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Harmonic oscillator kicked by spin measurements: A Floquet-like system without a classical analog
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We present a kicked harmonic oscillator where the impulsive driving is provided by stroboscopic measure-
ments on an ancillary degree of freedom and not by the canonical quantization of a time-dependent Hamiltonian.
The ancilla is dynamically entangled with the oscillator position, while the background Hamiltonian remains
static. The dynamics of this system is determined in closed analytical form, allowing for the evaluation of a
properly defined Loschmidt echo, ensemble averages, and phase-space portraits. As in the case of standard
Floquet systems, we observe regimes with crystalline and quasicrystalline structures in phase space, resonances,
and evidence of chaotic behavior, however, not originating from any classically chaotic system.
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I. INTRODUCTION

A wealth of physical phenomena, not reachable within the
realm of autonomous systems, emerge when external driving
is introduced. Classical Hamiltonian chaos [1], e.g., is only
possible in one dimension if a time-dependent disturbance is
present. Often these external influences are time periodic and
impulsive, as is the case of the archetypal δ-kicked mechani-
cal systems. Their quantum versions, such as tops [2–5] and
oscillators [6–8], among others [9], are arguably even more
intriguing, not only from the perspective of quantum chaos
[10]. These systems have been shown to display quantum
phase transitions, fractal bands in the quasienergy spectrum,
and crystalline patterns in both the phase space and time
domain.

Quantum mechanically, whenever a Hamiltonian satis-
fies the periodicity condition Ĥ (t ) = Ĥ (t + T ), one has
a Floquet system [11,12]. Usually it is assumed that the
disturbance comes from the canonical quantization of a time-
dependent Hamiltonian, often containing a comb of impulsive
terms. Quantum dynamics, however, is not exhausted by the
Schrödinger evolution. It also comprises the abrupt changes
caused by measurements, impulsive disturbances par excel-
lence, with no classical parallel.

The question arises, is it possible to augment the set of
quantum systems that can develop a Floquet-like dynamics by
using measurements as a dynamical ingredient? The answer
is positive if one employs time-periodic (stroboscopic) mea-
surements.1 If, however, these measurements directly refer to,
say, a particle position, the dynamics becomes trivial, since
they would only “reset” the system at a random position,
after each projection. If instead we use an auxiliary degree of
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1In this context, we may refer to a von Neumann comb, which is

analogous to the Dirac comb present in the Hamiltonians of δ-kicked
systems.

freedom, correlated with the particle position, and carry out
measurements on it, they work as genuine nonunitary kicks.

The purpose of this work is to introduce and characterize
such a system, presenting evidence of quantum chaos and
the formation of phase-space crystals. We remark that this
approach is distinct from those which derive time-independent
effective Hamiltonians for Floquet systems [13–18], usually
under a fast-driving condition.

In Secs. II and III we describe the system to be addressed
and provide a closed analytical solution for its dynamics,
respectively. In Sec. IV we show that the system displays
dynamical instability, namely, exponential Loschmidt echo
decay, suggesting quantum chaos. The route for this nontrivial
dynamics may represent new terrain in the field of quan-
tum dynamical systems, since it stems from the invasiveness
of measurements, thus having a non-Hamiltonian character.
Section V is devoted to the derivation of several ensemble
averages, while Sec. VI addresses phase-space crystals. In
this regard, to have a system bounded by a single well and,
at the same time, a periodic structure in phase space means
that one can artificially build a physical system with prop-
erties of a solid, at least in some respects. These properties
can be qualitatively changed, e.g., from crystalline to vitre-
ous, passing through quasicrystals and back to a crystalline
form, by varying an experimentally controllable parameter.
In Sec. VII we give our final remarks. To highlight the
key results and improve readability, we defer the demonstra-
tions of most of the technical developments to a series of
Appendixes.

II. SYSTEM

We consider a spin- 1
2 particle of mass m and magnetic

moment μ̂ = γ Ŝ, Ŝ being the spin operator. The particle mo-
tion is constrained to an effectively one-dimensional region
of space, the x axis of our coordinate system, and bounded
by a harmonic potential of frequency ω0. If the particle is
also immersed in an inhomogeneous magnetic field �B(x, y, z),
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FIG. 1. Magnetic field �B(x) ∼ xẑ coupling position (red) and
spin (blue). Here Ŝx measurements periodically project the system
into a nonstationary state. The branch |z〉|+〉 (|z〉|−〉) experiences a
harmonic potential of frequency ω0 displaced to the left (right).

whose restriction to y = 0 and z = 0 reads

�B(x, 0, 0) ≡ �B(x) =
√

2B0

(x

b

)
ẑ,

the orbital and intrinsic degrees of freedom may become dy-
namically entangled, where b = √

h̄/mω0 is a constant with
dimension of space [there are of course, infinitely many three-
dimensional forms of �B(x, y, z), compatible with �B(x, 0, 0) =
B0(x/b)ẑ and �∇ · �B = 0]. This correlation will be essential in
the developments of the following sections, where successive
spin projective measurements will be considered (see Fig. 1).
The relevant Hilbert space is HX ⊗ HS and the Hamiltonian
of the system reads

Ĥ = ĤHO ⊗ 1 −
√

2α

b
X̂ ⊗ σ̂z, (1)

where ĤHO = P̂2/2m + V (X̂ ), with V (X̂ ) = mω2
0X̂ 2/2, is the

simple harmonic oscillator (HO) Hamiltonian and σ̂z is the
z-direction Pauli operator. We mention that the fragility
of quantum superpositions for an equivalent system under
Hamiltonian disturbances has been addressed in Ref. [19].
The parameter α = γ B0 h̄/2 gives the entangling strength of
position and spin. We are interested in the phase-space dy-
namics given that the initial state is maximally localized, that
is, a canonical (or quasiclassical) coherent state (|z0〉), initially
uncorrelated to the spin. We thus consider the initial state
to be |ψ (0)〉 = |z0〉|χ〉, where |χ〉 is a convenient spin state,
which must not be an eigenket of σ̂z; otherwise no spin-orbit
correlation develops. In order to maximize the interaction we
choose |χ〉 as an eigenket of σ̂x, the Pauli operator in the
x direction, σ̂x|s〉x = s|s〉x = s(|+〉 + s|−〉)/

√
2, s = ±1 (|±〉

being eigenkets of σ̂z).
The action of Ĥ on the initial state gives Ĥ |ψ〉 =

Ĥ |z0〉|s〉x = (Ĥ+|z0〉|+〉 + sĤ−|z0〉|−〉)/
√

2. The Hamiltoni-
ans Ĥ± act only on the orbital degree of freedom and read

Ĥ± = h̄ω0
(
â†

±â± + 1
2

)− h̄ω0v
2,

where v = α/h̄ω0 and we have defined displaced ladder oper-
ators â± = â ∓ v, with â the canonical annihilation operator
(analogously for â†

±). It is clear that the initial coherent state
will be split by the kick, since the term |z0〉|+〉 (|z0〉|−〉) senses

a harmonic potential, with the same frequency ω0, displaced to
the left (right) (see Fig. 1). Because the shape of the potential
remains the same, each branch will evolve as a coherent state

Û T
± |z0〉 = e−iω0(1/2−v2 )T |(z0 ∓ v)e−iω0T ± v〉,

where Û T
± = exp{iĤ±T/h̄}. So, importantly, the initial coher-

ent state evolves into a superposition of coherent states. For a
fixed value of T , we define the ± maps

Z± : C → C | Z±(z0) ≡ (z0 ∓ v)e−iω0T ± v.

Therefore, the unitary evolution of the ± branches of the state
vector, after a time T , is given by 1

2 [(|Z+〉 + s0|Z−〉)|+〉x +
(|Z+〉 − s0|Z−〉)|−〉x], where, for future convenience, we
wrote the spin part in terms of eigenstates of σ̂x and also
skipped the global phase factor. The general form of N ar-
bitrary compositions of the maps + and − can be derived in
closed form and reads

ZIN =
[

z0 + 2ive−iω0T /2 sin

(
ω0T

2

) N∑
j=1

i je
iω0T j

]
e−iNω0T .

(2)

In this notation, IN = {iN , iN−1, . . . , i2, i1} denotes a specific
arrangement of N elements ik = ±1. The map Zi1 is applied
first, followed by the maps Zi2 ,Zi3 , . . . ,ZiN . Equation (2) is
demonstrated in Appendix A and its use will become clear
soon.

III. QUANTUM TRAJECTORIES

We are now in a position to introduce the stroboscopic spin
projections, which we assume to be in the x direction. Since
the restriction of the magnetic field to the x axis points in
the z direction, the system undergoes an entangling evolution
between successive measurements of Ŝx = h̄σ̂x/2, separated
by a time T , corresponding to a stroboscopic angular fre-
quency of ω = 2π/T . The other relevant timescales are the
HO period T0 = 2π/ω0 and the Larmor period TL = 2π/γ B0

of the spin. The frequency ratio R ≡ ω0/ω is shown to be
particularly relevant. For each Ŝx measurement we have two
possible results, so, after N sequential measurements, there
are 2N possible sets of outcomes. We will refer to each of these
sets and to the states of the system projected in the process as a
quantum trajectory [20–24]. We denote the set of all quantum
trajectories after N measurements by γ N and a specific trajec-
tory by γ N

k , k = 1, 2, 3, . . . , 2N . Each trajectory in turn is fully
specified by the records of all σ̂x measurements, denoted by
{sk

j} = {sk
1, sk

2, . . . , sk
N }. In Appendix B we calculate the final

orbital state of the system for an arbitrary quantum trajectory
γ N

k ,

∣∣ψk
N

〉 = ∑
IN

ck
IN

∣∣ZIN

〉∥∥∑
IN

ck
IN

∣∣ZIN

〉∥∥ , (3)

with ck
IN

≡∏N
j=1(sk

msk
m−1)δim ,−1 = ±1, where δi, j is the Kro-

necker delta symbol. We note that the discrete-time evolution
of each state |ψk

N 〉 is defined on a topological structure
akin to a 3-coordinated Bethe lattice [25,26] in phase
space, each node corresponding to one particular realiza-
tion of (2). The fact that the phase (±1) attributed to each
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(a) (b)

FIG. 2. Energy expectation values for two quantum trajectories
determined by the outcomes of Ŝx measurements (blue signs). The
insets show the associated Husimi functions for N = 6. Darker
(lighter) regions correspond to lower (higher) probabilities. We used
v = 2.0, z0 = (1 + i)/

√
2, and R = 0.106.

node |ZIN 〉 depends on the outcome of spin measurements
resembles the original implementation of a quantum ran-
dom walk [27] (see also [28,29]), where the displacement
depends on the same kind of projection. The probabil-
ity for each trajectory to occur is given by pN [γ N

k ] =
p1(sk

1|s0)p2(sk
2|sk

1, s0) · · · pN (sk
N |sk

N−1, . . . , s0), which reads

pN
[
γ N

k

] = 4−N

∥∥∥∥∥∑
IN

ck
IN

|ZIN 〉
∥∥∥∥∥

2

. (4)

Equations (3) and (4) are demonstrated in Appendix B.
With these results we can calculate the energy expectation

value (Ek
N = 〈ψk

N |Ĥ |ψk
N 〉) and phase-space portraits, e.g., by

means of the Husimi function hk
N (q, p) = |〈z|ψk

N 〉|2, where
|z〉 is a coherent state with z = (q/b + ibp/h̄)/

√
2 ≡ q′ + ip′

(q′ and p′ being dimensionless position and momentum vari-
ables). In Fig. 2 the values of Ek

N/h̄ω0 are depicted as a
function of the discrete-time variable N , for two illustrative
quantum trajectories, characterized by the displayed sequence
of signs. Notice that the results fluctuate in an erratic manner,
particularly for N � 6. In Fig. 2(a) we observe that the energy
can drop between successive measurements, for a sufficiently
small R (R = 0.106); however, this is not a typical behavior,
as the average over all trajectories leads to a steady linear
energy increase as N grows (straight dotted lines) [see Eq. (6)
below]. The insets show the Husimi functions for N = 6. Note
how different the phase-space portraits may be for different
quantum trajectories.

IV. DYNAMICAL INSTABILITY

The irregular behavior of individual trajectories suggests
dynamical sensitivity and the possibility of quantum chaos.
The most direct quantity we may use to investigate this hy-
pothesis is the Loschmidt echo [30,31]. This quantity has been
repeatedly employed in the study of the dynamical stability of
quantum systems, including δ-kicked ones [19,32–34]. The
Loschmidt echo has also been shown to be tightly connected
with other quantum chaos diagnosis tools, as is the case of the
out-of-time-order correlator (see [35] and references therein).

We must however make the echo meaningful for the pe-
culiar system we are addressing. First, we should exclude
from the analysis the randomness introduced by the quantum

(a) (b)

FIG. 3. (a) and (b) Averaged Loschmidt echo decay for two
independent sets of 15 quantum trajectories, respectively. We used
the same parameters as in Fig. 2 except for R = 1

5 . For the small
perturbation in the Hamiltonian we set δR = 5

1000 . The inset shows
logarithmic-scale plots for N > 3. The exponential fitting is given by
the green dashed lines.

measurements. Therefore, we will compare equal initial states
evolved through slightly different Hamiltonians and for which
all spin measurements turn out to yield the same result. Thus,
we define the echo Lk

N = |〈ψk
N |ψ ′k

N 〉|2 for a fixed set of spin
outputs γ k

N , where |ψ ′k
N 〉 is the state evolved in a harmonic

potential with natural frequency ω0 + δω0. In addition, in
order to compare identical initial coherent states (the same
q0, p0, and b) and still be able to use (2), this frequency
change must be accompanied by a change in the mass such
that mω0 = (m − δm)(ω0 + δω0), which leaves the parame-
ter b = √

h̄/mω0 unchanged in both realizations. These two
slight modifications can be seen as a small disturbance in the
original Hamiltonian.

In order to investigate the functional dependence of the
echo decay in a statistically significant way, we pick sets of
15 quantum trajectories and calculate the average Loschmidt
echo up to the discrete time of N = 15. Each trajectory is
obtained by drawing 15 random signs (+ or −) and the
corresponding probability of occurrence is calculated from
Eq. (4). The echo of each single trajectory is calculated with a
disturbed Hamiltonian for the dynamics of |ψ ′k

N 〉 with R = 0.2
and δR = 0.005, the other parameters being the same as in
Fig. 2. The variation δR is taken with a fixed stroboscopic
frequency (δR = δω0/ω). The echoes associated with the
15 trajectories are averaged,

Lset
N = 1

P

15∑
k=1

pN
[
γ N

k

]
Lk

N ,

with P =∑15
k=1 pN [γ N

k ]. The corresponding results are shown
in Fig. 3 for two distinct sets of 15 random trajectories. We
find that, after a fast transient quadratic decay, the Loschmidt
echo presents an exponential drop

Lset
N ∼ e−
N

for N > 3, as it can be seen from the logarithmic plots in
the insets of Figs. 3(a) and 3(b), the values of 
 being 0.364
and 0.368, respectively. While the initial quadratic decay is a
universal property, derived by Peres [30], the subsequent ex-
ponential decay constitutes strong evidence of quantum chaos
[36]. However, more extensive numerical tests are desirable.
Another feature worth further investigation is the transition
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between the two mentioned regimes, corresponding to N = 3,
for the parameters we use.

If all trajectories were equally likely a probability of 2−N =
2−15 would be attached to each γ 15

k . Therefore, in such a
uniform case, the probability of occurrence of any set of 15
trajectories would be 15/215 ≈ 0.000 46. The sets of trajecto-
ries we consider have probabilities of compatible magnitude.
Finally, we remark that the same set of signs usually give rise
to distinct trajectory probabilities when the nondisturbed and
disturbed Hamiltonians are used, corresponding to pN [γ N

k ]
and p′

N [γ N
k ]. In the sets we consider the modular difference

|pN [γ N
k ] − p′

N [γ N
k ]| is one order of magnitude smaller than

pN [γ N
k ], on average. We have investigated two other sets of

trajectories with nearly indistinguishable results.

V. ENSEMBLE AVERAGES

Since we have determined the time evolution of every
trajectory, we may gather (3) and (4) to compose the full
ensemble state ρ̂N =∑k pN [γ N

k ]|ψk
N 〉〈ψk

N |:

ρ̂N = 2−N
∑

IN

|ZIN 〉〈ZIN |. (5)

Note that none of the final states for the quantum trajectories
is given by |ZIN 〉, but the final state of the ensemble is an
equiprobable mixture of them, with each |ZIN 〉 representing
an effective microcanonical state. We remark that Eqs. (3) and
(5) are analogous to the Floquet theorem for systems with pe-
riodically driven Hamiltonians, that is, the explicit expression
of the time-evolved states at the stroboscopic times NT . We
are thus able to explicitly calculate the ensemble averages of
energy, position, momentum, and their variances.

In Appendix C we show that the ensemble average of the
energy is given by

〈Ĥ〉N = h̄ω0

[
|z0|2 + 1

2
+ 4v2 sin2

(ω0T

2

)
N

]
. (6)

Thus, although the system energy may drop in a particular
realization, the kicks embodied by the spin projections raise
the energy by an amount of 4h̄ω0v

2 sin2(ω0T/2), on average
(dotted lines in Fig. 2). This is a common regime in usual
Floquet systems [7]. For a total time �t = NT we write the
average delivered power as

P̄ = 〈Ĥ〉N − 〈Ĥ〉0

�t
= 2π h̄

RT 2
L

sin2(πR), (7)

which, as a function of the ratio R = ω0/ω, has an abso-
lute maximum, a resonance, for tan(πR) = 2πR. Numerically
solving this equation, we get the stroboscopic period that
maximizes power in terms of the HO period:

Tres ≈ 0.3710T0 ⇒ P̄max ≈ 16.94h̄/T 2
L .

So the variable R determines the resonance, while the Larmor
period gives its intensity. If we take T � 1 (so that 〈Ĥ〉N

can be approximated by a continuous function of time, with
N = t/T ), the mean power becomes

P̄cont = ∂〈Ĥ〉
∂t

= 4h̄ω0v
2

T
sin2

(ω0T

2

)
∼ T .

Note that in the Zeno limit T →0 we get P̄cont→0, as
we should. Curiously, the ensemble dynamics of the
mean values of position and momentum is insensitive
to both the spin-position correlation and stroboscopic
measurements (see Appendix C), being given by
〈X̂ 〉N/

√
2b = Rez0 cos(Nω0T ) + Imz0 sin(Nω0T ) and

b〈P̂〉N/
√

2h̄ = −Rez0 sin(Nω0T ) + Imz0 cos(Nω0T ), which
are identical to the expectation values for the simple HO. This
is not incompatible with our conclusion that the system mean
energy steadily increases. The energy imparted to the system
is embodied by the variances �X and �P, which drastically
depart from those of the simple HO, being given by

�X 2
N

2b2
= 4v2 sin2

(ω0T

2

) 2N−1∑
�=1

sin2

(
�ω0T

2

)
+ 1

4
, (8)

b2�P2
N

2h̄2 = 4v2 sin2
(ω0T

2

) 2N−1∑
�=1

cos2

(
�ω0T

2

)
+ 1

4
, (9)

where N � 1 and the sums are over � = 1, 3, 5, . . . . Both
variances increase with the discrete time variable N . These
expressions are related to the average energy (6) through

b2�P2
N

2h̄2 + �X 2
N

2b2
= 〈Ĥ〉N

h̄ω0
− |z0|2. (10)

VI. CRYSTALLINE STRUCTURES IN PHASE SPACE

It is known that regular patterns in phase space may appear,
also for one-dimensional systems, via Hamiltonian driving,
even for particles trapped in a single potential well. These
structures have been dubbed phase-space crystals and have
recently attracted a great deal of attention [37–39]. We show
that the presented system has the ability to display such phase-
space crystals through a distinct mechanism, thus providing
a different platform to engineer systems in, e.g., many-body
physics [39].

The Husimi function for the ensemble, h(p, q) = 〈z|ρ̂|z〉,
with ρ̂ given by Eq. (5), is a combination of 2N Gaussian
functions

h(p, q) = 1

(2π h̄)22N

∑
IN

e−(1/2b2 )(q−qIN )2−(b2/2h̄2 )(p−pIN )2
,

(11)
where qIN = 〈X 〉N + v

∑N
j=1 i jq j and pIN = 〈P〉N +

v
∑N

j=1 i jp j , with
√

2q j/b = cos[(N − j)ω0T ] − cos[(N −
j + 1)ω0T ] and bp j/

√
2h̄ = sin[(N − j)ω0T ] − sin[(N −

j + 1)ω0T ].
In Figs. 4(a)–(c) we show phase-space portraits for the

rational frequency ratio R = 1
4 . A crystalline square lattice

emerges and develops as the number of spin measurements
increases [see the Husimi plots in Fig. 4 of [39]]. For R = 1

6
(not shown), again a regular structure appears, this time with
triangles clustering to form regular hexagons. For R = 2

5 , a
tenfold radially symmetric structure shows up periodically in
time [see Figs. 4(d)–(f)] [see also Fig. 1(b) of [37] and Fig. 4
of [38]].

For irrational values of R, we observe more complex struc-
tures. Consider, for instance, the transcendental resonance
condition R ≈ 0.3710. In this case, no phase-space crystal
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Husimi functions for (a) N = 2, (b) N = 5, and
(c) N = 10 with R = 1/4; (d) N = 5, (e) N = 7, and (f) N = 10
with R = 2/5; and (g) N = 5, (h) N = 8, and (i) N = 10 with the
resonant frequency ratio R ≈ 0.3710. Lighter (Darker) colors denote
higher (lower) probabilities.

is formed, although quasicrystalline structures appear [see
Figs. 4(g)–(i)], where we observe pentagonal structures. Since
these polygons are unable to cover the plane R2, geometric
frustration takes place.

We remark that, given the nature of the kicks, any of
these patterns can in principle be frozen on demand. As
soon as the desired crystal is formed one only has to either
switch to a continuous-measurement regime, leading to a
quasistatic Zeno dynamics, or simply halt the stroboscopic
measurements.

In addition, these phase-space crystals do not require fine-
tuning, in the sense that they occur for any choice of the initial
coherent state |z0〉. This can be noticed through the maps in
Eq. (2), for which it is clear that z0 only adds an overall
translation in phase space. Indeed, one can write the map as a
phase-space translation T followed by an overall phase-space
rotation R applied to

WIN = 2ive−iω0T /2 sin
(ω0T

2

) N∑
j=1

i je
iω0T j,

which is independent of z0. Equation (2) is then given by
ZIN = Rθ (Tz0 (WIN )), with θ = −Nω0T .

Finally, we mention that, at least in principle, we may map
the results in Secs. V and VI to those of a standard Flo-
quet system. If one considers the von Neumann measurement
scheme, the microscopic degree of freedom to be measured
must become entangled with the apparatus or pointer states.
This can be done via a Hamiltonian interaction, which would
lead to the so-called premeasurement state. In the scenario
envisioned in this work, this would have to happen period-
ically, just like in usual Floquet systems. It turns out that
the premeasurement state suffices to generate the ensemble

state (5). Of course, it may be a prohibitive task to determine
which interaction Hamiltonian should be switched on and
off periodically to produce the desired state. Note that for
results referring to individual realizations, as is the case of
the dynamical instability described in Sec. IV, the collapse
from the premeasurement state to a specific eigenket of the
observable is an essential ingredient, which cannot originate
from a Hamiltonian dynamics.

VII. CONCLUSION

The fact that the system we introduced is inherent in the
quantum realm and at the same time presents evidence of
quantum chaos dispels the old notion of quantum chaos as
the study of systems which are classically chaotic. Although
other systems are known to have this property, in the present
case, we report on degrees of freedom that do exist classically,
but whose dynamics cannot be paralleled in classical systems.
This is not equivalent to observing dynamical sensitivity in
degrees of freedom that do not have a classical counterpart, for
instance, spin systems. Conversely, for nonclassical degrees
of freedom we may have systems that are acknowledgedly
nonintegrable, presenting, however, a slower than exponential
decay in the Loschmidt echo [40].

Since coherent states are the closest quantum structures
to a point in a classical phase space, they are a natural and
experimentally realizable choice. However, the framework
including ancillary measurements as an active feature in the
quantum dynamics of a main system is of course quite general.
It may be the case that performing invasive measurements
on classically nonchaotic systems could “push” them into a
quantum chaotic regime (even after excluding the randomness
imparted by the measurements), thus leading to an alternative
route to quantum dynamical instability. Further investigation
is needed to verify whether or not this is the case. Note
also that the employed procedure is not always equivalent
to carrying out a series of positive-operator-valued measures
in the main system, even if it is time dependent (there is
no requirement to resolve the unit operator with the set of
possible outcomes).

In spite of the unstable nature of individual realizations
of the system’s dynamics, when averages over all possible
quantum trajectories are considered, regular patterns emerge.
The Husimi function associated with the evolution of arbi-
trary coherent states may give rise to phase-space crystals,
depending on the frequency ratio R and spin-orbit interac-
tion strength. This is an interesting feature because one may
reproduce some properties which are typical of a crystalline
solid, with a physical system possessing a single potential
well. Although this is an observed trait in archetypal Floquet
systems, the mechanism that leads to such structures in the
present case is distinct.

There are several open questions which would be interest-
ing to address. In addition to phase-space crystals, is there a
regime where one can observe time crystals [41] as in other
Floquet systems [42–44]? Can we observe quantum phase
transitions [45–48] in this class of systems? Finally, we note
that fast spin measurements are an important part of the quan-
tum computation program with trapped ions, having many
experimental realizations [49]. The expertise accumulated in
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the manipulation of this class of systems makes it a potential
candidate for the implementation of the dynamics presented
in this work.

ACKNOWLEDGMENTS

The authors thank Marcelo F. Santos and Eduardo O.
Dias for their comments and suggestions on this work. This
work received financial support from the Brazilian agencies
Coordenação de Aperfeiçoamento de Pessoal de Nível Supe-
rior, Fundação de Amparo à Ciência e Tecnologia do Estado
de Pernambuco, and Conselho Nacional de Desenvolvimento
Científico e Tecnológico through its program CNPq INCT-IQ
(Grant No. 465469/2014-0).

APPENDIX A: GENERAL EXPRESSION
FOR THE MAPS ZIN

Let IN = {iN , iN−1, . . . , i1} represent an arbitrary arrange-
ment of N elements ik = ±1. Defining the two complex maps
Z±(z0) = (z0 ∓ v)e−iω0T ± v, the general expression given by
Eq. (2) holds.

Proof. Consider the following expressions corresponding
to one, two, and three applications of the maps Z±, respec-
tively. For n = 1,

Zi1 (z0) = z0e−iω0T + iv(1 − e−iω0T )

=
[
z0 + 2iv sin

(ω0T

2

)
e−iω0T/2i1eiω0T

]
e−iω0T ;

for n = 2,

Zi2 (Zi1 ) ≡ Zi2,i1 =
[
Zi1 + 2iv sin

(ω0T

2

)
e−iω0T/2i2eiω0T

]
e−iω0T

=
{[

z0 + 2iv sin

(
ω0T

2

)
e−iω0T/2i1eiω0T

]
e−iω0T + 2iv sin

(
ω0T

2

)
e−iω0T/2i2eiω0T

}
e−iω0T

=
[

z0+2iv sin

(
ω0T

2

)
e−iω0T/2

2∑
j=1

i je
iω0T j

]
e−2iω0T ;

and for n = 3,

Zi3 (Zi2,i1 ) ≡ Zi3,i2,i1 =
[
Zi2,i1 + 2iv sin

(
ω0T

2

)
e−iω0T/2i3eiω0T

]
e−iω0T

=
{[

z0 + 2iv sin

(
ω0T

2

)
e−iω0T/2

2∑
j=1

i je
iω0T j

]
e−2iω0T + 2iv sin

(
ω0T

2

)
e−iω0T/2i3eiω0T

}
e−iω0T

=
[

z0 + 2iv sin

(
ω0T

2

)
e−iω0T/2

3∑
j=1

i je
iω0T j

]
e−3iω0T .

It is easy to recognize a reproducible pattern. By employing the principle of finite induction we suppose that the general
expression is valid for n = N − 1:

ZiN−1,...,i1 =
[

z0 + 2iv sin
(ω0T

2

)
e−iω0T/2

N−1∑
j=1

i je
iω0T j

]
e−i(N−1)ω0T .

It is clear that it holds for n = N ,

ZiN (ZiN−1,...,i1 ) ≡ ZiN ,...,i1 =
[
ZiN−1,...,i1 + 2iv sin

(ω0T

2

)
e−iω0T/2iN eiω0T

]
e−iω0T

=
{[

z0 + 2iv sin
(ω0T

2

)
e−iω0T/2

N−1∑
j=1

i je
iω0T j

]
e−i(N−1)ω0T + 2iv sin

(ω0T

2

)
e−iω0T/2iN eiω0T

}
e−iω0T

=
[

z0 + 2iv sin
(ω0T

2

)
e−iω0T/2

N∑
j=1

i je
iω0T j

]
e−iNω0T ,

which finishes the proof.

APPENDIX B: STATE OF THE SYSTEM:
SINGLE REALIZATION

1. Time evolution

Let {|±〉} and {|±〉x} denote the eigenstate bases of σz and
σx, respectively. Let HHO be the Hilbert space of the harmonic

oscillator. Now suppose that at t = 0 we prepare the state of
our system as |ψ〉 = |φ〉|s〉x, where |φ〉 ∈ HHO and s can be
either +1 or −1. Suppose also that the Hamiltonian is taken
as

H = HHO ⊗ 1 − α f (X ) ⊗ σz, (B1)
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where α is a constant with units of energy, f (X ) is, for now,
an arbitrary dimensionless function of the position operator
X , HHO ≡ P2/2m + mω0X 2/2, and 1 denotes the spin unity
operator. Defining U T

± = exp(−iH±T/h̄) and H± = P2/2m +
mω0X 2/2 ∓ α f (X ), we can prove the following result: At
time t = T the state of the system will be

1
2 {[(U T

+ + sU T
− )|φ〉]|+〉x + [(U T

+ − sU T
− )|φ〉]|−〉x}. (B2)

Proof. Using Eq. (B1), it is straightforward to show that

Hk|φ〉|±〉x = (Hk
±|φ〉)|±〉,

where k is an arbitrary integer. In this way we have

e−iHT/h̄|φ〉|±〉 =
[ ∞∑

k=0

(−iT

h̄

)k Hk
±

k!

]
|φ〉|±〉

= (U T
± |φ〉)|±〉

and therefore

e−iHT/h̄|φ〉|±〉x = 1√
2

[(U T
+ |φ〉)|+〉 ± (U T

− |φ〉)|−〉]

= 1

2
{[(U T

+ ± U T
− )|φ〉]|+〉x

+ [(U T
+ ∓ U T

− )|φ〉]|−〉x},
which is the desired result.

2. Time evolution of a coherent state under the Hamiltonian H±

Let |z0〉 ∈ HHO be an eigenstate of the operator a. Define
b = √

h̄/mω0. If f (X ) = X
√

2/b, then U T
± |z0〉 = |Z±(z0)〉.

Proof. Completing the square and defining X0 =
α
√

2b/h̄ω2
0, H± can be rewritten as

H± = P2

2m
+ mω2

0

2
(X ∓ X0)2 − mω2

0

2
X 2

0 .

That is, up to an additive constant, this is the Hamiltonian of
a harmonic oscillator centered at ±X0. Thus, we define a± =
a ∓ v, where v = X0/b

√
2 = α/h̄ω0.

Let {|n〉} and {|n±〉} be the eigenstate bases of HHO and
H±, respectively. It is well known that |z0〉 can be expanded
as

|z0〉 = e−|z0|2/2
∞∑

n=0

zn
0√
n!

|n〉.

Now note the following facts: (i) If |z0〉 is an eigenstate of a
with associated eigenvalue z0, it is an eigenstate of a± ≡ a ∓ v

with associated eigenvalue z0 ∓ v; (ii) if |z±〉 is an eigenstate
of a± with associated eigenvalue z±, it is an eigenstate of a =
a± ± v with associated eigenvalue z± ± v. Thus, using fact
(i), we may expand

|z0〉 = e−|z0∓v|2/2
∞∑

n±=0

(z0 ∓ v)n
±√

n±!
|n±〉.

Because {|n±〉} is the eigenstate basis of H± we have that

U T
± |z0〉 = e−|z0∓v|2/2

∞∑
n±=0

[(z0 ∓ v)e−iω0T ]n
±√

n±!
|n±〉,

where we have dropped the unimportant (for our purposes)
global phase factor exp(−iω0T/2). Clearly this is an eigen-
state of a± with associated eigenvalue (z0 ∓ v) exp(−iω0T ).
Therefore,

U T
± |z0〉 = |(z0 ∓ v)e−iω0T ± v〉 = |Z±(z0)〉,

which ends the proof.

3. Realization of a specific N-step spin measurement trajectory

Let |zi〉, i = 1, . . . , n, be eigenstates of a with associated
eigenvalues zi, respectively. If at t = 0 we prepare the state of
our system as |ψ〉 = (

∑n
i=1 |zi〉)|s〉x, where again s = ±1, the

previous results imply that at t = T , the state of the system
will be given by

|ψ (T )〉 = 1

2

{[ n∑
i=1

[|Z+(zi )〉 + s|Z−(zi)〉]
]
|+〉x

+
[ n∑

i=1

[|Z+(zi)〉 − s|Z−(zi)〉]
]
|−〉x

}
.

Let us call a step a process consisting in (i) letting the system
evolve T units of time and (ii) performing a measurement of
Sx on the system.

It is clear that a trajectory is characterized by a set of N ran-
dom outcomes of measurements of Sx. Thus, representing the
N-step trajectory whose set of outcomes is {sk

1, sk
2, . . . , sk

N },
s j = ±1, by γ k

N and omitting from now on the arguments of all
the maps ZIN (z0), we can enunciate the following statement. If
at t = 0 the state of the system is prepared as |ψ0〉 = |z0〉|s0〉x,
then for the trajectory γ k

N we have the probability

p
[
γ k

N

] = 1

4N

∥∥∥∥∥∑
IN

cIN |ZIN 〉
∥∥∥∥∥

2

,

the corresponding orbital state being

∣∣ψk
N

〉 = ∑
IN

cIN |ZIN 〉
‖∑IN

cIN |ZIN 〉‖ ,

where

cIN =
N∏

j=1

(
sk

j s
k
j−1

)δ−1,i j = ±1.

Proof. Let us apply finite induction once again.
Step 1. At t = 0 the state of the system is |ψ0〉. Then it is

let to evolve T units of time so that

|ψ0(T )〉 = 1
2 {[(U T

+ + s0U
T
− )|z0〉]|+〉x

+ [(U T
+ − s0U

T
− )|z0〉]|−〉x}.

Then, under a measurement of Sx, we have the probability

p(s2|s1, s0) = 1
4‖(U T

+ + s1s0U
T
− )|z0〉‖2

that the outcome will be s1h̄/2, s1 = ±1. The spin state
of the system would therefore be projected onto the
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subspace spanned by |s1〉x and its composite state would be-
come |ψk

1 〉|s1〉x, where

|ψk
1 〉 = (U T

+ + s1s0U T
− )|z0〉

‖(U T+ + s1s0U T− )|z0〉‖ = |Z+〉 + s1s0|Z−〉
‖|Z+〉 + s1s0|Z−〉‖ .

Regarding these results so far, it will prove useful to construct
the following table:

ZIN ck
IN

Z+ (s1s0)0

Z− (s1s0)1

Step 2. Using the same reasoning as above, if the system is
let to evolve T units of time, its state will be now

|ψ1(T )〉 = 1
2

{[(
U T

+ + s0U
T
−
)∣∣ψk

1

〉]|+〉x

+ [(U T
+ − s0U

T
−
)∣∣ψk

1

〉]|−〉x
}
.

Now, under a new Sx measurement, we have the
probability

p(s2|s1, s0) = 1
4

∥∥(U T
+ + s2s1U

T
−
)∣∣ψk

1

〉∥∥2

that the outcome will be s2h̄/2, s2 = ±1. The spin state of the
system would then be projected onto the subspace spanned
by |s2〉x and its composite state would become |ψk

2 〉|s2〉x,
where

∣∣ψk
2

〉 = (
U T

+ + s2s1U T
−
)∣∣ψk

1

〉∥∥(U T+ + s2s1U T−
)∣∣ψk

1

〉∥∥
=

(
U T

+ + s2s1U T
−
)(

U T
+ + s1s0U T

−
)|z0〉∥∥(U T+ + s2s1U T−

)(
U T+ + s1s0U T−

)|z0〉
∥∥

or, more explicitly,

∣∣ψk
2

〉 = |Z+,+〉+s1s0|Z+,−〉 + s2s1|Z−,+〉 + s2s1s1s0|Z−,−〉
‖|Z+,+〉+s1s0|Z+,−〉+s2s1|Z−,+〉+s2s1s1s0|Z−,−〉‖ .

Finally, we get the following table:

ZIN ck
IN

Z+,+ (s2s1)0(s1s0)0

Z+,− (s2s1)0(s1s0)1

Z−,+ (s2s1)1(s1s0)0

Z−,− (s2s1)1(s1s0)1

Step 3. Repetition of the same procedure leads to the fol-
lowing table:

ZIN ck
IN

Z+,+,+ (s3s2)0(s2s1)0(s1s0)0

Z+,+,− (s3s2)0(s2s1)0(s1s0)1

Z+,−,+ (s3s2)0(s2s1)1(s1s0)0

Z+,−,− (s3s2)0(s2s1)1(s1s0)1

Z−,+,+ (s3s2)1(s2s1)0(s1s0)0

Z−,+,− (s3s2)1(s2s1)0(s1s0)1

Z−,−,+ (s3s2)1(s2s1)1(s1s0)0

Z−,−,− (s3s2)1(s2s1)1(s1s0)1

By inspecting such a table we can infer that the
state ZIN = Z{iN ,iN−1,...,i1} always is accompanied by the

coefficient

ck
IN

= ak
iN ,iN−1,...,i1

= (sk
N sk

N−1

)δ−1,iN
(
sk

N−1sk
N−2

)δ−1,iN−1 · · ·

× (sk
2sk

1

)δ−1,i2
(
sk

1sk
0

)δ−1,i1 =
N∏

j=1

(
sk

j s
k
j−1

)δ−1,i j .

Note that sk
j = ±1 ⇒ ck

IN
= ±1 and that all possible combi-

nations IN of N elements ik = ±1 appear in the summation.
Now supposing that this is valid for the step N − 1, where

N is an arbitrary integer, we are in a position to generalize the
result. For step N − 1 we have

|ψN−2(T )〉 = 1
2

{[(
U T

+ + sN−2U
T
−
)∣∣ψk

N−2

〉]|+〉x

+ [(U T
+ − sN−2U

T
−
)∣∣ψk

N−2

〉]|−〉x
}
,

p(sN−1|sN−2, . . . , s0) = 1
4

∥∥(U T
+ + sN−1sN−2U

T
−
)∣∣ψk

N−2

〉∥∥2
,

∣∣ψk
N−1

〉 = (
U T

+ + sN−1sN−2U T
−
)∣∣ψk

N−2

〉∥∥(U T+ + sN−1sN−2U T−
)∣∣ψk

N−2

〉∥∥ .

For step N we have

|ψN−1(T )〉 = 1
2

{[(
U T

+ + sN−1U
T
−
)∣∣ψk

N−1

〉]|+〉x

+ [(U T
+ − sN−1U

T
−
)∣∣ψk

N−1

〉]|−〉x
}
,

p(sN |sN−1, . . . , s0) = 1
4

∥∥(U T
+ + sN sN−1U

T
−
)∣∣ψk

N−1

〉∥∥2
,

∣∣ψk
N

〉 = (
U T

+ + sN sN−1U T
−
)∣∣ψk

N−1

〉∥∥(U T+ + sN sN−1U T−
)∣∣ψk

N−1

〉∥∥
=

∑
IN

ck
IN

|ZIN 〉∥∥∑
IN

ck
IN

∣∣ZIN

〉∥∥ .

Finally, because all measurements are independent of each
other, this last state will be achieved with probability

p
[
γ k

N

] = 1

4

∥∥∏N
j=1

(
U T

+ + s js j−1U T
−
)|z0〉

∥∥2∥∥∏N
j=1

(
U T+ + s js j−1U T−

)|z0〉
∥∥2

×1

4

∥∥∏N−1
j=1

(
U T

+ + s js j−1U T
−
)|z0〉

∥∥2∥∥∏N−2
j=1

(
U T+ + s js j−1U T−

)|z0〉
∥∥2 × · · ·

×1

4

∥∥∏2
j=1

(
U T

+ + s js j−1U T
−
)|z0〉

∥∥2∥∥(U T+ + s1s0U T−
)|z0〉

∥∥2

×1

4

∥∥(U T
+ + s1s0U

T
−
)|z0〉

∥∥2 = 1

4N

∥∥∥∥∥∑
IN

ck
IN

∣∣ZIN

〉∥∥∥∥∥
2

.

APPENDIX C: FULL ENSEMBLE OF TRAJECTORIES:
EXPECTATION VALUES OF PHYSICAL QUANTITIES

1. Arbitrary observable

The following result will be useful in what follows. Let A
be an arbitrary observable. Then the expectation value of A
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over the ensemble of trajectories {γ k
N } is

〈A〉 = 1

2N

∑
IN

〈A〉ZIN . (C1)

Proof. Using Eq. (3) in the main text we can evaluate the
expectation value of A over the trajectory γ k

N , that is,

〈A〉k
N = 〈A〉ψk

N =
∑

IN ,JN
ck

IN
ck

JN
〈ZIN |A|ZJN 〉∥∥∑

IN
ck

IN

∣∣ZIN

〉∥∥2

=
∑

IN
〈ZIN |A|ZIN 〉∥∥∑
IN

ck
IN

∣∣ZIN

〉∥∥2 +
∑

IN �=JN
ck

IN
ck

JN

〈
ZIN

∣∣A∣∣ZJN

〉
∥∥∑

IN
ck

IN

∣∣ZIN

〉∥∥2 ,

where we used (ck
N )2 = 1.

It is possible to verify that, because each s j can assume
only two values, there is a total of 2N possible trajectories.
Thus, if we realize a very large number (ensemble) of such,
all of them will be realized with a frequency p[γ k

N ] so that

〈A〉N ≡
2N∑

k=1

p
[
γ k

N

]〈A〉k
N

= 1

4N

2N∑
k=1

(∑
IN

〈A〉ZIN +
∑

IN �=JN

ck
IN

ck
JN

〈ZIN |A|ZJN 〉
)

= 1

2N

∑
IN

〈A〉ZIN + 1

4N

2N∑
k=1

∑
IN �=JN

ck
IN

ck
JN

〈ZIN |A|ZJN 〉.

(C2)

Note that, because all trajectories are realized, for each possi-
ble trajectory in which, say, s j = +1, there will always exist a
reciprocal trajectory in which s j = −1. Thus, if in the former
trajectory some coefficient ck

IN
depends on s j and ck

IN
= ±1,

in the latter (i.e., the reciprocal trajectory), we must have
ck

IN
= ∓1. (We can see that the specific coefficient ck

iN ,...,i1 , for
which ik = +1 for all k, is always to 1. Nevertheless, this is
not relevant for the presented argument.) This means that if we
expand the summation over k in the second term of Eq. (C2),
it will simply vanish, leading to (C1).

2. Energy

The expectation value of the energy over an ensemble of
trajectories {γ k

N } is given by Eq. (6).
Proof. The previous result implies that

〈H〉N = h̄ω0

2N

(
|ZIN |2 + 1

2

)
.

So we must evaluate
∑

IN
|ZIN |2.

Let {zi}, i = 1, . . . , n, be an arbitrary set of com-
plex numbers. We know that |∑n

j=1 zi|2 =∑n
j=1 |zi|2 +

2
∑

i< j Re{ziz∗
j }. Thus, by Eq. (2) in the main text we have

|ZIN |2 − |z0|2 = 4v2 sin2
(ω0T

2

)∣∣∣∣∣
N∑

j=1

i je
iω0T j

∣∣∣∣∣
2

+ T (ik )

= 4v2 sin2
(ω0T

2

)⎛⎜⎝ N∑
j=1

=1︷︸︸︷
|i j |2

⎞
⎟⎠+ T (ik )

= 4Nv2 sin2

(
ω0T

2

)
+ T (ik ),

where T (ik ) is a shorthand for all terms which depend linearly
on any of the ik’s. Now note the following (and last) fact: If we
fix all ik’s except one, say, i j , when we expand the summation
over IN , there will appear one term for which ik = +1 and
another for which ik = −1, so the two terms will cancel out.
Therefore, we have that

∑
IN

T (ik ) = 0 and consequently we
get Eq. (6).

3. Position and momentum

The expectation values of the position and the momentum
over an ensemble of trajectories {γ k

N } are

〈X 〉N = b
√

2[Re{z0} cos(ω0T ) + Im{z0} sin(ω0T )]

and

〈P〉N = h̄
√

2

b
[−Re{z0} sin(ω0T ) + Im{z0} cos(ω0T )],

respectively.
Proof. From the expression for general averages we get

〈X 〉N = b
√

2

2N

∑
IN

Re{ZIN },

〈P〉N = h̄
√

2

2N b

∑
IN

Im{ZIN }.

Thus, we must evaluate first Re{ZIN } and Re{ZIN }:
Re{ZIN } = Re{z0e−iNω0T } + T (ik ),

Im{ZIN } = Im{z0e−iNω0T } + T (ik ).

Since T (ik ) = 0, we get the desired results.

4. Variances of position and momentum

The variances of the position and the momentum over an
ensemble of trajectories {γ k

N } are, respectively, Eqs. (8) and
(9).

Proof. We start by writing

〈X 2〉 = 2b2

2N

∑
IN

(
Re2{ZIN } + 1

4

)
, (C3)

〈P2〉 = 2h̄2

2N b2

∑
IN

(
Im2{ZIN } + 1

4

)
. (C4)
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Let us consider Re{ZIN }:

ReZIN = Rez0e−iω0T + 2v sin
(ω0T

2

)
Reie−i(N+1/2)ω0T

N∑
j=1

i je
i jω0T .

However, (
∑

i zi )2 =∑i z2
i + 2

∑
i< j Rez∗

i z j and Rez1z2 = Rez1Rez2 − Imz1Imz2, where zi are arbitrary complex numbers,
imply that

Re2

{
ie−i(N+1/2)ω0T

N∑
j=1

i je
i jω0T

}
=
[

N∑
j=1

i j

{
− cos

[(
N + 1

2

)
ω0T

]
sin( jω0T ) + sin

[(
N + 1

2

)
ω0T

]
cos( jω0T )

}]2

=
[

N∑
j=1

i j sin

[(
N − j + 1

2

)
ω0T

]]2

=
N∑

j=1

sin(2)

[(
N − j + 1

2

)
ω0T

]
+ T (ik ). (C5)

[T (ik ) has the same meaning as before.] However,

Re2{ZIN } = 1

2b2
〈X̂ 〉2

N + 4v2 sin(2)
(ω0T

2

)
Re2

{
ie−i(N+1/2)ω0T

N∑
j=1

i je
i jω0T

}
+ T (ik )

= 1

2b2
〈X̂ 〉2

N + 4v2 sin2
(ω0T

2

) N∑
j=1

sin2

[(
N − j + 1

2

)
ω0T

]
+ T (ik ). (C6)

Now defining N − j + 1
2 = l/2 (note that l is always

odd: l = 1, 3, 5, . . . , 2N − 1) and using
∑

IN
T (ik ) = 0,

we have Eq. (8), which is the desired result. Using

Imz1z2 = Rez1Imz2 + Imz1Rez2, zi ∈ C, a similar analy-
sis can be made for the momentum variance, leading to
Eq. (9).
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