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Energy cat states induced by a parity-breaking excited-state quantum phase transition
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We show that excited-state quantum phase transitions (ESQPTs) in a system in which the parity symmetry is
broken can be used to engineer an energy cat state—a Schrödinger cat state involving a quantum superposition
of both different positions and energies. By means of a generalization of the Rabi model, we show that adding
a parity-breaking term annihilates the ground-state quantum phase transition between normal and superradiant
phases, and induces the formation of three excited-state phases, all of them identified by means of an observable
with two eigenvalues. In one of these phases, level crossings are observed in the thermodynamic limit. These
allow us to separate a wave function into two parts: one, with lower energy, trapped within one region of the
spectrum, and a second one, with higher energy, trapped within another. Finally, we show that a generalized
microcanonical ensemble, including two different average energies, is required to properly describe equilibrium
states in this situation. Our results illustrate yet another physical consequence of ESQPTs.
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I. INTRODUCTION

One of the most fascinating predictions of quantum
mechanics are cat states, named after the famous Gedanken-
experiment by Schrödinger himself [1]. Cat states are usually
defined as macroscopic quantum superpositions of classical
states, like particles in different positions. Due to the effects
of decoherence, often induced by a measuring apparatus but
also by, e.g., dissipation resulting from the interaction of the
quantum system with its environment, these states are very
fragile [2], and thus are not observed classically under normal
circumstances [3,4]. However, they have been generated in the
laboratory by means of quantum optics [5–7] or superconduct-
ing cavities [8].

From the theoretical point of view, a number of tech-
niques to engineer robust cat states have been explored [9,10].
A usual one consists in starting in a normal ground state,
and then leading the system onto a macroscopic superposi-
tion without leaving the ground state, by changing a control
parameter [11–14]. In many instances, these two kinds of
ground states are separated by a quantum phase transition
(QPT) [15], which is caused by an abrupt, nonanalytic change
of the ground-state properties of quantum systems, separating
two quantum phases characterized by different thermody-
namic properties. For example, the ground state of a bosonic
Josephson junction made of a number of atoms in a two-site
Bose-Hubbard model changes from separable Fock states to
Schrödinger cat states at a critical value of the interaction
amplitude [16,17]. This QPT is the basis for the technique
proposed in [12].
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In the last couple of years it has been established that
QPTs are not restricted to the ground state. There exists an-
other, perhaps less well-known, form of nonanalytic behavior
detected in the very high-lying (not just slightly above the
ground state) excited states of physical models, giving rise
to the phenomenon of excited-state quantum phase transi-
tion (ESQPT) [18–20]. ESQPTs have been the subject of
intense research during recent years, and both their origins
and many of their physical consequences have been explored
in remarkable detail. These include a number of dynamical
effects such as anomalously large decoherence [21,22], sin-
gular behavior in quench dynamics [23–27], quantum work
statistics [28], localization [29], quantum chaos [30–33],
generation of symmetry-breaking equilibrium states [34,35],
universal dynamical scaling [36], dynamical instabilities [37]
and dynamical phase transitions [38,39], irreversible pro-
cesses in which no energy is dissipated [40], and reversible
quantum information spreading [41], to quote a few. For a
recent, detailed exposition, we recommend [18]. Neverthe-
less, some fundamental questions do remain open, among
which we highlight the search of a mechanism to link the
phenomenology of ESQPTs to that of common QPTs and the
definition of truly distinct thermodynamic phases. This is a
question that was very recently addressed in Ref. [42], on
which we will heavily rely in the present work.

In many cases, QPTs and ESQPTs are closely linked.
Let us consider a physical Hamiltonian depending on some
control parameter, say, g, in which a QPT occurs at a given
critical coupling gc. In a large number of collective systems an
ESQPT is born after this QPT has been crossed, say, g > gc,
and the corresponding critical energy, Ec, merges with the
ground-state energy at g = gc. The ESQPT is then revealed
by nonanalyticities in static quantities involving the spectral
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properties such as the density of states �(E ) [43–45], but
also through equilibrium measurements of relevant physical
observables, which may also show a nonanalytic behavior
at the critical energy. However, this is not necessarily true:
it is also possible to find systems with ESQPTs without the
corresponding QPT [46,47].

The main goal of this paper is to take advantage of a similar
case to unveil the generation of a macroscopic quantum super-
position, occurring both in space and in energy, an energy cat
state, by slowly evolving a normal initial state through two
ESQPTs of different nature. For this purpose, we focus on a
modified version of the Rabi model of quantum optics, for
which these ESQPTs can be identified by means of a constant
of motion recently proposed in Ref. [42]. We also provide a
statistical ensemble capable of describing the equilibration of
physical observables in the long-time dynamics.

This paper is organized as follows. In Sec. II we use a
simple classical toy model to illustrate how QPTs can occur in
the absence of ESQPTs by studying the critical points of the
potential energy. In Sec. III we introduce the physical model
used in this work, a deformed version of the quantum Rabi
model. In Sec. IV we analyze the semiclassical features of
the quantum model and establish a quantum-classical corre-
spondence. The classical phase space and the level density are
studied in Sec. IV A; common indicators of QPTs are used
to show that no QPT occurs in the ground state of the model
in Sec. IV B. The features of the quantum model are consid-
ered in Sec. V, including the expectation value of physical
observables in Sec. V A, the level dynamics in Sec. V B, and
the analysis of level crossings induced by a parity-breaking
ESQPT in Sec. V C. The generation of energy cat states by
the nonequilibrium dynamics and the unitary time evolution
is discussed in Sec. VI. We study the thermodynamics of the
cat states and we provide a statistical ensemble describing the
long-time average of physical observables in these states in
Sec. VII. Finally, we gather the main conclusions of our work
in Sec. VIII.

II. CLASSICAL TOY MODEL

For illustration purposes, let us consider a physical system
described by a classical Hamiltonian of the form H (x, y) =
y2/2m + V (x) where m is a constant in arbitrary units and
V (x) is a real analytic function of a single variable, which we
call potential. The variables x and y may represent the canon-
ical position and momentum of a classical system of a single
degree of freedom, respectively. Following an exposition in
line with Ref. [19], suppose that the potential takes the form

V (x) = x4 + bx2 + cx, (1)

where b, c ∈ R are some constants. All the critical points of
these models, including QPTs and ESQPTs, can be found
by solving the system of two equations ∇H (xc, yc) = 0, for
(xc, yc) [18]. In this simple-minded example where x and y
are decoupled, one trivially has yc = 0 and H (yc, x) = V (x),
so one may focus on the potential V (x) only.

First, let us fix c = 0 and take b as a control parameter. In
this case, V (x) = V (−x), and therefore Eq. (1) is a toy model
for one degree of freedom systems with a Z2 symmetry, like
the Lipkin-Meshkov-Glick and the two-fluid Lipkin model,
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FIG. 1. Classical potential V (x) = V (x; b, c), Eq. (1), for several
values of its parameters. (a–c) The symmetric case c = 0 for (a) b =
1, (b) b = 0, and (c) b = −3/2. (d–f) The asymmetric case c = 4/5
for (d) b = 0, (e) b = −1.29266, and (f) b = −3. Black circles mark
the critical values xc for which V (x) is minimal (ground state). Black
triangles mark critical points for which V (x) attains other local (not
global) minima. Black squares represent critical points for which
V (x) attains a local maximum or an inflection point. The triangle
and squares can be associated with ESQPTs characterized by a jump
discontinuity in the density of states and a logarithmic divergence in
the density of states, respectively. Gray dashed lines mark the various
energies V (x) for which either kind of ESQPT takes place.

the two-site Bose-Hubbard, the coupled top, and the Dicke
and the Rabi models [17,20–22,32,34,48–56]. If b � 0, the
single critical point is xc1 = 0, whereas if b � 0 there appears
a second pair of critical points, xc2,3 = ±√−b/2. We there-
fore identify a critical parameter bc = 0. Several examples
of such a potential for c = 0 can be seen in Figs. 1(a)–1(c).
Figure 1(a) shows the case for b = 1, where there is a single
potential minimum. This represents the ground state of our
Hamiltonian. In Fig. 1(b) we show b = bc = 0, which coin-
cides with the value of b for which the second pair of critical
points appears. We can see that V (x) shows a single global
minimum at x = 0, much like in the previous panel. However,
this critical point is special in that V (x) is completely flat in
the neighborhood of x = 0. The value b = 0 gives rise to a
QPT in the Hamiltonian, by which the ground-state energy
shows a nonanalytic behavior. We can see in Fig. 1(c), for
b = −3/2, that V (x) admits two degenerate global minima (a
pairwise degenerate ground state), while the previous critical
point at x = 0 has turned into a local maximum. This change
of behavior occurs exactly at b = 0 and survives qualitatively
for all b � 0. Therefore, we have the following phase dia-
gram. If b > 0, we have a unique and symmetric ground state,
located at x = 0. If b < 0 we have two symmetry-breaking
degenerate ground states, and a critical point located at the
position of the former ground state, x = 0, giving rise to an
ESQPT. Hence, the critical point, bc = 0, accounts for both
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the QPT and the emergence of the critical ESQPT. It is worth
noting that this transition from a symmetric to a symmetry-
breaking ground state has been used to build cat states, for
example, in the two-site Bose-Hubbard model [11,12].

Second, we consider c > 0, keeping b as a control param-
eter. Now, V (x) �= V (−x), and therefore our toy model has
no discrete symmetries. The number and value of real critical
points in this case depend again on the value of b as ∂V/∂x =
0 implies the depressed cubic x3 + v1x + v2 = 0 with v1 ≡
b/2 and v2 ≡ c/4. The critical coupling bc is the root of
the discriminant � = 4v3

1 + 27v2
2 , i.e., bc = −(3/2)c2/3. For

b > bc there is a single critical point xc1, while if b < bc there
are three different critical points. In Figs. 1(d)–1(f) we display
this potential for c = 4/5, for which bc = − 3 3√2

52/3 ≈ −1.293.
In Fig. 1(d) we choose b = 0, for which the single global min-
imum at xc1 ≈ −0.585 has potential energy V (xc1) ≈ −0.351.
In Fig. 1(e), b = bc. Apart from the global minimum V (xc1) ≈
−1.114 at xc1 ≈ −0.928, we find two additional critical points
which are equal, xc2,3 ≈ 0.464 with energy V (xc2,3) ≈ 0.139.
Also, the critical points xc2,3 are now inflection points. This
constitutes the first remarkable consequence of including a
symmetry-breaking term c > 0 in Eq. (1). The ground state is
always unique, and all its properties change smoothly with the
control parameter b; no traces of a QPT are found. Notwith-
standing, bc still accounts for the emergence of a ESQPT:
if b < bc, the potential becomes an asymmetric double well,
with a local maximum linked to a critical energy. All these
facts impede the creation of a cat state in the ground state,
but, as we will see later, open the door to profit from the
ESQPT to engineer a different kind of cat state which gives
rise to a superposition of different macroscopic energies—an
energy cat state. Finally, in Fig. 1(f), we show the case for
b = −3. We can find a global minimum (−1.287,−3.255),
an additional local minimum (1.152,−1.298), and a saddle
point (0.135, 0.054).

It should be noted that the form of V (x) for b fixed and
varying c has been previously studied [57]. In particular, when
b = −1 and c is taken as a control parameter, Eq. (1) does
display a first-order ground-state QPT at cc = 0, originating
from the swapping of two minima located at x �= 0 within the
region defined by c = ± 4

3
√

6
. Here we observe, however, that

when c is fixed and b varies the situation changes qualitatively.
The results of this introductory section illustrate the con-

sequences of introducing a symmetry-breaking term in a
classical potential giving rise to critical phenomena in the
ground state and in excited states. In the rest of this work
we will focus on a specific quantum system, a modified
version of the quantum Rabi model, whose semiclassical
analog shows the same qualitative behavior as this simple
potential.

III. MODEL: DEFORMED RABI HAMILTONIAN

The Rabi model [58,59] is a paradigmatic system to study
both ESQPTs and QPTs. It was originally introduced to de-
scribe the interaction between a single bosonic field with
frequency ω and a two-level atom with constant level split-
ting ω0. We consider a simple generalization of this model

introduced in [42], which reads

Ĥα = ωâ†â + ω0Ĵz + √
ωω0g(â† + â)Ĵx +

√
ω0

2
α(â† + â),

(2)
where â and â† are the usual bosonic annihilation and creation
operators, g is the coupling strength between the atom and
the electromagnetic radiation, and Ĵ is the angular momentum
for a j = 1/2 particle. The original Rabi model is recovered
when α = 0. Thus, the last term in the Hamiltonian consti-
tutes a symmetry-breaking deformation, which, as we will
see later, entails important qualitative changes in its critical
behavior. Other symmetry-breaking deformations have been
recently studied, like a term proportional to Ĵx [60,61], or a
term proportional to (a† + a)Ĵz [47]. We will set α = 1/2 as
a case study. It has been shown [55,62] that the Rabi model
admits a thermodynamic limit, ω0/ω → ∞, which coincides
exactly with a semiclassical limit. We will fix ω = 1, so the
TL is reached by simply increasing ω0. For our numerical
simulations of the quantum model, Eq. (2), we truncate the
number of photons to a finite value nph, so the effective Hilbert
space dimension is D = 2(nph + 1). All numerical results
have been tested for convergence, and nph has been optimized.
All quantities are expressed in arbitrary units.

Since ESQPTs are known to be deeply rooted in the struc-
ture of the semiclassical analog of the quantum model [18],
we will consider this limit in the next section. We will see
that the coupling strength g and the deformation α play a role
equivalent to that of b and c in Eq. (1), respectively.

IV. SEMICLASSICAL ANALYSIS

The semiclassical limit of Eq. (2) is obtained by substi-
tuting the photonic operators by the position and momen-
tum operators of the harmonic oscillator, p̂ = i(â† − â)/

√
2

and q̂ = (â† + â)/
√

2, and then diagonalizing the resulting
Hamiltonian matrix [55]. On the scale of the reduced en-
ergy ε ≡ E/(ω0 j) = 2E/ω0 (with E the actual energy of the
system), one obtains the low-energy spin subspace classical
Hamiltonian

Hα (p, q) = ω

ω0
(p2 + q2) −

√
1 + 2ωg2q2

ω0
+ 2αq√

ω0
, (3)

where (p, q) ∈ R2 are now continuous (nonquantized) clas-
sical variables. Thus, the quantum Rabi model Eq. (2) has a
semiclassical analog of a single effective degree of freedom,
f = 1, and its phase space is M = R2. Mean-field properties
of the quantum model Eq. (2) such as, e.g., the ground-state
energy, the photon population, and the atomic population of
the ground state are all appropriately given by the classical
analog Eq. (3) in the limit ω0 → ∞. For finite values of ω0 the
quantum model shows corrections with respect to the limiting
case of Eq. (3).

A. Phase space and density of states

Both the ground-state energy, εGS, and the ESQPTs en-
ergies εc1,c2 of the system can be obtained as the energies
ε = Hα (p∗, q∗) corresponding to particular critical points of
Eq. (3) satisfying ∇Hα|(p∗,q∗ ) = 0. If α = 0, these values show
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FIG. 2. Classical energies corresponding to the critical points of
the Hamiltonian Eq. (3) as a function of g/g∗ for (a) the usual Rabi
model, α = 0, and (b) the deformed Rabi model with α = 1/2. Yel-
low (light gray) lines represent the ground-state energy, and orange
(medium gray) and red (dark gray) lines show the energy at which
ESQPTs take place.

an abrupt change at the critical coupling strength g∗(α =
0) = 1, which marks a ground-state QPT. If g � g∗(α = 0),
the ground state is εGS = −1, while if g � g∗(α = 0), εGS =
−(1 + g4)/2g2. Besides, if g � g∗(α = 0) there appears a
second critical point: it is associated with an ESQPT and
corresponds to εc = −1 [42,55]. These results are illustrated
in Fig. 2(a). This scenario changes qualitatively as soon as
α �= 0. When α �= 0 all critical points and energies can also
be obtained analytically but cannot be expressed in terms
of elementary functions, so in what follows we will give
approximate values to relevant quantities. In Fig. 2(b) we
show the critical energies for α = 1/2. We observe that there
exists a special coupling strength separating two different
regimes: g∗(α = 1/2) ≈ 1.7872. For g < g∗(α = 1/2), there
is a single line corresponding to εGS (which is no longer con-
stant). However, at g = g∗(α = 1/2) this scenario splits, and
for g � g∗(α = 1/2) there appear two more energies besides
εGS. These two energies grow apart as g increases. This is
in contrast with Fig. 2(a) where only a single critical excited
energy exists.

Both the appearance and the kind of ESQPT a certain criti-
cal point in the Hamiltonian flow produces can be understood
through the structure of the classical phase space. In Fig. 3 we
show several classical orbits of Eq. (3) with α = 1/2, i.e., the
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FIG. 3. Classical phase space of the semiclassical analog Eq. (3)
for α = 1/2, ω = 1, ω0 = 300 and different values of the coupling
strength g. Below g∗(α = 1/2) ≈ 1.7872 the phase space is compact
for all energies, while above g∗ there is a critical energy whose
contour connects two previously disconnected regions.

set of points (p, q) ∈ R2 satisfying Hα (p, q) = ε. Different
lines correspond to different energies.

In Fig. 3(a), we observe that for g = g∗/2 < g∗ the
classical potential allows for a single, global minimum, cor-
responding to the ground-state energy. Contour lines simply
appear to expand as the energy increases, but the structure
of the phase space remains unchanged. In contrast to the
case α = 0, the contour curves do not conform a circumfer-
ence, but they are deformed [42]. This scenario is generic for
g < g∗. This changes dramatically at g = g∗: Fig. 3(b) shows
that there exists an energy, which we call critical, exhibiting
some sort of nonanalyticity (a “cusp” can be seen). This
energy is associated to an ESQPT (see below). Below this
energy, the potential produces a minimum similar to that of
Fig. 3(a), which is again the ground state. The remaining pan-
els, Figs. 3(c) and 3(d), concern the case g > g∗. The structure
of the classical phase space is now completely altered: we
can see that the potential gives rise to two minima (instead
of just one) and a maximum. Such minima are placed at
asymmetric values with respect to q = 0, while the maximum
is somewhere near q = 0. The first minimum is the ground-
state energy, εGS, while the second minimum, at εc1, and
the single maximum, at εc2, are associated with ESQPTs of
different types. We can see that for εc1 � ε � εc2 the classical
phase space is separated into two disconnected regions. The
contour line for εc2 crosses itself, giving rise to a singular
point in the phase space. A classical trajectory starting from a
point in this contour line remains trapped either in the right
or in the left well, because the time required to reach the
singular point diverges; the same happens regarding the cusp
singularity trademark of g∗ in Fig. 3(b). Above εc2, the phase
space acquires compact topology: every two points in an orbit
are connected by a contour line,1 and thus every classical
trajectory explores both the left and the right parts of the phase
space. Therefore, the critical coupling g∗ marks a transition
from single-well to double-well potential, similar to the Rabi
model with α = 0 [42,55]. We can thus see that the behavior
of the constant energy curves is qualitatively the same as that
shown by the classical cusp potential used as a toy model in
Eq. (1).

As previously mentioned, the structure of the phase space
can be used to ascertain whether ESQPTs exist in the system.
In the case of systems with a single degree of freedom, f = 1,
such as Eq. (3), a characterization of these ESQPTs was pre-
sented in [20,57] in terms of the various kinds of nonanalytic
behavior in the classical level density,

�(ε) ≡ ω

ω0

1

2π h̄

∫
d p

∫
dq δ[ε − Hα (p, q)]. (4)

It is this nonanalytic feature of the level density at the ESQPTs
critical energies that is most commonly used to diagnose this
phenomenon [18]. In our case, the local minima, besides the
ground state, produce finite jumps in �(ε), while local maxima
give rise to logarithmic singularities in �(ε) at the ESQPTs

1The phase space is also compact for (1) g < g∗ at all energies
and (2) for g > g∗ if εGS � ε � εc1. In the first case, the classical
potential is of a single-well kind, and in the second case the two-well
structure has not been revealed at those low energies.
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FIG. 4. Classical level density �(ε) of Eq. (3) for a deformation
strength α = 1/2 and several values of the coupling strength g. The
finite jump nonanalyticity, εc1, is signaled by dotted orange lines,
and the logarithmic singularities at εc2 by dashed red lines. These
various critical energies are (b) εc1 = −0.8620; (c) εc1 = −2.0426,
εc2 = −0.9584; and (d) εc1 = −4.1596, εc2 = −0.9784.

critical energies. To establish a connection with Fig. 3, in
Fig. 4 we show �(ε) for the same values of the coupling
strength g and α = 1/2. In Fig. 4(a) we observe a smooth
curve without nonanalyticities, this scenario being generic as
long as g < g∗. This is because the only fixed point allowed by
Eq. (3) when g < g∗ corresponds to the ground-state energy.
In Fig. 4(b) we show the special case where g coincides
exactly with the critical coupling, g = g∗. We can observe a
single, logarithmic singularity in �(ε), signaling an ESQPT.
For this coupling strength, the ESQPT critical energies co-
incide, εc1 = εc2, producing a single singularity in the level
density. As exemplified by Figs. 4(c) and 4(d), the difference
|εc1 − εc2| grows as g > g∗ is increased [also see Fig. 2(b)].
Indeed, the first critical energy, εc1, corresponds to the second
local minima appearing in Figs. 3(c) and 3(d), and it produces
a finite jump in �(ε). By contrast, the second critical energy,
εc2, corresponds to the local maxima in Figs. 3(c) and 3(d),
yielding a logarithmic divergence in �(ε). The various values
of the critical energies are indicated in Fig. 4.

B. Absence of ground-state QPT

Having established the existence of ESQPTs in our model
Hamiltonian, we now turn to the following question: Are these
ESQPTs connected to a ground-state QPT? The answer, as we
will show, is no: the coupling strength g∗ at which ESQPTs
start appearing does not mark any ground-state QPT. What
is more: there is no QPT for any value of g when α �= 0. To
show this, we consider some common indicators of ground-
state QPTs in the Rabi model.

The standard Rabi model (with α = 0) exhibits a second-
order ground-state QPT at the critical coupling g∗(α = 0) =
1, and this criticality is transferred onto the excited states in
the form of ESQPTs. This QPT is signaled by a nonanalyticity
in the second derivative of the ground-state energy [40]. This
can be observed in Figs. 5(a) and 5(b), where d2εGS/ dg2

becomes discontinuous at g = g∗(α = 0), even though εGS

appears smooth itself [red (light gray)]. Indeed, d2εGS/ dg2 =
0 for g < g∗(α = 0) while d2εGS/ dg2 = 2 + 3(−1 − g4)/g4

for g > g∗(α = 0), which is indeed discontinuous at g =
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FIG. 5. Indicators of ground-state quantum phase transitions. (a,
b) Ground-state energy εGS and second derivative with respect to the
coupling strength g. (c, d) Number of photons in the ground state
〈N̂〉GS and its derivative with respect to g. Red (light gray) curves
correspond to the usual Rabi model (α = 0), while blue (dark gray)
curves are for the deformed Rabi model (α = 1/2).

g∗(α = 0) = 1. By contrast, when α = 1/2 [blue (dark gray)],
d2εGS/ dg2 is a smooth function of g. It is worth mentioning
that the discontinuity observed for α = 0 is smoothed out and
transformed into a simple bump observed in Fig. 5(b).

Another characteristic associated with the ground-state
QPT in the Rabi model is the so-called normal-superradiance
transition. When α = 0, for g < g∗(α = 0) = 1, the average
number of photons in the ground state of the system, N̂ = â†â,
is identically 0, 〈N̂〉GS ≡ 0; this is the normal phase of the
model. However, for g > g∗(α = 0) this number is 〈N̂〉GS > 0
and actually grows boundlessly as a function of g in the
superradiant phase. Hence, 〈N̂〉GS is a good order parameter,
even though it is not linked to the Z2 symmetry of the model.
The average number of photons in the ground state as well
as its derivative with respect to g is represented in Figs. 5(c)
and 5(d). For α = 0, we clearly observe that 〈N̂〉GS > 0 is
continuous but nonanalytic at the critical point; therefore, the
QPT is continuous (or second order). Its nonanalytic behavior
is best seen in Fig. 5(d), where a finite jump in d〈N̂〉GS/ dg
is observed. However, when α = 1/2 we find that 〈N̂〉GS > 0
for all values of g, i.e., the normal-superradiant phase tran-
sition completely disappears. Importantly, d〈N̂〉GS/ dg also
becomes a smooth function when α = 1/2 for all g, leaving
no trace of a phase transition whatsoever.

These results confirm that, in stark contrast with the usual
Rabi model (α = 0), the spectrum of the deformed Rabi
model (α �= 0) exhibits ESQPTs beyond a coupling strength
g∗(α) even though there is no QPT in the ground state for any
g. That is, its qualitative behavior coincides with that of the
toy model discussed in Sec. II.

V. QUANTUM FEATURES OF THE ASYMMETRIC
DOUBLE-WELL STRUCTURE

The trademark of the deformed version of the Rabi model
is the asymmetric double-well structure that emerges for g >

g∗, shown in Fig. 3. In this section, we explore its main
quantum consequences. As a case study, we again focus on
the case α = 1/2.
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â
† +

â
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FIG. 6. Diagonal expectation values of the operators (a) Ĵx and
(b) â† + â as a function of energy. Orange (dotted) and magenta
(dashed) vertical lines mark the ESQPTs’ critical energies εc1 ≈
−4.1596 and εc2 ≈ −0.9785, respectively. Model parameters are
ω = 1 ω0 = 100, α = 1/2, and g/g∗ = 2. Green (light gray) tri-
angles represent the diagonal expectation values corresponding to
eigenstates in the region where the constant Ĉ does not exist; red
(medium gray) points correspond to eigenstates for which 〈ε|Ĉ|ε〉 �
−0.95; and blue (dark gray) points to eigenstates for which 〈ε|Ĉ|ε〉 �
0.95. Number of photons is 2000.

A. Expectation values of physical observables

A first idea of the consequences of the asymmetric double-
well structure can be obtained by studying the diagonal
expectation values of representative observables in the eigen-
states of the Hamiltonian, 〈Ôn〉 ≡ 〈εn|Ô|εn〉. We have worked
with g/g∗ = 2 and ω0 = 100, and we have chosen Ĵx and
â† + â as representative observables. Results are shown in
Fig. 6. We observe a first remarkable outcome. For ener-
gies εc1 � ε � εc2, both observables show a double-branch
structure. It is enlightening to compare this result with the
contour plots shown for the classical phase space in Fig. 3(d),
corresponding to the same value of g. Between εc1 and εc2,
classical trajectories are trapped either on the left (q < qc)
or on the right (q > qc) part of the phase space, and below
εc1 all the trajectories are trapped on the left part. This is
exactly what happens with the expectation value of â† + â,
which is proportional to the operator q̂. Therefore, results in
Fig. 6 suggest that there is a direct link between the topology
of the classical trajectories and the properties of quantum
eigenstates. An important consequence of these results is their
incompatibility with the eigenstate thermalization hypothesis
(ETH) [63–68]. In particular, for the long-time average of
physical observables to coincide with a suitable microcanon-
ical average around a target energy, the ETH requires the
diagonal matrix elements of the observables to vary only
smoothly with energy. However, in our case, Fig. 6 shows
abrupt variations in the diagonal matrix elements when εc1 �
ε � εc2. Therefore, neither the microcanonical nor the stan-
dard Gibbs ensemble is expected to hold for this system, even
though it has neither discrete symmetries nor other operators
commuting with the Hamiltonian.

This idea has been exploited in [42] to propose that a large
class of ESQPTs can be identified by means of a constant of
motion holding just below the corresponding critical energy.
Due to the properties of the classical trajectories, the operator

Ĉ ≡ sgn(q̂ − qcI) (5)

is proposed as a constant of motion below εc2 and in
the thermodynamic limit. Here qc is the classical position
corresponding to the critical energy εc2 and I is the iden-
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FIG. 7. (a) Energy flow diagram of the quantum model Eq. (2) as
a function of the coupling strength, ε = ε(g/g∗). The lowest energy
line represents the ground state, while upper lines show increasingly
high excited states of the system. Model parameters are ω = 1,
ω0 = 20, and α = 1/2. Black lines represent energy levels in the
region where the constant Ĉ does not exist; red (light gray) lines
show energy levels for which 〈ε|Ĉ|ε〉 � −0.95; and blue (dark gray)
lines the energy levels for which 〈ε|Ĉ|ε〉 � 0.95. The yellow thick
line shows the energy of the quenched state εg = 〈
(g)|Ĥ(g)|
(g)〉.
Green points show special cases (g/g∗, εg) whose energy distribution
is shown in Fig. 12. (b) Magnification of the flow diagram. Number
of photons is 570.

tity matrix. Details for the computation of Eq. (5) can be
found in Refs. [31,42]. If εn < εc2, then [|εn〉〈εn|, Ĉ] = 0,
where Ĥ|εn〉 = (ω0/2)εn|εn〉. As Ĉ has just two eigenvalues,
Spec (Ĉ) = ±1, this means that 〈εn|Ĉ|εn〉 = −1 if the eigen-
state |εn〉 is attached to the left part of the classical phase space
(q < qc), and 〈εn|Ĉ|εn〉 = 1 if it is attached to the right part
(q > qc). We have used this fact to choose the color points
in Fig. 6: red (medium gray) points represent eigenstates
with 〈εn|Ĉ|εn〉 = −1; blue (dark gray) points, eigenstates with
〈εn|Ĉ|εn〉 = 1; and green (light gray) triangles, eigenstates
above εc2, for which Ĉ is no longer a constant of motion.
We can see that this theory provides a perfect explanation for
the structure displayed in Fig. 6. Therefore, we can gather
the following important conclusion. Below εc2, we have two
independent sets of eigenstates (at least in the thermodynamic
limit): one characterized by 〈εn|Ĉ|εn〉 − 1, and another one
characterized by 〈εn|Ĉ|εn〉 = 1. That is, we have an extra
quantum number, ±1, to label all the eigenstates below εc2.
As we will see later, this observation is of capital importance
for dynamics across the ESQPT.

B. Level dynamics

The next step consists in studying the dynamical conse-
quences of the previous results. We start by considering the
level flow diagram of the quantum model Eq. (2) shown in
Fig. 7. Such a diagram displays the value of several energy
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levels εn (n = 1, 2, . . .) as a function of the coupling strength
g, and it gives relevant insight into the dynamics of energy
levels. The first energy line represents the ground-state energy
of Ĥ(g) for each g, and higher energy excited states follow up-
wards. We observe that the structure of the level flow closely
resembles the classical picture in Fig. 2(b). Namely, energy
levels show a collapse onto a single line around εc2 ≈ −1
(though this value is not exactly constant for different g),
which is a clear signature of a logarithmic divergence of the
level density �(ε) in an ESQPT (see Fig. 4). We can also see in
the magnified picture of Fig. 7(b) that apparent level crossings
happen in an energy range below εc2. The energy below which
this phenomenon stops happening, εc1, marks another ESQPT
signaled by a finite discontinuity in the level density (Fig. 4).

As in Fig. 6, we have used the constant of motion Ĉ to
characterize the energy levels in the flow diagram of Fig. 7.
Black lines show the energy levels where the quantum oper-
ator Eq. (5) is not a constant of motion: this happens (1) for
g < g∗ at all energies and (2) for g > g∗ only at energies ε >

εc2. Since the ratio ω0 = 20 is far from the thermodynamic
limit ω0 → ∞, some finite-size effects exist. Red (light gray)
lines show energy levels whose eigenstates belong to the left
classical well, 〈Ĉ〉 = −1, while blue (dark gray) lines show
levels whose eigenstates belong to the right classical well,
〈Ĉ〉 = +1. Below εc1 all levels belong to the left well because
the right well appears only at εc1, but between εc1 and εc2 they
can belong to either well, as the diagram clearly shows. These
two classes of levels are the ones which appear to cross within
the region εc1 � ε � εc2.

This would be compatible with the existence of two inde-
pendent sets of eigenstates, as we have proposed at the end
of the previous section. However, the von Neumann–Wigner
theorem [69,70] states that exact crossings are possible
only if there exists an exact quantum number labeling the
crossing levels unambiguously. For example, in [71] level
crossings occur between states of different parity of the
Lipkin-Meshkov-Glick model, while levels belonging in the
same parity subspace produce anticrossings. As results in [42]
indicate that Ĉ becomes an exact constant of motion only
in the thermodynamic limit, it is reasonable to expect that
apparent crossings in Fig. 7 are not exact, but avoided. To
shed some light on this important issue, and to get an idea
of the expected finite-size effects, we rely on the semiclas-
sical approximation. As shown in [72,73], we can use the
standard Einstein-Brillouin-Keller (EBK) action quantization
rules [74] to determine the positions of the energy levels of
Eq. (2) in the thermodynamic limit. To do so, we use the
semiclassical model, Eq. (3), to solve the following integral
equation: ∮

�±
p(ε, q) dq = 2π (n + an), (6)

where p(ε, q) is obtained by inverting Eq. (3) for a given
energy ε. The values εn for which n ∈ N provide the energy
levels of our model in the thermodynamic limit. The integral
is performed over a closed trajectory �± covering either the
left (−) or the right (+) part of the phase space. The quanti-
ties an are related to the Maslov index of the corresponding
trajectory, which are equal to 1/4 for each turning point;
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FIG. 8. Region of level flow diagram for 1.995 � g � 2.01.
Model parameters are ω = 1, ω0 = 300, and α = 1/2. Numerical
energy levels, corresponding to the eigenvalues of the quantum
model Eq. (2), are shown with empty circles. Color lines represent
the classical energy levels obtained via quantization, Eq. (6); yellow
(light gray) lines correspond to levels with 〈Ĉ〉 = −1, and magenta
(dark gray) lines to 〈Ĉ〉 = +1. Inset: magnification of a single level
crossing. The number of photons goes up to 5000.

thus, an = 1/2, ∀n. Since the vacuum energy of the harmonic
oscillator, E = ω/2, is removed from the Rabi model, the
energy obtained from Eq. (6) has to be shifted accordingly.

In Fig. 8 we compare the theoretical prediction given by
Eq. (6) for ω0 = 300 and 1.995 � g/g∗ � 2.010, with the
eigenvalues obtained by diagonalizing Eq. (2). The theoret-
ical, semiclassical curves undergo several exact crossings,
since the integrals for 〈Ĉ〉 = −1 and 〈Ĉ〉 = 1 arise from dif-
ferent closed paths �±, and therefore they are independent.
We can see that the numerical energy levels are almost in-
distinguishable from the corresponding theoretical predictions
for this range of parameters. In particular, we display in the
inset a single-level crossing, with 1.9990 � g/g∗ � 1.9996;
the differences between the EBK and the exact energy levels
are negligible altogether.

To interpret the consequences of this result, we come back
to Fig. 7. We can see there that the rapidity at which the
value of every energy level changes with g, εn(g), clearly
depends on 〈εn|Ĉ|εn〉; in particular, the “speed” | dεn,−/ dg| >

| dεn,+/ dg|, where the subindex − identifies the energy levels
with 〈εn|Ĉ|εn〉 = −1, and the subindex +, the energy levels
with 〈εn|Ĉ|εn〉 = +1. This fact, together our previous state-
ment concerning the almost exactitude of the EBK rules for
not so large values of ω0, motivates us to formulate the fol-
lowing conjecture:

Even in a finite-size system, the energy levels with 〈Ĉ〉 = −1
evolve independently of the energy levels with 〈Ĉ〉 = 1, when
changing the value of the coupling constant g. Therefore, we
expect the following for an adiabatic evolution. If the wave
function consists in a superposition of states with both 〈Ĉ〉 =
±1, the energy of the states with 〈Ĉ〉 = −1 will change faster
with g, and therefore an adiabatic passage across the region
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with εc1 � ε � εc2 can produce a superposition of different
macroscopic energies.

In Sec. V C we will provide evidence in favor of this
intuition, including a finite-size scaling of the behavior of the
level crossings.

C. Level crossings in finite-size systems

In Sec. VI we will use the previous results to generate
an energy cat by slowly passing through the ESQPTs. But
before that, it is interesting to investigate the behavior of two
consecutive energy levels when crossing the critical energy
in a finite-size system, in order to foresee the possible conse-
quences of such an adiabatic passage.

We first focus on how the diagonal expectation values of
Ĉ change for a given pair of energy levels as the coupling
g is varied. We consider a narrow coupling strength span
g/g∗(α) ∈ [1.6, 1.7]. For each value of the system-size pa-
rameter ω0, we look for the energy level εp closest to energy
ε = −0.8 at g/g∗(α) = 1.6, whose position in the energy
spectrum is denoted by p ∈ N. Then we consider the diag-
onal expectation value of Ĉ in two eigenstates for different
values of g: the eigenstate with energy εp, denoted |εp(g)〉 for
each value of the coupling g, and that corresponding to εp−1,
the eigenlevel closest and below the previous energy level,
|εp−1(g)〉. That is, we focus on 〈εp(g)|Ĉ|εp(g)〉 ≡ 〈Ĉ〉p,g and
〈εp−1(g)|Ĉ|εp−1(g)〉 ≡ 〈Ĉ〉p−1,g. In other words, we choose
two given energy levels at an initial value of the coupling
parameter and then follow the evolution of those same lev-
els as the coupling is increased. The curvature of the level
flow diagram shown in Fig. 7 implies that as g increases the
two energy levels εp(g) and εp−1(g), which are above εc2 for
g/g∗(α) = 1.6, will eventually cross the ESQPT at energy
εc2 for some g. Once the ESQPT has been crossed, Ĉ acts
as a very approximate constant of motion, though it should
be emphasized that the exact constancy of Ĉ only occurs in
the thermodynamic limit [42]. After the ESQPT at energy εc2

has been crossed, the (diagonal) expectation values of Ĉ in
the eigenstates of Ĥα (g) considered can only be −1 and +1,
as explained before. These expectation values are depicted in
Figs. 9(a) and 9(b) for ω0 = 55 (a) and ω0 = 603 (b). Let us
focus on Fig. 9(a). We observe that for sufficiently large g,
〈Ĉ〉p,g changes abruptly between −1 and +1 at given values
of g, and the same is true for 〈Ĉ〉p−1,g. This means that at
those values of g, there occurs a precursor of a level cross-
ing which induces a swapping of these conserved quantities.
Below a certain g, these expectation values are not simply
−1 and +1. The reason is that for those g the operator Ĉ is
still not a constant of motion at the considered energies εp(g)
and εp−1(g). This is clear for the smaller values of g, since
εp(g), εp−1(g) ≈ −0.8 are significantly above εc2. Moreover,
there is a more interesting intermediate region of g where Ĉ
shows a transient behavior. This is because the ESQPT, as any
other phase transition, only truly happens in the thermody-
namic limit, so its effects can be blurred in the quantum model
even when the ESQPT critical energy of the thermodynamic
limit, εc2, has been crossed. To perform a quantitative analysis,
we define the g-width �gT ≡ g0.05 − g0.95, where g0.05 stands
for the last value of the coupling g such that 1 − 〈Ĉ〉2

p,g � 0.05,

and g0.95 represents the first g such that 1 − 〈Ĉ〉2
p,g � 0.95.
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FIG. 9. (a, b) Diagonal expectation values of Ĉ in the eigen-
state |εp(g)〉 [(blue (dark gray)] such that εp(g/g∗ = 1.6) ≈ −0.8
and in the eigenstate with energy closest and below the previous
level, |εp−1(g)〉 [magenta (light gray)], as the coupling parameter g
is varied. The system-size parameter leading to the thermodynamic
limit is ω0 = 55 in (a) and ω0 = 603 in (b). (c) Finite-size scaling
of the amplitude of the transient behavior region �gT. We obtain the
power-law behavior �gT ∼ 1/ωz

0 with z ≈ 1. The number of photons
varies in nph ∈ [812, 8977] depending on ω0.

Then we study how this magnitude changes with ω0 by dis-
playing �gT as a function of ω0 in Fig. 9(c). We obtain
the behavior �gT ∼ 1/ωz

0 with z ≈ 1, strongly suggesting the
shrinking �gT → 0 as a power law approaching the ther-
modynamic limit ω0 → ∞. This is fully compatible with
the results published in [42]. As the thermodynamic limit is
approached, the change from a region in which the value of
Ĉ in an eigenstate of the Hamiltonian is totally undefined,
and 〈Ĉ〉2 − 〈Ĉ2〉 = 1 − 〈Ĉ2〉 ∼ 1, to a region in which Ĉ is
perfectly defined, and 〈Ĉ〉2 − 〈Ĉ2〉 = 1 − 〈Ĉ2〉 ∼ 0, becomes
more abrupt. Afterwards, the number of (almost exact) level
crossings increase with ω0.

Let us now suppose that we start in an eigenstate of the
Hamiltonian at a given value of the coupling constant g, with
an energy above εc2, and that we perform a time-dependent
protocol g(t ) with the aim of crossing the ESQPT of en-
ergy εc2. We can write the time-dependent wave function
|
(t )〉 = ∑

n cn(t )|εn(t )〉, where |εn(t )〉 are the instantaneous
eigenstates for Eq. (2) with g(t ). Then the coefficients cn(t )
evolve according to

ċm(t ) + [iεm(t ) + 〈εm(t )|ε̇m(t )〉]cm(t )

=
∑
n �=m

〈εm(t )|Ḣ|εn(t )〉
εm(t ) − εn(t )

cn(t ), (7)
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FIG. 10. (a, b) Expectation values of the interaction term of the
Hamiltonian Ĥint in adjacent energy eigenstates of the full Hamilto-
nian Eq. (8) as a function of energy for (a) ω0 = 55 and ω0 = 603. (c,
d) Product of the diagonal expectation values of Ĉ in adjacent energy
eigenstates, Cnn and Cn+1 n+1, as a function of energy, for (c) ω0 =
55 and (d) ω0 = 603. Model parameters are ω = 1, α = 1/2, and
g/g∗ = 1.65. Black dashed lines mark the energy of the first ESQPT,
εc1 = −2.5886, while full black lines mark the second ESQPT, εc2 =
−0.9668. Number of photons ranges in nph ∈ [752, 8135] depending
on ω0.

where the overdot indicates a time derivative, and we have
set h̄ ≡ 1. The first line in Eq. (7) accounts for the phase
acquired by any coefficient cn(t ) as a result of the time evolu-
tion, whereas the second line accounts for the nonadiabatic
transitions between the instantaneous energy levels. There-
fore, to estimate the relevance of such transitions in finite-size
systems, we study the magnitude

Ĥn,n+1
int ≡ 〈En+1(g)|Ĥint|En(g)〉

En(g) − En+1(g)
(8)

with

Ĥint = √
ωω0(â† + â)Ĵx, (9)

that is proportional to the contribution of the neighboring en-
ergy levels to the nonadiabatic transitions in time-dependent
protocols g(t ). We represent this magnitude in Figs. 10(a)
and 10(b) for two values of the thermodynamic limit pa-
rameter, ω0 = 55 and 603, and g/g∗ = 1.65. Moreover, in
Figs. 10(c) and 10(d) we represent the product of the diagonal
expectation value Cnn = 〈En|Ĉ|En〉 in adjacent eigenstates, for
the same values of ω0. Both cases show the same qualitative
result. We observe that for εGS � ε � εc1 the expectation
values are nonvanishing, and thus transitions are possible be-
tween the states En and En+1. Within this energy window all
eigenstates belong to the same symmetry subspace; in particu-
lar they all have 〈Ĉ〉 = −1 and therefore Cnn × Cn+1 n+1 = +1
as shown in the lower panels. By contrast, in the region
εc1 � ε � εc2 between both ESQPTs we observe that the tran-
sition amplitudes vanish, indicating that there are no allowed
transitions between adjacent eigenstates in this region. This is
because in this energy region adjacent eigenstates effectively
belong to different symmetry subspaces, as they are very

approximately characterized by 〈Ĉ〉 of opposite sign, ±1. This
is displayed in the lower panels, which show that for adjacent
eigenstates Cnn × Cn+1 n+1 = −1. For ε � εc2, Ĉ no longer
acts as a constant of motion, and therefore the classification of
eigenstates in symmetry sectors no longer holds. We observe
that when ε � εc2 transitions between adjacent eigenstates are
again allowed.

Before ending this section, we provide an additional explo-
ration of the behavior of level crossings in finite-ω0 systems.
Now, instead of studying the behavior of an energy level
through several level crossings, we will focus on a single
one of these crossings. Assuming that a Landau-Zener transi-
tion [70,75] consecutively mixes states with different quantum
numbers, 〈Ĉ〉, the probability of a nonadiabatic transition
around a typical crossing can be estimated to be PND ∼ e−2π�

where � = (�E )2/4( d�E/ dt ) and �E is the gap of the two
levels involved in the crossing. This estimation provides a re-
lation between the rate of variation of the coupling parameter
in a protocol, dg/ dt , and a definite value of the probability
PND, namely,

dg

dt
= −π (�E )2

2 ln PND

(
d�E

dg

)−1

. (10)

For an adiabatic evolution in which 〈Ĉ〉 changes at each cross-
ing, PND � 1. In our case, a typical crossing shows a gap that
changes with the coupling parameter roughly as �E (g) ∼ ω0g
(cf. Fig. 8), and therefore for a fixed value of PND, Eq. (10)
implies dg/ dt ∼ (�E )2/ω0. For this reason, an analysis of
how the gap �E at an avoided crossing varies with ω0 is
required to estimate the value of | dg/ dt | necessary to keep
PND below a certain threshold.

To perform these calculations, standard precision algo-
rithms (double precision arithmetic) may be insufficient
because the distance of the levels at the avoided crossing
can be below their precision limit; as a consequence, higher
precision computations are used, which are considerably time-
consuming. We consider a pair of energy levels close to a
given energy at some initial value of the control parameter,
gi ≈ 1.9g∗, εn(gi ) and εn+1(gi ), before the avoided crossing
occurs, up to some final value, g f ≈ 2.0g∗, after the crossing
has taken place (the precise values depend on ω0). Then, we
divide the total span in g into 20 equal parts and calculate the
distance of the two eigenlevels, |εn(gk ) − εn+1(gk )|, at each
of these points. We keep only the smallest of these distances
in absolute value, �E , and the corresponding value of g, gm.
Then, we consider a narrower g-span between gm−1 and gm+1,
and divide it again into 20 equal parts, to repeat the exact same
procedure. This is looped for several iterations, and in each
iteration we zoom in on the region where the avoided crossing
is expected to occur. For an avoided crossing, the distance
between eigenlevels �E must saturate to a finite value, as
the two levels do not exactly overlap. The results for �E , as
a function of the resolution �g = gk+1 − gk−1, are shown in
Figs. 11(a) and 11(c) for different values of ω0; in (a), the
pair of levels studied are close to ε = −4 for all ω0, while
in Fig. 11(c) they are close to ε = −2. The extremely small
values where the saturation of �E occurs in Fig. 11(a) are
remarkable; for ω0 = 10, the distance of the pair of levels at
the crossing is �E ∼ 10−13, which further decreases as ω0 is
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FIG. 11. (a, c) Estimation of the minimum distance between
levels at an avoided crossing, �E , as a function of the control
parameter width, �g for α = 1/2. Results for different values of
the thermodynamic limit parameter ω0 (see legend) are shown with
different symbols. The crossings are all located around ε ≈ −4 in
(a), while in (c) they are at ε ≈ −2. (b, d) Scaling of the saturation
of the minimum distance at an avoided crossing as a function of
ω0 (squares) for the crossings in (a) and (c), respectively. In (b) the
black line represents the exponential decay �E×(ω0) ∼ 10−δω0 with
δ ≈ 1.19, while in (d) the exponent is δ ≈ 0.34.

increased, and to resolve this avoided crossing one needs to
consider the evolution of the levels within a width of �g ∼
10−14, which is already a very small variation of the coupling
parameter. We emphasize that for ω0 = 15, which is very far
away from the thermodynamic limit, the saturation distance is
already below the standard numerical precision limit, �E ∼
10−17. In Fig. 11(c), �E shows the same qualitative behavior
as in Fig. 11(a), but the gap between levels is larger. The value
at which �E saturates will be now denoted �E×; this value
estimates the gap of the pair of levels at the avoided crossing.
This is represented in Figs. 11(b) and 11(d) as a function of
ω0, directly obtained from FIgs. 11(a) and 11(c), respectively.
In both cases, this level gap exhibits an exponential decay of
the form �E× ∼ 10−δω0 , δ > 0, indicating that the avoided
crossings are transformed exponentially into real crossings as
ω0 increases, �Ex → 0. The value of δ depends on the energy
around which the avoided crossing takes place; δ decreases as
the logarithmic ESQPT around ε ≈ −1 is approached, as the
ESQPT is only fully realized in the limit ω0 → ∞.

After this analysis, we may estimate the rate of variation
of g for an adiabatic process, that is, for a process in which
the wave function does not jump at every avoided crossing to
conserve the value of 〈Ĉ〉. From Eq. (10), we have dg/ dt ∼
(�E )2/ω0 ∼ 10−2δω0/ω0, which vanishes exponentially in ω0

and remains below the standard numerical precision even for
small values of ω0. This means that for real processes PND ∼ 1
at each avoided crossing, and therefore the conservation of
〈Ĉ〉 is almost perfect. Furthermore, as the number of avoided
crossings for a fixed protocol gini → gfin increases linearly
with ω0, we expect that the conservation of 〈Ĉ〉 becomes expo-

nentially better as ω0 is increased. In Sec. VI we will perform
a slow quench protocol with ω0 = 100, which is moderate
but still away from the thermodynamic limit. In this case, for
a probability PND = 0.5 Eq. (10) gives dg/ dt ≈ 10−70 for
the crossing at ε = −2 and dg/ dt ≈ 10−240 for the crossing
at ε = −4. These rates are out of reach for an experimental
setting and also for numerical simulations.

These results provide an important support to the conjec-
ture we have formulated at the end of Sec. V B. Even in
finite-size systems, nonadiabatic transitions between levels
with different values of 〈Ĉ〉 are highly suppressed. Therefore,
we can expect the following behavior for an adiabatic passage
through the ESQPTs of the deformed Rabi model. Let us
suppose that we start from an initial state narrow in energy
with ε > εc2. Then, if we slowly change the coupling constant
and cross the first ESQPT, levels having both 〈Ĉ〉 = 1 and
〈Ĉ〉 = −1 become populated, since 〈Ĉ〉 abruptly changes from
〈Ĉ〉 ∼ 0 to 〈Ĉ〉 ∼ ±1 at the critical line. Afterwards, due to
the conservation of 〈Ĉ〉, the wave function is split into two
independent parts, one corresponding to 〈Ĉ〉 = 1 and another
corresponding to 〈Ĉ〉 = −1, whose respective energies change
with g with a different rapidity. This suggests that we can use
the unitary time evolution to engineer an energy cat state. This
is a task that we undertake in the next section.

VI. GENERATION OF ENERGY CAT STATES

From the results in the previous section, we implement the
following protocol. We choose an initial state as the ground
state of the quantum Hamiltonian Eq. (2), i.e., |
(gini )〉 =
|εGS(gini )〉. We choose the initial value of the coupling strength
gini = 2.5g∗. Note that this ground state is nondegenerate, so
the wave function is approximately well located around the
corresponding value of 〈q̂〉. We then perform a sudden change
of the coupling strength gini → gfin, called a quench, to a final
value gfin = 1.05g∗(α). This quench leads the wave function
to a region above εc2, so it is reasonable to expect that it
is still well located around the corresponding value of 〈q̂〉.
Then we simulate slow driving g(t ) by performing successive
quenches of the form gi → gi+1, i = 1, 2, . . ., such that g1 ≡
gfin, according to gi+1 = gi + �g with a small �g = 2 × 10−5

to suppress nonadiabatic transitions throughout the process.
After each quench, the nonequilibrium state is allowed to relax
during a time τ = 106 and in general will read (h̄ ≡ 1)

|
(g)〉 =
∑

n

cn(g)e−iEn (g)τ |En(g)〉, (11)

where all energies and eigenstates are now those correspond-
ing to a Hamiltonian with a given g, not necessarily the initial
value gini, that is, Ĥ(g)|E (g)〉 = E (g)|E (g)〉, and cn(gi ) ≡
〈En(gi )|
(gi−1)〉. This procedure is less computationally de-
manding than a true time-dependent driving g(t ).

At each value of g, one may calculate the population of
energy levels obtained as the overlap

P(ε(g)) ≡
∑

n

|〈εn(g)|
(g)〉|2δ(ε − εn)

=
∑

n

|cn(g)|2δ(ε − εn). (12)
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FIG. 12. Distribution of populated energy levels by the quenched
state |
(g)〉 at a certain value of the coupling strength, Eq. (12).
Model parameters are ω = 1, ω0 = 100, and α = 1/2. The value of
the coupling strength g/g∗ is (a) 1.05, (b) 1.34, (c) 1.54, (d) 1.94,
(e) 2.14, and (f) 2.25. Orange (dotted) and magenta (dashed) vertical
lines mark the ESQPTs critical energies εc1 and εc2 for each case (cf.
Fig. 2). Number of photons for the whole process is 1900.

Clearly, for the initial state chosen to be the ground state
of the initial Hamiltonian, one has a peak distribution at the
ground-state energy, P(ε(g = gini )) = δ(ε − εGS(gini )) with
εGS(gini ) = −13.4128 (not shown). As the initial state is
quenched abruptly to gfin this distribution widens. In Fig. 7
we have represented with a full yellow line the average en-
ergy for the trajectory followed by this initial state as it is
quenched for different values of g, i.e., the energy εq(g) =
〈
(g)|Ĥ(g)|
(g)〉/(ω0 j). This quantity decreases as g in-
creases as a consequence of the curvature of the level flow
diagram. The energy distribution P(ε(g)) can be calculated
for each value of g.

In Fig. 12 we show six cases of the full distribution,
schematically indicated in Fig. 7 with green points defined in
the plane g/g∗ × εq(g/g∗). To facilitate the reading of plots,
we have represented with vertical lines two special energy
values: the ESQPTs critical energies εc1 [orange (dotted)]
and εc2 [magenta (dashed)]. Green (medium gray) distribution
indicates that the populated eigenstates have not been assigned
any conserved quantum number by Ĉ because it is not a con-
stant of motion at that value of the energy; red (light gray) and
blue (dark gray) distributions indicate that the corresponding
eigenstates have 〈Ĉ〉 � −0.95 and 〈Ĉ〉 � 0.95, respectively.
The chosen values of g increase from Fig. 12(a) to Fig. 12(f)
(see caption for details). Figure 12(a) depicts P(ε) after the
first quench gini → gfin. We find that the distribution of popu-
lated energy levels closely resembles a Gaussian distribution
with mean 〈ε〉 ≈ 0. The form of the distribution stems from
the fact that the initial state at gini is the ground state of the
system which can be seen as a coherent state. This distribu-

tion has already widened in Fig. 12(b) as a consequence of
nonadiabatic transitions, and it has almost completely crossed
the logarithmic ESQPT at εc2. For ε � εc2 the classical phase
space is already composed of separate energy wells and there-
fore a given eigenstate must necessarily belong to either one,
as indicated by 〈Ĉ〉. For this reason, we observe that two sepa-
rate modes of the distribution P(ε) [in red (light gray) vs blue
(dark gray)] are starting to show up. In Fig. 12(c) the initial
distribution has completely crossed the logarithmic ESQPT at
εc2. We notice that the part of P(ε) corresponding to 〈Ĉ〉 = −1
has lower average energy than the part with 〈Ĉ〉 = +1. As
explained in the previous section, this is because the first set of
eigenstates have eigenlevels decreasing faster with g than the
second set, i.e., the level flow diagram displays two distinct
level dynamics with different curvatures as Fig. 7 illustrates.
As g is further increased, the separation between the two
distinct modes of the distribution P(ε) increases. In particular,
in Fig. 12(d) we observe that the bimodal structure of P(ε) is
apparent. Importantly, it is clearly shown how the part of P(ε)
with 〈Ĉ〉 = −1 has crossed the first critical line at εc1, while
the part of P(ε) with 〈Ĉ〉 = +1 gets trapped before this barrier.
This is because when the package gets close to the ESQPT
at εc1, only the mode of the distribution of populated levels
with 〈Ĉ〉 = −1 will be able to pass through, and the mode
with 〈Ĉ〉 = +1 will be inevitably restrained above this critical
energy, as energy levels with 〈Ĉ〉 = +1 are not allowed below
εc1 (cf. Fig. 7). The result is that as time goes by the two modes
of a new bimodal distribution P(ε) = P(ε+) + P(ε−) will be
increasingly further apart in energy. This picture is confirmed
in Figs. 12(d)–12(f), which show that the red (light gray) mode
of P(ε) decreases as g increases with the only restriction that
P(ε) = 0 if ε < εGS, but the blue (dark gray) one remains
trapped before the barrier located at εc1. The result is the
formation of energy cat states.

To end this section, we link the formation of energy cat
states with the semiclassical limit. To do so, we make use
of the bosonic quadrature q̂ = (â† + â)/

√
2 and solve the

eigensystem q̂|qn〉 = qn|qn〉. Note that, unlike the classical
coordinate q, the spectrum of q̂ is discrete, i.e., the eigenvalues
qn do not form a continuum. The eigenvalues qn are related
to the position of the wave function in the classical two-
dimensional phase space. Using the same quench protocol
as before, we calculate the time-averaged probability that the
quenched wave function |
(g)〉 be found at qn,

P(qn) =
∑

m

P(εm)|〈qn|εm〉|2, (13)

at each step of the quench protocol (i.e., at a given g). The
probability P(qn) is shown in Fig. 13 for several cases. These
results are analogous to those in Fig. 12, except they are
connected with a probability in the classical phase space.
The probability Fig. 13(a) shows that the wave function can
explore both regions of the classical phase space. This is
because at this energy the wave function is above εc2, and
thus classical contour curves consist of two connected wells
(cf. Fig. 3). In Fig. 13(b) a visible but still small dip has been
formed near qn = 0. This indicates that the wave packet is
starting to separate, and since this is a probability connected
to the classical phase space, this points at a spatial separation
of the packet. In the rest of the panels of Figs. 13(c)–13(f)
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FIG. 13. Probability Eq. (13) of finding the quenched state
|
(g)〉 at position qn. Model parameters are ω = 1, ω0 = 100, and
α = 1/2. The values of the coupling strength g/g∗ are the same as in
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we observe that the separation of the modes increases as g
increases. The reason is that, once the ESQPT at εc2 has been
crossed, the wave function splits into wave packets with a
definite value of 〈Ĉ〉 as we showed in Fig. 12 for P(En).
Since the double-well structure of the classical phase space
is asymmetric when α �= 0, we find that the probabilities
P(qn) for qn at each side of the phase space are different;
in particular, P(qn) is wider for qn < qc2. This shows that
the energy cat states induced by the parity-breaking ESQPT
entail the formation of spatial cat states as well, i.e., a coherent
superposition of two macroscopically distinct states.

VII. THERMODYNAMICS OF ENERGY CAT STATES

The previous results on the emergence of energy cat states
generated by the level crossings induced by the ESQPT at εc2

and the constancy of Ĉ hint towards an unusual mechanism
for thermalization of physically relevant observables, which
we study here.

Generically, quantum thermalization refers to the process
by which the expectation value of a physical observable
attains a stable equilibrium value around which it simply os-
cillates for sufficiently long times [63]; this equilibrium value
coincides with its long-time average. For an observable Ô
in a time-evolving wave function |
(t )〉 = e−iĤt |
(t = 0)〉 =∑

n cne−iEnt |En〉 (h̄ ≡ 1), this long-time average can be cast in
the form

〈Ô〉 = lim
τ→∞

1

τ

∫ τ

0
dt 〈
(t )|Ô|
(t )〉

=
∑

n

P(En)〈En|Ô|En〉, (14)

where P(En) ≡ |cn|2 is the distribution of populated energy
levels, with cn = 〈En|
(0)〉. In writing the second line of

Eq. (14) it has been assumed that the Hamiltonian has no level
degeneracies for simplicity, and also because this is the case
for our system. Equation (14) implies that the long-time av-
erage is determined entirely by the distribution P(En) and the

diagonal expectation values Onn ≡ 〈En|Ô|En〉. Naturally, 〈Ô〉
depends strongly on those values Onn for which the distribu-
tion P(En) is higher, while the expectation values at energies
with little population P(En) ≈ 0 will contribute less to the full
average. Once the diagonal expectation values Onn have been
fixed, the dynamics is fully governed by the distribution of
populated states. This is the essence of the so-called diagonal
ensemble: one may calculate the exact long-time average of
an observable without actually considering the time evolution
of the wave function, focusing only on the probability that the
wave function populates a given eigenstate of the Hamiltonian
at any given time, P(En), as well as the diagonal elements of
the observable under consideration. This equivalence is well
founded mathematically as long as the system exhibits no
degeneracies [63]

In a large class of quantum systems, the long-time average
Eq. (14) is known to converge to an average obtained from a
standard microcanonical ensemble centered at a given energy,

〈Ô〉ME = 1

N

∑
En∈[E−�E ,E+�E ]

〈En|Ô|En〉, (15)

where E represents the mean macroscopic energy∑
n P(En)En, and 1 � N < ∞ is the number of states

contained in a window centered at E , [E − �E , E + �E ],
of width �E/E � 1. This is certainly the case, for example,
in generic quantum chaotic systems, where the equivalence
between Eqs. (14) and (15) is sustained by the so-called
eigenstate thermalization hypothesis [63], and one can also
expect the equivalence to hold true for generic, well-behaved
distributions P(En) (for example, with a Gaussian form)
for which the mean energy is a statistically significant
quantity. Yet there are cases where the simple microcanonical
ensemble Eq. (15) fails to describe the long-time average
Eq. (14), such as in systems displaying an extensive number
of conserved quantities. To treat these systems other statistical
ensembles have been devised such as, e.g., the generalized
Gibbs ensemble [76] or the generalized microcanonical
ensemble [77].

Here we focus on the consequences of energy cat states for
thermalization. To do so, we study how the expectation value
of different physical observables evolves as the slow quench
protocol discussed in the previous section is performed. At
each step of this successive quench protocol, the initial state
is taken to be the final state of the previous step of the pro-
tocol, and the corresponding probability distribution of the
eigenstates of the final Hamiltonian, P(En), is calculated at
each step. Then use of Eqs. (14) and (15) is made to calculate
the exact long-time averages and the microcanonical value;
in particular, the diagonal ensemble is used to obtain the
long-time averages. In Fig. 14 we compare the exact long-time
averages with the standard microcanonical ensemble and with
a generalization devised for dealing with energy cat states (see
below for details). We focus first on Fig. 14(a) which shows
the behavior of the operator Ĉ. It constitutes a remarkable
result. We can see that the value of 〈Ĉ〉 gets stuck at 〈Ĉ〉 ∼

052204-12



ENERGY CAT STATES INDUCED BY A … PHYSICAL REVIEW A 105, 052204 (2022)

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

(a)

(b)

(c)

200

400

600

800

(a)

(b)

(c)

−50

−30

−10

1 1.2 1.4 1.6 1.8 2 2.2

(a)

(b)

(c)

ˆ

−1
−0.8
−0.6
−0.4
−0.2

0
0.2

â
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FIG. 14. Thermalization of physically relevant observables. Full
black points represent the exact long-time average Eq. (14); empty
triangles represent the standard microcanonical ensemble Eq. (15);
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ber of photons is 1900.

−0.2 below εc2 (black points) due to the conservation of Ĉ.
In the same panel, the standard microcanonical average is
also shown (empty triangles). First of all, we can see that this
average provides a very poor description of the actual results,
but this was somehow expected. So let us focus on what hap-
pens for g/g∗ � 2.1. There the microcanonical average for 〈Ĉ〉
reaches its minimum possible value, 〈Ĉ〉 = −1. This means
that all the energy levels, εn, within a small window around
the expected energy, 〈E〉, have 〈εn|Ĉ|εn〉 = −1. Therefore, it
becomes impossible to build a generalized ensemble that prop-
erly accounts for the actual value of the constant of motion,
〈Ĉ〉 ∼ −0.2, just by weighting the population of each energy
level within a small energy window around 〈E〉 according to its
value of 〈Ĉ〉; such a procedure would always yield 〈Ĉ〉 = −1.
Note that this weighting is precisely the method used to build
the generalized microcanonical ensemble in [77], and it is also
the basis for the generalized Gibbs ensemble.2 Therefore, a

2At least under the conditions where microcanonical and canonical
ensemble become equivalent, the generalized Gibbs ensemble gives
rise to a distribution which is only significantly populated within
a small energy window around the expected value for the energy,
with an irregular shape determined by the expected values of other
constants of motion.

different statistical ensemble is required to deal with energy
cat states.

The reason behind this anomalous behavior is the bimodal
structure of the distribution P(εn) given by the energy cat
state. So, to derive a new kind of generalized microcanonical
ensemble describing the thermodynamics of energy cat states,
let us consider that the energy distribution is split P(En) =
P(En,+) + P(En,−) where En,± denotes the states with 〈Ĉ〉 =
±1, respectively. Thus, P (En,±) ≡ P(En,±)/

∑
n P(En,±) are

the corresponding probability distributions. The difference
with P(En) is that each P (En,±) is a unimodal distribution well
centered about its mean (in particular, closer to a Gaussian dis-
tribution) as can be seen from Figs. 12(d)–12(f). This means
that one may calculate the mean energy of the states with
definite charge 〈Ĉ〉 = ±, 〈E±〉 = ∑

n En,±P (En,±), which, un-
like 〈E〉 for P(En), is a good statistical measure once the cat
states have been properly formed. This becomes equivalent to
performing two simultaneous microcanonical averages, each
one centered about each of the two means 〈En,+〉 and 〈En,−〉,
and normalize the result correspondingly. This is realized in
the form of the following modified microcanonical ensemble:

〈Ô〉ME2 = p+
N+

∑
En,+∈[E+−�E+,E++�E+]

〈En,+|Ô|En,+〉

+ p−
N−

∑
En,−∈[E−−�E−,E−+�E−]

〈En,−|Ô|En,−〉, (16)

with

p± ≡ 1 ± 〈Ĉ〉
2

. (17)

The normalization factors p± are the probability that a given
wave function be fully localized within the left (−1) or
right (+1) classical energy well. In general, a wave function
will be a superposition of those two limiting cases since
−1 � 〈
|Ĉ|
〉 � 1, and thus it follows that 0 � p± � 1 and
p+ + p− = 1. The rest of Eq. (16) has the same interpretation
as in the standard microcanonical ensemble Eq. (15), with
the exception that now two averages are performed instead
of just one, within two different energy windows (possibly)
containing different number of levels. One caveat of the en-
semble Eq. (16) is that it heavily depends on the separation in
energy subspaces allowed by Ĉ, and thus it is undefined where
Ĉ is not a constant of motion. Also note that, by construction,

〈Ĉ〉ME2 = p+ − p− = 〈Ĉ〉.
Now we come back to Fig. 14. Besides the expected value

of 〈Ĉ〉, we show there 〈a†a〉, in Fig. 14(b), and 〈a† + a〉, in
Fig. 14(c). The generalized microcanonical ensemble, pro-
vided by Eq. (16), is represented by empty yellow circles and
has been calculated only once Ĉ acts a constant of motion;
for g/g∗(α = 1/2) � 1.4, it is undefined (cf. Fig. 7). We can
see that for small values of g close to gfin = 1.05g∗(α = 1/2),
the long-time and the standard microcanonical averages agree
very well. However, as g increases, the microcanonical value
starts showing significant deviations with the exact long-time
average, and for values g/g∗(α = 1/2) � 1.3 the previous ac-
cordance is totally ruined. On the other hand, the generalized
microcanonical ensemble given by Eq. (16) provides a perfect
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description for all the three studied observables when Ĉ acts
like a constant of motion.

Therefore, we conclude that in order to describe the ther-
malization of physical observables in the energy cat states
described in this work, a generalized version of the micro-
canonical ensemble, Eq. (16), characterized by two different
expected values for the energy, corresponding to the two
parts of the bimodal structure of the energy distribution, has
to be used instead of the common Eq. (15). This implies
that the thermodynamics of energy cat states is character-
ized by two different internal energies, which give rise to
two different temperatures. For a standard isolated system
with energy E , we can define a microcanonical tempera-
ture [78], 1/T = ∂S(E )/∂E , where S(E ) is the entropy, and
the Boltzmann constant is set to kB ≡ 1. In our case, as we
need two different energies to build thermodynamics, E+ and
E−, the entropy must be a function of these two energies,
S(E+, E−) = ln[ρ+(E+) + ρ−(E−)], where ρ±(E±) are the
parts of the density of states corresponding to energy levels
with 〈Ĉ〉 = ±1. Hence, there exist two different tempera-
tures, 1/T± = ∂S(E+, E−)/∂E±, each one evaluated at the
corresponding value of the average energy of the bimodal
distribution of the cat state.

VIII. CONCLUSIONS

The main result of this work is a protocol to create an
energy cat state—a Schrödinger cat state involving a quantum
superposition of both different positions and energies—by
slowly crossing two different ESQPTs. To do so, we rely in
a generalization of the Rabi model which includes a parity-
breaking term. As a point of departure, we have shown that
this model has two different ESQPTs, at energies εc2 � εc1,
without any kind of QPT. The corresponding phases can be
described by means an observable with just two eigenvalues,
Ĉ, which is a constant of motion below εc2. In the phase with
εc1 � ε � εc2, level crossings between energy levels with
〈Ĉ〉 = 1 and 〈Ĉ〉 = −1 are observed in the thermodynamic

limit, when the coupling constant g is changed. In the phase
with ε < εc1 all the energy levels have 〈Ĉ〉 = −1.

By means of stringent numerical calculations we have
shown how to engineer an energy cat profiting from the pre-
vious physical situation. First, the protocol is started in the
ground state of the generalized Rabi system with a large
value of the coupling constant g. Second, a quench onto a
smaller value of this constant is performed; as a result, the
system equilibrates above the critical energy associated with
the logarithmic ESQPT, εc2. Then the coupling constant is
slowly increased. As a consequence, the wave function en-
ters the phase with εc1 � ε � εc2. As the energy of levels
with 〈Ĉ〉 = −1 changes faster with g than that of levels with
〈Ĉ〉 = 1, the wave function splits into two different parts: one
centered at q < qc with lower energy, and another centered at
q > qc and higher energy. Finally, at the final stages of the
protocol, only the first part of the wave function crosses the
critical energy associated with the finite discontinuity in the
level density, εc1. As a result, the larger the final value of g,
the more separated are the two parts of the wave function.
The result is an energy cat in which two different positions
and two different energies are superposed.

Finally, we have studied the thermodynamics of this state.
We show that a new kind of ensemble, including two different
average energies (one for the part of the wave function with
〈Ĉ〉 = −1 and the other for the part with 〈Ĉ〉 = 1), is required
to properly describe the resulting equilibrium state.
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