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Incompatibility of quantum devices is a useful resource in various quantum information theoretical tasks, and
it is at the heart of some fundamental features of quantum theory. While the incompatibility of measurements
and quantum channels is well studied, the incompatibility of quantum instruments has not been explored in
much detail. In this work, we revise a notion of instrument compatibility introduced in the literature that we call
traditional compatibility. Then, we introduce the notion of parallel compatibility and show that these two notions
are inequivalent. We then argue that the notion of traditional compatibility is conceptually incomplete and prove
that, while parallel compatibility captures measurement and channel compatibility, traditional compatibility
does not capture channel compatibility. Hence, we propose parallel compatibility as the conceptually complete
definition of the compatibility of quantum instruments.
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I. INTRODUCTION

Incompatibility (the lack of compatibility) is one of the
features. of quantum theory that sets it apart from classical
physics [1]. Intuitively, two quantum devices are compati-
ble if there exists a joint device such that implementing the
joint device is equivalent to simultaneously implementing the
two original devices. Otherwise, they are called incompatible.
While incompatibility may at first sound like a drawback,
in fact, the incompatibility of quantum measurements leads
to practical advantage in various quantum information pro-
cessing tasks [2–5]. From the foundational point of view, the
incompatibility of quantum channels is intimately linked to
the well-known no-cloning theorem [6,7], and the incompati-
bility of the identity channel and a nontrivial measurement is
linked to the uncertainty principle [8].

While the incompatibility of measurements and quantum
channels is well studied, much less effort has been designated
to studying the incompatibility of quantum instruments, a
more general class of quantum devices capturing measure-
ment processes in their full detail. In this work, we review
a definition of instrument compatibility used in the litera-
ture (which we call traditional compatibility) and address
its conceptual adequacy and its relation to measurement and
channel compatibility. We then define a different notion of
instrument compatibility (which we call parallel compati-
bility) and argue that this notion is conceptually more in
line with the well-established notions of measurement and
channel compatibility. We further prove that parallel compat-
ibility captures measurement and channel compatibility in a
well-defined manner, while traditional compatibility cannot
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capture channel compatibility. We therefore propose to adopt
the notion of parallel compatibility of instruments instead of
traditional compatibility.

The rest of this paper is organized as follows. In Sec. II,
we discuss the mathematical background, various quantum
devices, and their compatibility. In Sec. III, we discuss the
compatibility of instruments. In particular, in Sec. III A,
we review the definition of traditional compatibility, intro-
duce the concept of parallel compatibility, and show that
these two notions are inequivalent. In Sec. III B, we argue
that the traditional definition of compatibility of instruments
is conceptually incomplete—unlike parallel compatibility—
and show that it cannot capture channel compatibility. In
Sec. III C, we prove that parallel compatibility can capture the
idea of measurement compatibility, channel compatibility, and
measurement-channel compatibility. We conclude in Sec. IV
and lay out potential connections of parallel compatibility to
certain information-theoretic tasks.

II. PRELIMINARIES

In this section, we discuss the mathematical background,
different types of quantum devices, and their compatibility.
In general, in quantum theory, to every physical system there
is an associated Hilbert space, H, which we assume to be
finite dimensional. The set of linear operators on H is denoted
by L(H) and its subset of positive semidefinite operators is
denoted by L+(H). A quantum state is described by a positive
semidefinite operator, ρ ∈ L+(H), with unit trace, and the set
of all states on H is denoted by S (H).

A. Measurements

Measurements can be thought of as quantum devices that
take a quantum state as an input and produce a classical output
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(the measurement outcome). Mathematically, measurements
are described by positive operator-valued measures (POVMs),
which in the n-outcome case correspond to a set of n positive
semidefinite operators, A = {A(x)}n

x=1, such that
∑

x A(x) =
I, where I is the identity operator. In the following, we denote
the outcome set of A by �A.

B. Quantum channels

Quantum channels map quantum states to quantum states;
that is, they are devices with a quantum input and a
quantum output. Mathematically, quantum channels are de-
scribed by completely positive trace-preserving (CPTP) maps
� : S (H) → S (K) [9,10]. A useful characterization of quan-
tum channels is the Kraus representation. In fact, any
completely positive (CP) map � can be written as �(ρ) =∑

i KiρK†
i , where the K ′

i s are linear operators called the Kraus
operators. The trace-preserving property corresponds to the
relation

∑
i K†

i Ki = I.
The dual of a map � : C(H) → L(K) [where C(H) ⊆

L(H)] is a map �∗ : L(K) → L(H) such that tr[�(X )Y ] =
tr[X�∗(Y )] for all X ∈ L(H) and Y ∈ L(K). It is easy to
show that the dual of a CPTP map is a CP unital map, i.e.,
a CP map that maps the identity to the identity. The following
observation on dual channels will be useful later:

Observation 1. Let � : S (H) → L+(K1 ⊗ K2) be a CP
map and � : S (H) → L+(K1) be a CP map such that �(ρ) =
trK2 [�(ρ)] for all ρ ∈ S (H). Then tr[�(ρ)] = tr[�(ρ)], and
thus tr[ρ�∗(IK1 )] = tr[ρ�∗(IK1⊗K2 )] for all ρ ∈ S (H). Us-
ing the fact that the dual map of a CP map is CP and that
one can always find a positive semidefinite basis of Hermitian
matrices, we conclude that �∗(IK1 ) = �∗(IK1⊗K2 ).

C. Quantum instruments

Quantum instruments simultaneously generalize measure-
ments and quantum channels: they take a quantum state as an
input and provide both a classical and a quantum output. One
may think of a quantum instrument as a measurement pro-
cess, by associating the classical output with the measurement
outcome and associating the quantum output with the post-
measurement state. Mathematically, a quantum instrument I
is defined as a set of CP maps {�x : S (H) → L+(K)}, such
that �I ≡ ∑

x �x is a CPTP map [10]. Given a quantum state
ρ, the classical output of the above instrument is x and the
quantum output is �x(ρ), both with probability tr[�x(ρ)].

Given the measurement A = {A(x)}, we say that the above
instrument is A compatible if tr[�x(ρ)] = tr[ρA(x)] for all
ρ ∈ S (H) and all x ∈ �A. Note that for every instrument
I = {�x}, there exists a unique measurement A, such that I is
A compatible. Indeed, we have that tr[�x(ρ)] = tr[ρ�∗

x (I)].
Thus, defining A(x) ≡ �∗

x (I), we have that tr[�x(ρ)] =
tr[ρA(x)] for all ρ ∈ S (H), and this A(x) is unique, positive
semidefinite and

∑
x A(x) = I, which follows from the fact

that the dual of a CPTP map is a CP unital map. How-
ever, in general, there exist multiple different instruments
compatible with the same measurement, corresponding to dif-
ferent implementations of the same measurement. For more
results regarding quantum instruments, we refer the reader to
Refs. [11–25].

D. Three kinds of compatibility in quantum theory

One possible definition of the compatibility of quantum
devices is that they can be performed jointly. That is, a pair
of devices is compatible if there exists a joint device, such
that applying the joint device reproduces both of the outcomes
of the compatible devices. If two devices are not compati-
ble, we say that they are incompatible. Arguably, the most
studied notions of compatibility in quantum theory are the
following [1].

(i) Measurement compatibility. Two measurements, A =
{A(x)} and B = {B(y)}, on H are compatible if there exists
a measurement G = {G(x, y)} on H with the outcome set
�G = �A × �B such that

A(x) =
∑

y

G(x, y); B(y) =
∑

x

G(x, y), (1)

for all x ∈ �A and y ∈ �B. Through measuring G, one can
simultaneously recover the outputs of both A and B. That is,
the distribution pG(x, y) ≡ tr[G(x, y)ρ] is a joint distribution
of pA(x) ≡ tr[ρA(x)] and pB(y) ≡ tr[ρB(y)] for all ρ ∈ S (H).

(ii) Channel compatibility. Two quantum channels, �1 :
S (H) → S (K1) and �2 : S (H) → S (K2), are compatible
if there exists a quantum channel � : S (H) → S (K1 ⊗ K2)
such that �1(ρ) = trK2 [�(ρ)] and �2(ρ) = trK1 [�(ρ)] for
all ρ ∈ S (H). Through implementing the channel �, one can
simultaneously recover the outputs of both �1 and �2. That
is, �(ρ) is a joint state of �1(ρ) and �2(ρ) for all ρ ∈ S (H).

(iii) Measurement-channel compatibility. A measurement
A = {A(x)} on H and a quantum channel � : S (H) → S (K)
are compatible if there exists a quantum instrument I = {�x :
S (H) → L+(K)} such that tr[�x(ρ)] = tr[ρA(x)] for all x ∈
�A and ρ ∈ S (H) and

∑
x �x = �. Through implementing

the quantum instrument I, one can simultaneously recover the
outputs of both A and � (for the latter, one needs to perform
classical postprocessing).

III. COMPATIBILITY OF QUANTUM INSTRUMENTS

A. Definitions and concepts

While the compatibility of instruments has been studied in
far less detail than that of measurements or channels, there is
an existing definition in the literature, which we refer to as the
traditional definition.

Definition 1 (Traditional compatibility). Two quantum
instruments, I1 = {�1

x : S (H) → L+(K)} and I2 = {�2
y :

S (H) → L+(K)}, are (traditionally) compatible if there
exists an instrument I = {�xy : S (H) → L+(K)} such that∑

y �xy = �1
x and

∑
x �xy = �2

y for all x and y.
This definition appears in Ref. [25], [Definition 3], and in

Ref. [15], [Definition 2.5]. The same definition is also given
in Ref. [16], [p. 15], under the name “coexistence” (this notion
is understood to be different from “joint measurability” in
the context of measurement compatibility [26]). Notice that
traditional compatibility can only be defined for instruments
with the same quantum output space. Intuitively, the joint
instrument I in Definition 1 reproduces both of the classical
outputs x and y of I1 and I2, and by classical postprocessing,
one can recover either one of the two quantum outputs, �1

x (ρ)
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(a)

(b)

FIG. 1. Schematic representation of joint instruments for
(a) traditionally compatible and (b) parallel compatible instru-
ments. (a) Traditional compatibility: Schematic representation of
Definition 1. Recovering the quantum output of either I1 or I2 can
be done by first implementing the joint instrument I on the state
ρ and then performing the postprocessing of outcomes, i.e., taking
the marginal over either x or y. The downward arrows represent
quantum systems. Clearly, in this case there is only one output
quantum system. (b) Parallel compatibility: An example of paral-
lel simultaneous implementation of two instruments (according to
Definition 3), corresponding to Example 1. The simultaneous imple-
mentation of I1 and I2 can be done through the following steps:
(i) implementing the channel � on the state ρ which is the joint
channel of the compatible channels �1 and �2 [where �1(ρ ) and
�2(ρ ) can be considered as the approximate unequal clones (unless
�1 = �2) of the state ρ, in general, and therefore, it can be consid-
ered as approximate asymmetric cloning], and then (ii) applying the
instruments J1 and J2 on �1(ρ ) and �2(ρ ), respectively, such that
J1 ◦ �1 = I1 and J2 ◦ �2 = I2. The existence of such a channel �

and such instruments J1 and J2 implies the parallel compatibility of
the instruments I1 and I2, as explained in Example 1. The downward
arrows represent quantum systems. Clearly, in this case there are two
output quantum systems.

or �2
y (ρ). For a schematic representation of the joint instru-

ment of traditionally compatible instruments, see Fig. 1(a).
A concept related to traditional compatibility is that of

weak compatibility.

Definition 2 (Weak compatibility). Two quantum
instruments, I1 = {�1

x : S (H) → L+(K)} and I2 =
{�2

y : S (H) → L+(K)}, are weakly compatible if there
exists a quantum channel � : S (H) → S (K) such that∑

x �1
x = ∑

y �2
y = �.

It is known that if a set of instruments is traditionally
compatible then it is also weakly compatible, but it is easily
seen that the converse is not true, in general [15].

Here, we propose a different definition of instrument com-
patibility, which we refer to as parallel compatibility.

Definition 3 (Parallel compatibility). Two quantum
instruments, I1 = {�1

x : S (H) → L+(K1)} and I2 = {�2
y :

S (H) → L+(K2)}, are parallel compatible if there exists
an instrument I = {�xy : S (H) → L+(K1 ⊗ K2)} such that∑

y trK2�xy = �1
x and

∑
x trK1�xy = �2

y for all x and y.
Notice that parallel compatibility can be defined for instru-

ments with arbitrary quantum output spaces (not necessarily
the same). Intuitively, the joint instrument I reproduces both
of the classical outputs x and y of I1 and I2, and both of the
quantum outputs �1

x (ρ) and �2
y (ρ) on a tensor product Hilbert

space. To recover the quantum outputs, one needs to perform
classical postprocessing, which can be done independently
on the two quantum output spaces. Furthermore, if I1 =
{�1

x : S (H) → L+(K1)} and I2 = {�2
y : S (H) → L+(K2)}

are parallel compatible with the joint instrument I = {�xy :
S (H) → L+(K1 ⊗ K2)}, then the channels �1 ≡ ∑

x �1
x and

�2 ≡ ∑
y �2

y are compatible with the joint channel � ≡∑
xy �xy.
For later convenience, we provide an alternative (but equiv-

alent) definition of parallel compatibility.
Definition 4. Two quantum instruments, I1 = {�1

x :
S (H) → L+(K1)} and I2 = {�2

x : S (H) → L+(K2)},
are parallel compatible if there exists a quantum
instrument I = {�z : S (H) → L+(K1 ⊗ K2)} such that
�1

x = ∑
z p1(x|z)trK2�z and �2

y = ∑
z p2(y|z)trK1�z, where

p1 and p2 are conditional probability distributions.
Proposition 1. Definition 4 is equivalent to Definition 3.
Proof. The proof is completely analogous to the related

proof of equivalent definitions of observable compatibil-
ity in Ref. [1], Eqs. (15)–(17). First, it is clear that
Definition 3 is a special case of Definition 4, by taking z =
(x′, y′), p1[x|(x′, y′)] = δxx′ , and p2[y|(x′, y′)] = δyy′ , where δ

is the Kronecker delta. Hence, we just need to show that if
a joint instrument I = {�z : S (H) → L+(K1 ⊗ K2)} such as
the one in Definition 4 exists, then there also exists a joint
instrument as in Definition 3. In particular, pick

I ′ = {�′
xy : S (H) → L+(K1 ⊗ K2)}, (2)

with �′
xy = ∑

z p1(x|z)p2(y|z)�z. One can readily check that
this is a valid instrument and that �1

x = ∑
y trK2�

′
xy and �2

y =∑
x trK1�

′
xy.

We further illuminate the concept of parallel compatibility
through an example and the accompanying figure, Fig. 1(b).

Example 1 (An example of parallel compatible instru-
ments). Consider two compatible quantum channels, �1 :
S (H) → S (H1) and �2 : S (H) → S (H2), with the joint
channel � : S (H) → S (H1 ⊗ H2). Since the implementation
of a local channel on a subsystem does not change the
quantum state on the other subsystem, for arbitrary channels
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�1 : S (H1) → S (K1) and �2 : S (H2) → S (K2), we have
that trK2 (I ⊗ �2) ◦ � = �1 and trK1 (�1 ⊗ I) ◦ � = �2.

Now consider a pair of arbitrary quantum instruments
J1 = {�′1

x : S (H1) → L+(K1)} and J2 = {�′2
y : S (H2) →

L+(K2)} such that
∑

x �′1
x = �1 and

∑
y �′2

y = �2. Con-
sider the pair of instruments I1 = J1 ◦ �1 = {�1

x = �′1
x ◦

�1 : S (H) → L+(K1)} and I2 = J2 ◦ �2 = {�2
y = �′2

y ◦
�2 : S (H) → L+(K2)}. We show that the instrument I =
{�xy = (�′1

x ⊗ �′2
y ) ◦ � : S (H) → L+(K1 ⊗ K2)} is a joint

instrument of I1 and I2.
Clearly, for all x

�1
x = �′1

x ◦ �1

= �′1
x ◦ trK2 (I ⊗ �2) ◦ �

= �′1
x ◦ trK2

(
I ⊗

∑
y

�′2
y

)
◦ �

= trK2

∑
y

(�′1
x ⊗ �′2

y ) ◦ �

=
∑

y

trK2�xy. (3)

Similarly, �2
y = ∑

x trK1�xy for all x. Hence, I1 and I2 are
parallel compatible with the joint instrument I.

Next, we show that traditional compatibility and parallel
compatibility are conceptually different.

Proposition 2. There exist pairs of quantum instru-
ments which are parallel compatible, but not traditionally
compatible.

Proof. In Example 1, �1 and �2 can be arbitrary, and there-
fore, �1 ◦ �1 and �2 ◦ �2 are not equal, in general. Therefore,
for the case where �1 ◦ �1 
= �2 ◦ �2, I1 and I2 are parallel
compatible, but not weakly compatible and, therefore, not
traditionally compatible.

Proposition 3. There exist pairs of quantum instru-
ments which are traditionally compatible, but not parallel
compatible.

Proof. Consider two quantum instruments, I p = {�p
1 =

p1I,�
p
2 = p2I} and Iq = {�q

1 = q1I,�
q
2 = q2I}, where I

is the identity channel and pi = ∑
j ri j and q j = ∑

i ri j for
some {ri j � 0}i j={1,2}, with

∑
i j ri j = 1. Clearly, I p and Iq

are traditionally compatible with the joint instrument Ir =
{ri jI}i j={1,2}. However, as discussed earlier, if I p and Iq

are parallel compatible, then �p = ∑
i �

p
i = I and �q =∑

j �
q
j = I are compatible. But since the identity channel I

is not compatible with itself (due to the no-cloning theorem),
�p and �q cannot be compatible, and therefore, I p and Iq

cannot be parallel compatible.

B. Drawbacks of traditional compatibility

In the previous section, we have introduced two notions
of instrument compatibility and showed that these notions
are conceptually different (neither of them implies the other).
Here, we argue that the traditional notion has significant draw-
backs.

Let us recall from Sec. II that measurements are devices
with a quantum input and a classical output, while channels

are devices with a quantum input and a quantum output.
Furthermore, we say that a pair of such devices is compatible
if there exists a joint device that upon taking a quantum
input reproduces both of the outputs of the original devices.
For measurements, this means that the joint measurement
produces a classical output that is the joint measurement out-
come of the two compatible measurements. For channels, this
means that the joint channel produces a quantum output that
is the joint state of the outputs of the compatible channels.
According to this principle, when one is looking for a defi-
nition of compatibility of instruments, one should look for a
joint instrument that reproduces both the joint classical and
the joint quantum output of the compatible instruments.

It is clear from Definition 1 that the traditional notion of
instrument compatibility provides a joint instrument with a
single quantum output. Thus, by design, the traditional defi-
nition does not allow for producing a simultaneous quantum
output of both of the compatible quantum instruments. Fur-
thermore, this definition only applies to instruments with the
same output Hilbert space. Note that, for traditionally com-
patible instruments, one can only recover a single quantum
output via classical postprocessing. This is not the case for
parallel compatibility, where the joint instrument produces a
joint state, whose marginals (after classical postprocessing)
coincide with the quantum outputs of the compatible instru-
ments. Indeed, after performing the joint instrument, one has
access to both of the quantum outputs, and one can perform
further operations on both of them simultaneously. To illumi-
nate this argument, we recall Proposition 3, which shows that
two “identity instruments” (instruments with all their channels
being proportional to the identity channel) are traditionally
compatible. In any notion of compatibility for which the joint
instrument recovers both of the quantum outputs, this would
mean that one can recover two copies of the output of an
identity channel, which is in clear contradiction with the no-
cloning theorem. Thus, we argue that the traditional notion of
instrument compatibility does not capture compatibility in the
same way as the well-established notions of measurement and
channel compatibility do.

As further justification for our argument, the following
two propositions show that, while traditional compatibility of
instruments captures measurement compatibility, it can never
capture channel compatibility.

Proposition 4. Two measurements, A and B, are compati-
ble if and only if there exist an A-compatible instrument IA

and a B-compatible instrument IB such that IA and IB are
traditionally compatible.

Proof. For the “if” part, suppose that there exists an
A-compatible instrument IA = {�A

x : S (H) → L+(K)} and
a B-compatible instrument IB = {�B

y : S (H) → L+(K)}
such that IA and IB are traditionally compatible. Then
there exists an instrument I = {�xy : S (H) → L+(K)}
such that

∑
y �xy = �A

x and
∑

x �xy = �B
y for all

x and y. Let us consider the unique measurement
G = {G(x, y)} such that I is G compatible. Then, for
any ρ ∈ S (H), we have that tr[ρG(x, y)] = tr[�xy(ρ)]
for all x and y and for all ρ ∈ S (H). Therefore,∑

y tr[ρG(x, y)] = ∑
y tr[�xy(ρ)] = tr[�A

x (ρ)] = tr[ρA(x)]
and

∑
x tr[ρG(x, y)] = ∑

x tr[�xy(ρ)] = tr[�B
y (ρ)] =

tr[ρB(y)] for all x and y and for all ρ ∈ S (H). That
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is, A and B are compatible with the joint measurement
G = {G(x, y)}.

For the “only if” part, suppose that A and B are compatible
with the joint measurement G = {G(x, y)}, and let I = {�xy}
be a G-compatible instrument [e.g., choose the Lüders instru-
ment, �xy(ρ) = √

G(x, y)ρ
√

G(x, y)]. Then it is easy to check
that the instrument IA ≡ {�A

x = ∑
y �xy} is an A-compatible

instrument and IB ≡ {�B
x = ∑

y �xy} is a B-compatible in-
strument, and by definition they are traditionally compatible.

Proposition 5. There exist compatible channels �A and
�B with the same output Hilbert space such that there exist
no traditionally compatible instruments IA = {�A

x } and IB =
{�B

y }, with
∑

x �A
x = �A and

∑
y �B

y = �B.
Proof. Take two instruments, IA = {�A

x : S (H) →
L+(K)} and IB = {�B

y : S (H) → L+(K)}, such that they
are traditionally compatible. Taking �A ≡ ∑

x �A
x and

�B = ∑
y �B

y , we recall that traditional compatibility implies
�A = �B. Since there exist compatible channels that are not
equal, the proposition follows.

C. Arguments for parallel compatibility

In this section, we argue that parallel compatibility does
not have the flaws of traditional compatibility. In the previ-
ous section, we already argued for this from the conceptual
viewpoint—that is, parallel compatibility allows for the si-
multaneous recovery of both of the quantum outputs of the
compatible instruments. Here, we further justify the adequacy
of parallel compatibility by showing that this notion captures
the idea of measurement compatibility, channel compatibility,
and measurement-channel compatibility. We summarize these
findings in the following theorem.

Theorem 1. Parallel compatibility of instruments cap-
tures measurement compatibility, channel compatibility, and
measurement-channel compatibility.

(i) Two measurements, A and B, are compatible if and
only if there exist an A-compatible instrument IA and a B-
compatible instrument IB such that IA and IB are parallel
compatible.

(ii) Two quantum channels, �1 : S (H) → S (K1) and
�2 : S (H) → S (K2), are compatible if and only if there exist
two parallel compatible instruments I1 = {�1

x : S (H) →
L+(K1)} and I2 = {�2

y : S (H) → L+(K2)} such that∑
x �1

x = �1 and
∑

y �2
y = �2.

(iii) If an A-compatible instrument IA = {�A
x : S (H) →

L+(K1)} and a B-compatible instrument IB = {�B
y : S (H) →

L+(K2)}, such that
∑

x �A
x = �A and

∑
y �B

y = �B, are par-
allel compatible, then A and B are both compatible with both
�A and �B.

Proof. We start with the “if” part of statement 1. Sup-
pose that there exists an A-compatible quantum instrument
IA = {�A

x : S (H) → L+(K1)} and a B-compatible quantum
instrument IB = {�B

y : S (H) → L+(K2)} such that they are
parallel compatible. Then there exists an instrument I =
{�xy : S (H) → L+(K1 ⊗ K2)} such that

∑
y trK2�xy = �A

x

and
∑

x trK1�xy = �B
y for all x and y. Since IA is A compat-

ible, we have that tr[ρA(x)] = tr[�A
x (ρ)] = tr[ρ(�A

x )∗(IK1 )]

for all ρ ∈ S (H) and all x. This implies∑
y

�∗
xy(IK1⊗K2 ) = (�A

x )∗(IK1 ) = A(x) ∀x, (4)

where the first equality is a consequence of
Observation 1. Similarly, we have that

∑
x �∗

xy(IK1⊗K2 ) =
(�B

y )∗(IK2 ) = B(y) for all y. Therefore, defining the
measurement G = {G(x, y) = �∗

xy(IK1⊗K2 )} (which is the
unique measurement compatible with I), it is clear that A and
B are compatible via the joint measurement G.

Now we move on to the “only if” part. Let {A(x)} and
{B(y)} be compatible measurements on the Hilbert space H.
Let {G(x, y)} denote a joint measurement for A and B, and
consider the Naimark dilation {�(x, y)} on the Hilbert space
K ≡ H ⊗ H′. That is, for every state ρ ∈ S (H) we have that
tr[G(x, y)ρ] = tr[�(x, y)(ρ ⊗ |0〉〈0|)] for some fixed state
|0〉 on H′, and {�(x, y)} is a projection-valued measure
(PVM), i.e., �2(x, y) = �(x, y) for all x and y. Further-
more, consider a rank-1 “fine-graining,” �̃(z) = |φz〉〈φz |, of
�(x, y), i.e., a rank-1 projective measurement such that

�(x, y) =
∑

z∈P(x,y)

�̃(z), (5)

where P(x, y) is the subset of all the possible values of z such
that �̃(z) is in the support of �(x, y).

Consider the instrument

I�̃ = {
��̃

z : S (H) → L+(K) | ��̃
z (ρ)

= �̃(z)(ρ ⊗ |0〉〈0|)�̃(z)
}

(6)

defined by the channels mapping ρ to the (un-normalized)
postmeasurement state of the dilated and fine-grained mea-
surement �̃. It is clear that ��̃

z is CP with the single Kraus
operator �̃(z)(IH ⊗ |0〉H′ ). Further, it is also clear that ��̃ ≡∑

z ��̃
z is CPTP, since

tr[��̃(ρ)] =
∑

z

tr[�̃(z)(ρ ⊗ |0〉〈0|)�̃(z)]

= tr

[∑
z

�̃(z)(ρ ⊗ |0〉〈0|)
]

= tr[ρ ⊗ |0〉〈0|]
= trρ (7)

for all ρ ∈ L(H).
Since �̃ is a PVM, its un-normalized postmeasurement

states, ρ̃z, are rank-1 and pairwise orthogonal. Explicitly, they
are given by

ρ̃z = �̃(z)(ρ ⊗ |0〉〈0|)�̃(z) = λz(ρ)|φz〉〈φz |, (8)

where λz(ρ) = tr[�̃(z)(ρ ⊗ |0〉〈0|)]. Consider then an isom-
etry V : K → K1 ⊗ K2 (with K1

∼= K2
∼= K) such that

V |φz〉K = |φz〉K1
⊗ |φz〉K2

∀z, (9)

which always exists, since one can always clone a set of fixed
orthogonal states. Hence,

V ρ̃zV
† = λz(ρ)|φz〉〈φz |K1 ⊗ |φz〉〈φz |K2 . (10)
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Let us then define the instrument

I = {�z : S (H) → L+(K1 ⊗ K2)}, (11)

with �z(ρ) = V �̃(z)(ρ ⊗ |0〉〈0|)�̃(z)V † = λz(ρ)|φz〉〈φz

|K1 ⊗ |φz〉〈φz |K2 . Since the �z are just the composition of
��̃

z with the isometry V , it is clear that these are also CP
maps and that � ≡ ∑

z �z is a CPTP map, and hence I is a
valid instrument.

Let us now define the instruments

IA ≡ {
�A

x : S (H) → L+(K1)
}
, (12)

where �A
x (ρ) = ∑

y

∑
z∈P(x,y) trK2�z(ρ) = ∑

y∑
z∈P(x,y) λz(ρ)|φz〉〈φz |K1 , and

IB ≡ {
�B

y : S (H) → L+(K2)
}
, (13)

where �B
y (ρ) = ∑

x

∑
z∈P(x,y) trK1�z(ρ) = ∑

x

∑
z∈P(x,y)

λz(ρ)|φz〉〈φz |K2}. It is clear that these are valid instruments,
and by definition, IA and IB are parallel compatible with the
joint instrument I. Furthermore, we have that

tr
[
�A

x (ρ)
] = tr

[∑
y

∑
z∈P(x,y)

λz(ρ)|φz〉〈φz |K1

]

=
∑

y

∑
z∈P(x,y)

λz(ρ)

=
∑

y

∑
z∈P(x,y)

tr[�̃(z)(ρ ⊗ |0〉〈0|)]

=
∑

y

tr[�(x, y)(ρ ⊗ |0〉〈0|)]

=
∑

y

tr[G(x, y)ρ]

= tr[A(x)ρ], (14)

that is, IA is A compatible, and similarly we have that IB

is B compatible. This finishes the proof of statement (i) of
Theorem 1.

We continue with the proof of statement (ii) of Theorem
1. To show the “only if” part, notice that a quantum channel
� can be considered as a single-outcome quantum instrument
I�. Therefore, the compatibility of the two quantum chan-
nels �1 and �2 implies the parallel compatibility of the two
instruments I1 ≡ {�1} and I2 ≡ {�2}. The “if” part follows
straightforwardly from the definition of parallel compatibility,
and it is already explained below Definition 3.

Last, we prove statement (iii) of Theorem 1. By defini-
tion, A is compatible with �A and B is compatible with �B.
Since IA and IB are parallel compatible, there exists a quan-
tum instrument I = {�xy : S (H) → L+(K1 ⊗ K2)} such that
�A

x = ∑
y trK2�xy and �B

y = ∑
x trK1�xy. Since IA is an A-

compatible instrument, we have that, for all ρ ∈ S (H) and
x ∈ �A,

trH[ρA(x)] = trK1

[
�A

x (ρ)
]

= trK1

[∑
y

trK2 [�xy(ρ)]

]

=
∑

y

{trK1 trK2 [�xy(ρ)]}

= trK2

[∑
y

trK1 [�xy(ρ)]

]

= trK2

[
�′A

x (ρ)
]
, (15)

where �′A
x ≡ ∑

y trK1�xy. Clearly, �′A
x : S (H) → L+(K2)

for all x ∈ �A, and∑
x

�′A
x =

∑
x

∑
y

trK1�xy

=
∑

y

�B
y

= �B, (16)

and thus, I ′
A ≡ {�′A

x : S (H) → L+(K2)} is a quantum instru-
ment. Hence, A and �B are compatible through the instrument
I ′

A. Similarly one can prove that B and �A are compatible
as well.

Thus, we have proved that parallel compatibility captures
the three kinds of compatibilities between basic quantum
devices, that is, measurement compatibility, channel compati-
bility, and measurement-channel compatibility.

Last, we recall that while every instrument has a unique
measurement it is compatible with, the converse is not true:
there are multiple instruments that are compatible with the
same measurement (corresponding to different implementa-
tions of the same measurement). One consequence of this
is that, while for every pair of compatible measurements
A and B there exists an A-compatible instrument IA and a
B-compatible instrument IB such that they are parallel com-
patible [statement (i) of Theorem 1], not every A-compatible
and B-compatible instrument will be parallel compatible.
Even for a single measurement, two different instruments that
are compatible with it may not be parallel compatible, as the
following example shows.

Example 2 (Two parallel incompatible instruments asso-
ciated with the same measurement). A trivial measurement
J = {J (x) = pxI} is compatible with any quantum channel �

through the instrument IJ,� = {px�} [1]. Let us consider a
channel �, which is incompatible with �. Clearly, J is also
compatible with the quantum channel � through the instru-
ment IJ,� = {px�}. From Theorem 1, we know that if two
instruments are parallel compatible then their corresponding
channels are compatible. Then, since � and � were chosen
to be incompatible, the instruments IJ,� and IJ,� cannot be
parallel compatible.

IV. CONCLUSION

In this paper, we introduced the concept of parallel compat-
ibility of instruments and showed that this concept is different
from the traditional definition of instrument compatibility. We
argued that the traditional definition of compatibility of instru-
ments is conceptually incomplete, and we provided arguments
for the adequacy of parallel compatibility. We showed that the
definition of parallel compatibility of quantum instruments

052202-6



COMPATIBILITY OF QUANTUM … PHYSICAL REVIEW A 105, 052202 (2022)

can capture the idea of measurement compatibility, channel
compatibility, and measurement-channel compatibility.

The notion of parallel compatibility may be relevant to
various information theoretic tasks. First, suppose that Charlie
wants to simultaneously transfer information to two parties,
Alice and Bob, separated by a long distance. The information
is transmitted through a quantum state, and Alice is retrieving
the information via a measurement A, while Bob is retrieving
the information via a measurement B. Then, if A and B are
compatible, Fig. 1(b) suggests that the transmission can be
done via the joint instrument of the corresponding A- and
B-compatible instruments, IA and IB (which always exists,
according to Theorem 1). Second, consider the same scenario
in a cryptographic setting, where Charlie and Alice aim to
perform a key distribution task and Bob is an eavesdropper.
Then, Fig. 1(b) suggests that cloning-type attacks can be mod-
eled through parallel compatibility of quantum instruments.

We leave the exploration of the role of parallel compatibility
in such information theoretic tasks, as well as the fur-
ther characterization of parallel compatible instruments, for
future work.
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