced by classical emulation
of quantum states. For mixed probe states ρ j , their intrinsic
classical noise is masked by the assumption about their noise-
less sampling. For pure probes, one can represent the MSE
(A16) as

MSE = 1

Ns
{(1 − Tr{ρ2}) + (ζ 2 − 1)}. (A17)

The first term corresponds to the internal classical noise of the
mixed state ρ, while the latter one describes the additional
sampling noise introduced by classical representation of a
nonclassical state. If the state ρ is classical, one can find
its representation with positive weights c j > 0. Therefore,
according to standard normalization of the density matrices
ρ and ρ j , we have ζ = ∑

j |c j | = ∑
j c j = 1 and the second

term in Eq. (A17) vanishes. Notice that this term also vanishes
when one samples the actual physical state (2) of the main text
used for reproducing measurement results instead of ρ having
MSE = (1 − Tr{ρ2

c })/Ns.
It is also worth noting that if ρtrue is also pure, the MSE in

(A17) is defined by the accuracy and purity of the representa-
tion, and goes to zero with the fidelity going to unity.

4. Optimizing the representation

Our task is to simulate the result of quantum-state mea-
surement. So, the optimization task for developing the
representation would consist of choosing the minimal possible
number of classical probes providing for the least error in esti-
mating a specified observable. Also, these probes themselves
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should be specified. The choice of the probes for the quantum-
state reconstruction was discussed in a number of works
[16,17,19]. However, measurement-oriented optimization, as
discussed in the current contribution, was not carried on. We
leave this discussion for future works. Here we consider a
particular case of optimization which allows shedding some
light on the best choice of the probe states for the experiments.

First, let us search for the optimal decomposition of the
state ρtrue, which simultaneously minimizes the additional
sampling noise (ζ 2 − 1)/Ns [see Eq. (A17)] and the decom-
position error Tr{(ρ − ρtrue)2},

min
{ρ j},{c j}

D, D =
(

ζ 2 − 1

Ns
+ Tr{(ρ − ρtrue)2}

)
. (A18)

A variation in ρ j and c j gives

δD = 2
∑

j

(
ζ sgn(c j )

Ns
+ Tr{ρ j (ρ − ρtrue)}

)
δc j

+ 2
∑

j

c j Tr{δρ j (ρ − ρtrue)}. (A19)

The normalization of the density operators imposes the
constraints

∑
j δc j = 0 and Tr{δρ j} = 0 on the variations.

Strictly speaking, one should also impose certain constraints
ensuring semipositivity of ρ during the considered variation.
However, if the state ρ is mixed with all its eigenvalues being
strictly positive, the semipositivity condition is not violated
for any infinitely small variation.

First, let us assume that we do not require the states ρ j to
be classical, i.e., we do not impose any additional constraints
on δρ j . In that case, the variation in ρ j [the lower line in
Eq. (A19)] implies that the optimal representation should be
accurate: ρ = ρtrue. Then, variation in c j leads to the equa-
tion

∑
j sgn(c j ) δc j = 0 and, finally, to positivity of all the

weights: c j > 0 for all j. Therefore, if we are not limited in
terms of the structure of ρ j , the optimal choice is either ρtrue

itself or any of its representations in the form of a positive-
weight mixture (if ρtrue is mixed).

The latter conclusion about the positivity of optimal c j

as soon as the representation is accurate (ρ = ρtrue) stems
from the variation in c j and remains valid regardless of any
constraints imposed on δρ j . If, for the available set of probe
states ρ j , an accurate decomposition of ρtrue requires negative
weights, such a decomposition is not optimal. For usage of a
simpler representation with a smaller number of components
ρ j , the advantage of having smaller sampling noise will ex-
ceedingly compensate for the loss in representation accuracy.

Let us now assume that the set of probe states is limited
by coherent states only: ρ j = |α j〉〈α j |. Their variations can

be written as

δρ j = (a† − α∗
j )|α j〉〈α j |δα j + |α j〉〈α j |(a − α j )δα

∗
j . (A20)

Independence of the variations of the coherent-state ampli-
tudes implies that the following condition should be satisfied
for the optimal representation:

〈α j |[a, ρ − ρtrue]|α j〉 = 0. (A21)

From this equation, it follows, for example, that for the set
of coherent probes not limited to just a single state, the dif-
ference between the optimally represented ρ and ρtrue cannot
be proportional to a coherent or a number state. Generally,
the operator [a, ρ − ρtrue] should be expressible as a sum of
linearly independent operators. The number of these operators
should be at least that of the probe states.

Now let us consider a measurement-oriented version of the
procedure described above. We look for the optimal compo-
nent set that minimizes sampling noise (A16) for a given Ns

and under the condition that a certain measurement result is
to be obtained. As the properties of the optimal components
ρ j are of interest here, we shall focus only on their varia-
tion. Furthermore, we suppose that there is some desirable
physical property about the decomposition ρ that needs to be
fixed in the form of an expectation-value constraint, namely,
Tr{ρ O} = μ for some observable O. The corresponding dis-
tance to be minimized, D′ = NsMSE − λ(Tr{ρ O} − μ). This
distance is parametrized by a Lagrange scalar λ. A variation
in ρ j therefore gives

δD′ = 2ζ
∑

j

|c j |Tr{ρ jδρ j} − 2
∑

j

c jTr{ρδρ j}

− λ
∑

j

c jTr{Oδρ j}. (A22)

Since the ρ j’s are quantum states, they take the form
ρ j = W †

j Wj/Tr{W †
j Wj}. This implies the variation

δρ j = δW †
j Wj + W †

j δWj

Tr{W †
j Wj}

− ρ j

Tr{δW †
j Wj + W †

j δWj}
Tr{W †

j Wj}
(A23)

that leads to the extremal equation

c jρ jM = 2ζ |c j |
(
ρ2

j − ρ jTr
{
ρ2

j

}) + c jρ jTr{ρ jM},
M = 2ρ + λ O, (A24)

when δD′ is set to zero.
In order to satisfy (A24), we now need ρ j to commute

with 2ρ + λ O. This practically means that ρ j shares com-
mon eigenstates with ρ and O. A specific situation is when
O = a†a and μ is the mean photon number of the system.
Then, an extremal set of ρ j’s is some set of Fock-state mixture
(ρ j = ∑

n |n〉w jn〈n| with
∑

n w jn = 1), which is compatible
with a ρ that is also a Fock state.
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