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Dynamics of the spin-boson model at zero temperature and strong dissipation
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Based on the stochastic decoupling framework and auxiliary function averaging technique, a functional
integral equation for the zero-temperature population dynamics of the spin-boson model is established. This
equation naturally displays the hierarchical structure of the dissipative dynamics and is amenable to nonperturba-
tive approximations. It is shown that at strong dissipation the spin-boson model displays exponential decay with
the rate decreasing from the maximum at the coherence-incoherence crossover to zero at the critical dissipation,
a manifestation of quantum phase transition. Besides, the scaled time does not change in the whole regime of
strong dissipation.
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I. INTRODUCTION

A two-state system (TSS) linearly coupled to a bath of
infinite harmonic oscillators or a bosonic field is called the
spin-boson model (SBM). It is a paradigmatic example ex-
hibiting fruitful physics of quantum dissipation imposed by
the bath on the TSS. We are usually interested in the behavior
of the TSS, which may be a genuine physical entity of spin,
or a quantum object projected from the low-energy approx-
imation of a one-dimensional double-well system [1,2]. In
particular, we want to understand how the heat bath affects
quantum coherence, which may be specified by the population
dynamics in the localized state of the TSS. It is well known
that quantum coherence persists for weak dissipation and the
TSS may act as a workable qubit in quantum computing.
As dissipation increases, the dynamics of the TSS undergoes
a coherence-incoherence crossover, which is reminiscent of
a damped classical harmonic oscillator going through the
critical damped point. Moreover, when dissipation reaches
a critical strength, the zero-temperature dynamics is totally
frozen. In other words, the TSS is always localized in the
initial state. This is a demonstration of emergence of the local
classicality from nonlocal quantumness, a bona fide quantum
phase transition without a classical analog [3–5].

The SBM has been extensively investigated and applied in
diversified fields such as quantum optics [6], electron or heat
transfer [7–9], the Kondo problem [10], the interplay between
driving and dissipation [11,12], and quantum computing [13]
to name but a few. Notwithstanding the lasting efforts and
progresses, the physics, especially the dynamical features of
SBM, is still not fully understood. As Weiss stressed in his
renowned monograph [2], “Despite its apparent simplicity,
the spin-boson model cannot be solved exactly by any known
method (apart from some limited regimes of the parameter
space). Not only is the spin-boson model nontrivial mathe-
matically, it is also nontrivial physically” (p. 261).
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Studies on the dynamics of the SBM have been aroused
by the pioneering work of Chakravarty and Leggett (CL) [14]
and many theoretical and computational approaches have
been used and developed since then [1,2]. For instance,
the Feynman-Vernon influence functional [15,16], a power-
ful theoretical machinery for exploring quantum dissipation,
was employed and popularized by CL and others, culminat-
ing in the celebrated noninteraction-blip approximation [14]
(NIBA). This approximate result has been rederived over
and over again and further developed, in particular by us-
ing those techniques based on the polaron transform plus
the perturbation expansion method [17–20]. The NIBA is a
good approximation only for weak dissipation or short times
and predicts the correct form of time scaling and give the
exact dissipation strength and exponential-decay dynamics at
the coherence-incoherence crossover. Unfortunately, it cannot
describe the strong-dissipation dynamics at low temperatures
even qualitatively. That said, the zero-temperature dynamics
in the regime of strong dissipation remains elusive and has
been unsolved up to now [1]. Different numerical schemes
have also been elaborated to study the dynamics of the SBM.
The Monte Carlo simulation based on the path integral influ-
ence functional or the equivalence of SMB and the 1/r2 Ising
model [21–24], the numerical renormalization group [25,26],
the extended hierarchy approach [27], the stochastic equa-
tion of motion [28–33], and the multilayer multiconfiguration
time-dependent Hartree methods [34,35] are among the fre-
quently used methods. The last two techniques were employed
to simulate zero-temperature, strong-dissipation dynamics of
the SMB, producing results different not only from each
other [31,35], but also from the analytic prediction in terms
of the variational polaron transformation method and the con-
formal field theory [17,36].

The paper is organized as follows. In Sec. II we give a
very short recapitulation of the stochastic decoupling method
and show how to use it to unravel the global motion of the
SBM, ending up with a stochastic differential equation (SDE)
for the reduced density of the TSS. In Sec. III we formally
solve the quantum expectation through the SDE and work out
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a stochastic integral-differential equation (SIDE) for the popu-
lation dynamics. In Sec. IV we perform the random averaging
by virtue of the auxiliary function technique and thus convert
the SIDE to a deterministic equation in the functional form,
an equation of motion displaying a hierarchical structure of
multiple times. We further show that it gives an exponential
decay at the coherence-incoherence crossover (exact Toulouse
limit) and propose approximations to obtain the analytic result
for strong dissipation. We summarize our findings and discuss
their implications in Sec. V.

II. STOCHASTIC DIFFERENTIAL EQUATION
OF EVOLUTION

The Hamiltonian of the SBM reads [1,2]

Ĥsb = Ĥs + Ĥb + f̂sĝb

= − h̄�

2
σx +

∑
j

(
p̂2

j

2mj
+ mjω

2
j

2
x̂2

i

)
+ 1

2
q0σz

∑
j

c j x̂ j,

(1)

where Ĥs denotes the the symmetric TSS, Ĥb indicates the
bosonic bath, and f̂sĝb stands for the coupling between them.
Here σx and σz are Pauli matrices and q0 denotes the dis-
tance between the two local states and is set to unity for
simplicity. The reorganization term is omitted because it is a
constant, having no effect on time evolution. The dynamics of
the SBM obeys the quantum Liouville equation, ih̄∂D/∂t =
[H,D], where D(t ) is the density matrix of the entire system.
As usual, we assume an factorized initial condition D(0) =
ρs(0)ρb(0), where ρs and ρb are the density matrices of the
system and bath, respectively. Put differently, the system
and the environment are initially disentangled. Because the
bosonic degrees of freedom are infinite, directly solving the
Liouville equation is difficult if not possible. Luckily, we do
not need the detailed dynamics of the whole system, and
it is sufficient to find out the equation of motion or master
equation for the reduced density matrix ρ̃(t ) = TrbD(t ) and
to solve it, since we are interested only in the dynamics of the
TSS. Notwithstanding, it is still unfortunate that the evolution
of ρ̃(t ) in general does not satisfy a simple equation.

It has been shown that the effect of the bosonic bath on
the TSS can fully be described by the spectral density func-
tion [1,2]

J (ω) = π

2

∑
j

c2
j

m jω j
δ(ω j − ω). (2)

In the present work, we will adopt an Ohmic dissipa-
tion corresponding to the spectral density function, J (ω) =
(2π h̄K/q2

0 )ωe−ω/ωc , where the dimensionless K is the Kondo
parameter measuring the strength of dissipation and ωc is the
high-frequency cutoff. Again, the whole system is supposed to
evolve from a disentangled state ρs(0)ρb(0), where the system
of interest is initially in a localized state, ρs(0) = (1 0

0 0),
while the bath is in the ground state at zero temperature,
prepared in the distant past. We want to reveal the universal
feature of the population dynamics Trσz(t ) in the scaling limit,
ωc → ∞ at strong dissipation. Note that when the initial state

of the bath is treated as the outcome of relaxation from a
displaced ground state due to the coupling to the system, the
mathematical treatment would be simpler, and we will discuss
this point in a separate work.

Our strategy is to use the stochastic decoupling frame-
work [30,37] to disentangle the real-time quantum evolution
of the system and the bath. It is realized through introducing
stochastic fields via either the Hubbard-Stratonovich transfor-
mation [28,30,37] or Itô calculus [38], and thereby the system
and the bath separately evolve according to

ih̄
∂ρs

∂t
= [Ĥs, ρs] + λ1

√
h̄

2
[ f̂s, ρs][μ1(t ) + iμ4(t )]

+i
λ2

√
h̄

2
{ f̂s, ρs}[μ2(t ) − iμ3(t )], (3)

ih̄
∂ρb

∂t
= [Ĥb, ρb] +

√
h̄

2λ2
[ĝb, ρb][μ2(t ) + iμ3(t )]

+ i

√
h̄

2λ1
{ĝb, ρb}[μ1(t ) − iμ4(t )], (4)

where μ j (t )( j = 1 − 4) are the Gaussian white noises and
λ1,2 are free scaling parameters. We notice that λ1,2 may
have units when Eqs. (3) and (4) are endowed with physical
interpretation. But here we regard the decoupling scheme as
a mathematical procedure and simply set λ1,2 = 1. Using Itô
calculus, we readily prove that the equation for the average of
the product of ρs(t ) and ρb(t ) over all the white noises is noth-
ing but the original Liouville equation [38]. Therefore, there
is 〈ρs(t )ρb(t )〉 = D(t ). Here and in the following brackets
denote the average over the involving noises. The evolution of
the whole system thus is unraveled into two separate motions
of the system and of the bath respectively, subjected to com-
mon stochastic fields. Of course, the exact dynamics should
be obtained by averaging all stochastic realizations. In other
words, the effect of quantum interaction between the system
and the bath on the dynamics is converted into correlations
between their stochastic processes after unravelling. We go
further to work out the equation for the stochastic reduced
density matrix, ρ(t ) = Trb{ρs(t )ρb(t )} = ρs(t )Trbρb(t ) or its
variants as long as their averages reproduce the exact reduced
density matrix, 〈ρ(t )〉 = ρ̃(t ). To this end, we calculate the
formal expression of Trbρb(t ) via Eq. (4) and absorb it into the
stochastic measure by using the Girsanov theorem [30,38,39].
As a consequence, Eq. (3) is changed accordingly, resulting in
an equation for a more suitable form of the stochastic reduced
density matrix [30,38],

ih̄
∂ρ

∂t
= − h̄

2
�[σx, ρ] + ω1(t )σzρ − ω2(t )ρσz, (5)

where ω1,2(t ) are the effective stochastic fields defined by
ω1,2(t ) = ḡ(t ) + [μ1(t ) ± iμ2(t ) ± μ3(t ) + iμ4(t )]/2 with

ḡ(t ) = h̄
∫ t

t0

dt ′[αR(t − t ′)ν∗
1 (t ′) + iαI (t − t ′)ν∗

2 (t ′)]. (6)

Here ν1(t ) = μ1(t ) + iμ4(t ) and ν2(t ) = iμ2(t ) + μ3(t ) are
the (unnormalized) complex white noises, and αR,I (t ) are the
real and imaginary parts of the correlation function of the
bosonic bath, determined by the spectral density function
given by Eq. (2). We take t0 to be −∞, which means the
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initial bath state ρb(0) results from relaxation of a prepared
state in the distant past. Note that the dissipative dynamics is
very weakly dependent on t0 [2].

At zero temperature the correlation function defining quan-
tum dissipation reads

α(t ) = αR(t ) + iαI (t ) = 1

π

∫ ∞

0
dωJ (ω)e−iωt

= h̄

2
Kω2

c (1 + iωct )−2. (7)

Although a plain numerical implementation of Eq. (5) is fea-
sible, it works only for very weak dissipation or short-time
dynamics. As dissipation becomes strong, the lasting cor-
relation between the stochastic density matrix ρ(t ) and the
involving noises leads to the notorious difficulty: Numerical
errors increase drastically with time. There have been contin-
uous efforts to design more effective algorithms [29,31,33],
but one that allows us to solve Eq. (5) for K > 1/2 and long
times is yet to be available.

Instead of numerical treatments, the present work ad-
dresses analytical approximations to elucidate the dissipative
dynamics dictated by Eq. (5). Again, we focus on the popula-
tion dynamics described by the mean of z(t ) ≡ Trs[ρ(t )σz(t )]
with z(0) = 1. We will first derive the equation of motion
for z(t ), starting from Eq. (5). To this end we define I (t ) ≡
Trs[ρ(t )], x(t ) ≡ Trs[ρ(t )σx(t )], and y(t ) ≡ Trs[ρ(t )σy(t )]
and obtain a set of stochastic differential equations,

dI

dt
= i

h̄
ν2(t )z(t )

dx

dt
= −1

h̄
γ (t )y(t )

dy

dt
= �z(t ) + 1

h̄
γ (t )x(t )

dz

dt
= −�y(t ) + i

h̄
ν2(t )I (t ), (8)

where the noises are regrouped for convenience as γ (t ) =
2ḡ(t ) + ν1(t ) and the initial condition is I (0) = 1, x(0) =
y(0) = 0, and z(0) = 1. We readily find the correlations
of the involved two stochastic fields ν2(t ) and γ (t ),
namely, 〈γ (t )γ (t ′)〉 = 4h̄αR(t − t ′), 〈ν2(t )ν2(t ′)〉 = 0, and
〈γ (t )ν2(t ′)〉 = 4h̄θ (t − t ′)αI (t − t ′), where θ (t ) is the Heavi-
side step function, which is unity for t > 0 and zero otherwise.
We see that these two complex Gaussian noises fully specify-
ing the effect of the heat bath on the dissipative system.

III. STOCHASTIC INTEGRAL EQUATION FOR z(t )

Using Green’s function technique, we may feasibly manip-
ulate Eq. (8) to obtain an integral equation for z(t ),

z(t ) = e−iφ2(t,0) − �2
∫ t

0
dt1

∫ t1

0
dt2 cos[φ2(t, t1)]

× cos[φ1(t1, t2)]z(t2), (9)

where φ1(t, t1) = 1
h̄

∫ t
t1

dt ′γ (t ′) and φ2(t, t1) = 1
h̄

∫ t
t1

dt ′ν2(t ′).
We want to study how the population difference z̃(t ) ≡ 〈z(t )〉
changes in the two localized states, in particular when dis-
sipation is strong, i.e., K > 1/2. Our task is to establish

the equation of motion for z̃(t ) and find its solution. Be-
cause of the correlation of the involving noises there is not
a straightforward way to transform the stochastic Eq. (9) into
a closed-form, deterministic equation for z̃(t ). Notice that the
first term on the r.h.s. of Eq. (9) represents a random phase that
may be absorbed into the measure of the noises by employing
the Girsanov transform [30,38,39]. Indeed, we recast z(t ) as
z(t ) = e−iφ2(t,0)z1(t ) and obtain the integral equation of z1(t ),

z1(t ) = 1 − �2
∫ t

0
dt1

∫ t1

0
dt2eiφ2(t,t2 ) cos[φ2(t, t1)]

× cos[φ1(t1, t2)]z1(t2). (10)

We now apply the Girsanov transform, which is essentially
equivalent to a change of variables for two white noises
μ2(t ) and μ3(t ), namely, μ2(t ) → μ2(t ) − i/h̄ and μ3(t ) →
μ3(t ) + 1/h̄. The factor eiφ2(t,0) then appears in the trans-
formed statistical measure, which exactly cancels e−iφ2(t,0) in
z(t ). We may further do direct calculations and check that
terms containing only φ2 are not affected, while terms con-
taining φ1 change according to e±iφ1(t1,t2 ) → e±i[φ1(t1,t2 )+A(t1,t2 )]

where

A(t1, t2) = 4

h̄

∫ t1

t2

dt3

∫ t3

t0

dt ′αI (t3 − t ′) = −2Kωc(t1 − t2),

(11)

which is readily evaluated by using Eq. (7) with t0 → −∞.
If t0 is set to 0, A(t1, t2) remains the same at the scaling limit
ωc → ∞. Note that A(t1, t2) may be regarded as a contribution
due to a delta function of the αI (t ), which does not affect the
dynamics. As it will be canceled out by a counterterm in the
following anyway, we will keep it as it is here. Upon finishing
the Girsanov transform, z(t ) is changed to z̄(t ), a direct result
of z1(t ) with the corresponding alternation of the noises,

z̄(t ) = 1 − �2
∫ t

0
dt1

∫ t1

0
dt2eiφ2(t,t2 ) cos[φ2(t, t1)]

× cos[φ1(t1, t2) + A(t1, t2)]z̄(t2). (12)

Obviously, when A(t1, t2) = 0, the equation of z̄(t ) is identical
to that of z1(t ). In addition, since z(t ) and z̄(t ) have the
same average z̃(t ) yet to be determined, we will simply use
the notation z(t ) for z̄(t ) without any confusion and rewrite
Eq. (12) in a compact form,

z(t ) = 1 − �2

4

∫ t

0
dt1

∫ t1

0
dt2C(t, t1, t2)z(t2), (13)

where

C(t, t1, t2) = [1 + e2iφ2(t,t1 )] cos[φ1(t1, t2) + A(t1, t2)]eiφ2(t1,t2 ).

(14)

This stochastic integral equation is our working formula for
obtaining the equation of z̃(t ). Because z(t2) and the stochastic
kernel C(t, t1, t2) are still correlated, there is no simple way
to a closed-form equation for z̃(t ) from Eq. (13). To see the
correlation more clearly and find an unraveling scheme, we
first look at the noisy “angle” φ1. With the definition of ḡ given
by Eq. (6) we may separate the acting time in φ1 and divide it
into two parts,

φ1(t1, t2) = φ11(t1, t2) + φ12(t1, t2), (15)
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where

φ11(t1, t2) = 2
∫ t1

t2

dt3

∫ t3

t2

dt4[αR(t3 − t4)ν∗
1 (t4) + iαI (t3 − t4)ν∗

2 (t4)] + 1

h̄

∫ t1

t2

dt3ν1(t3), (16)

φ12(t1, t2) = 1

2

∫ t2

t0

dt4
[
B′

t1,t2 (t4)ν∗
1 (t4) + iB′′

t1,t2 (t4)ν∗
2 (t4)

]
(17)

with B′
t1,t2 (t4) = 4

∫ t1
t2

dt3αR(t3 − t4) and B′′
t1,t2 (t4) = 4

∫ t1
t2

dt3αI (t3 − t4). As φ11(t1, t2) comprises the white noises starting from
t2, it does not affect dynamic processes driven by those white noises at times earlier than t2. By contrast, φ12(t1, t2) does affect
the stochastic processes up to time t2, because it consists of the involving white noises from the distant past t0 to t2. We then
define �1,2(t1, t2) = φ11(t1, t2) ± φ2(t1, t2) + A(t1, t2) and partition C(t, t1, t2) accordingly to get

C(t, t1, t2) = 1
2 [1 + e2iφ2(t,t1 )][ei�1(t1,t2 )eiφ12(t1,t2 ) + e−i�2(t1,t2 )e−iφ12(t1,t2 )]. (18)

From this expression we may identify these two factors e±iφ12(t1,t2 ) that influence z(t2). Knowing this fact, we now return to
Eq. (13) to work out a deterministic equation for z̃(t ), by virtue of the auxiliary function technique [41]. To this end we view z(t )
as a functional of the two stochastic processes γ and ν2. Moreover, we add to them respectively the deterministic function B1

and B2 as auxiliary terms so that φ1,2 in Eq. (13) turn to be φ1 → φ1B(t1, t2) = 1
h̄

∫ t1
t2

dt ′[γ (t ′) + B1(t ′)] and φ2 → φ2B(t1, t2) =
1
h̄

∫ t1
t2

dt ′[ν2(t ′) + B2(t ′)]. As a result, we obtain

z([γ + B1, ν2 + B2], t ) = 1 − �2

2

∫ t

0
dt1

∫ t1

0
dt2CB(t, t1, t2)z([γ + B1, ν2 + B2], t2). (19)

Because of the variation of partitioning factors in Eq (18), the integral kernel C in Eq. (13) is also modified as CB, namely,

CB(t, t1, t2) = 1
2 [1 + e2iφ2B (t,t1 )][ei�1B (t1,t2 )eiφ12(t1,t2 ) + e−i�2B (t1,t2 )e−iφ12(t1,t2 )], (20)

where

�1B,2B(t1, t2) = φ11(t1, t2) + 1

h̄

∫ t1

t2

dt ′B1(t ′) ± φ2B(t1, t2) + A(t1, t2).

It is clear that in the kernel C defined by Eq. (18), the factors e±iφ12(t1,t2 ) impacting z(t2) in Eq. (13) remain unchanged. Taking
into account these results in Eq. (19), we readily find

〈CB(t, t1, t2)z([γ + B1, ν2 + B2], t2)〉 = 1
2 [1 + 〈e2iφ2B (t,t1 )〉][〈ei�1B (t1,t2 )〉〈eiφ12(t1,t2 )z([γ + B1, ν2 + B2], t2)〉
+〈e−i�2B (t1,t2 )〉〈e−iφ12(t1,t2 )z([γ + B1, ν2 + B2], t2)〉]. (21)

Using the correlation relations for γ and ν2 given above and the Novikov theorem [40], we perform the elementary algebra to
finish the statistical average of the exponential processes determined by these two Gaussian noises, obtaining

〈e2iφ2B (t,t1 )〉 = e2 i
h̄

∫ t
t1

dt ′B2(t ′ )
,

〈ei�1B (t1,t2 )〉 = Q(t1 − t2)e
i
h̄

∫ t
t1

dt ′[B1(t ′ )+B2(t ′ )]

〈e−i�2B (t1,t2 )〉 = Q∗(t1 − t2)e− i
h̄

∫ t
t1

dt ′[B1(t ′ )−B2(t ′ )]
, (22)

where Q(t1 − t2) = exp[iA(t1, t2) − 4
h̄

∫ t1
t2

dt3
∫ t3

t2
dt4α(t3 − t4)] = [1 + iωc(t1 − t2)]−2K .

Working again with the Girsanov transform, that is, μ1 → μ1 + iB′
t1,t2/2, μ2 → μ2 − B′

t1,t2/2, μ3 → μ3 − B′′
t1,t2/2, and μ4 →

μ4 + iB′′
t1,t2/2, we are able to convert the correlation in two terms in Eq. (21) into spontaneous, deterministic fields, namely,

〈e±iφ12(t1,t2 )z([γ + B1, ν2 + B2], t2)〉 = z̃([B1 ± iB′
t1,t2 , B2 ∓ B′′

t1,t2 ], t2). Taking the statistical average over γ and ν2 on both sides
of Eq. (19), we thus get

z̃([B1, B2], t ) = 1 − �2

4

∫ t

0
dt1

∫ t1

0
dt2[1 + e2 i

h̄

∫ t
t1

dt ′B2(t ′ )]
{
Q(t1 − t2)e

i
h̄

∫ t1
t2

dt ′[B1(t ′ )+B2(t ′ )]z̃
([

B1 + iB′
t1,t2 , B2 − B′′

t1,t2

]
, t2

)

+ Q∗(t1 − t2)e− i
h̄

∫ t1
t2

dt ′[B1(t ′ )−B2(t ′ )]z̃
([

B1 − iB′
t1,t2 , B2 + B′′

t1,t2

]
, t2

)}
. (23)

This is the main result of the present work, and it shows that
the fields B′

t1,t2 and B′
t1,t2 are spontaneously induced during

the evolution, which, in turn, exert on the dynamics as a
feedback. Therefore, the apparent dissipative dynamics may
be regarded as an outcome of motion in self-generated fields.

Equation (23) may be solved as a infinite series of �2 by
iteration, which would reproduce the previously known re-
sult based on the path integral technique [1,2] and would
be helpless in understanding strong dissipation. However, it
may be dealt with nonperturbatively, thus presenting a global
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perspective on exploring the dynamics of the SBM. We would
like to point out that the averaging procedure with auxiliary
functions can directly be applied to Eq. (9). The result is the
same as that of Eq. (23) transformed from z̃([B1, B2], t ) →
exp{ i

h̄

∫ t
0 dt ′B2(t ′)}z̃([B1, B2], t ).

In Eq. (23) the introduced deterministic functions B1,2

can physically be viewed as auxiliary fields and will finally
be set to zero for calculating the required quantity z̃(t ) =
z̃([0, 0], t ). As an integral functional equation, Eq. (23) says
that new or self-induced fields arise as z̃ evolves, which
conversely shapes the dynamics and defies a simple closed-
form equation for z̃(t ). To be specific, the so-obtained formal
equation of z̃(t ) includes two unknown functionals z̃1(t1, t2) ≡
z̃([iB′

t1,t2 ,−B′′
t1,t2 ], t2) and z̃∗

1 (t1, t2) = z̃([−iB′
t1,t2 , B′′

t1,t2 ], t2) de-
scribing the dynamics of z̃ subjected to the pair of self-induced
fields B′

t1,t2 and B′′
t1,t2 . The equation of motion for z̃1(t1, t2)

would also be determined through Eq. (23), which brings
about further unknown functionals portraying the dynamics
of z̃ with more accumulative self-induced fields exerting at
different times. Repeating the procedure yields hierarchical
equations for the ensuing yet-to-be-determined functionals,
which may be terminated at a certain point to form a
closed-form set. Instead of pursuing this way, we will an-
alyze the speciality of functions B′

t1,t2 , B′′
t1,t2 , and Q(t1, t2)

and thereby derive reasonably approximate equations for
z̃(t ).

IV. EQUATION OF MOTION OF z̃(t )

Setting B1,2 = 0 in Eq. (23), we immediately acquire
the expression for z̃(t ), which is identical to the integral-

differential formulation

dz̃(t )

dt
= −�2

2

∫ t

0
dt ′[Q(t − t ′)z̃1(t, t ′) + Q∗(t − t ′)z̃∗

1 (t, t ′)]

(24)

with z̃(0) = 1. Here, as discussed above, the dissipative dy-
namics in the self-induced fields z̃1(t, t ′) are still unknown.
We may resort to Eq. (23) to find the equations for them,
but will end up with more unknown quantities representing
dissipative dynamics ruled by a combination of self-induced
fields. A simple and straightforward approximation is to as-
sume that the self-induced fields B′

t1,t2 and B′′
t1,t2 are negligible

in Eq. (23). With vanishing auxiliary fields B1,2 = 0 Eq. (23)
can then be recast as

dz̃(t )

dt
= −�2

2

∫ t

0
dt ′[Q(t − t ′) + Q∗(t − t ′)]z̃(t ′). (25)

This integral-differential equation is the result of the cele-
brated noninteracting blip approximation (NIBA) derived first
with the path integral technique [14] and rederived after-
wards by different methods [17–20]. Comparing it to Eq. (24),
the exact one, we find the approximation adopted in NIBA
may also be viewed as that of z̃1(t, t ′) ≈ z̃(t ′). Although the
validity of NIBA for describing short-time dynamics, weak
dissipation, and other cases has been verified, its invalidity for
describing long-time dynamics in the case of strong dissipa-
tion has been well known [1,2].

To develop approximations beyond the NIBA, we need
to know how the two-time function z̃1(t, t ′) relies on z̃(t ) in
Eq. (24) and take advantage of the properties of the kernel
Q(t ). Consider first z̃1(t, t ′). Upon substituting B1 = iB′

t,t ′ and
B2 = −B′′

t,t ′ , Eq. (23) becomes

z̃1(t, t ′) = 1 − �2

4

∫ t ′

0
ds

∫ s

0
ds′P(t, t ′, s){Q(s − s′)S(t, t ′, s, s′)z̃([iB′

t,t ′ + iB′
s,s′ ,−B′′

t,t ′ − B′′
s,s′ ], s′)

+ Q∗(s − s′)[S∗(t, t ′, s, s′)]−1z̃([iB′
t,t ′ − iB′

s,s′ ,−B′′
t,t ′ + B′′

s,s′ ], s′)}, (26)

where

P(t, t ′, s) = 1 + e−2 i
h̄

∫ t ′
s ds′B′′

t,t ′ (s
′ ) = 1 + ei4K{arctan[ωc (t−t ′ )]−arctan[ωc (t−s)]+arctan[ωc (t ′−s)]} (27)

and

S(t, t ′, s, s′) =
[

D(t − s)D(t ′ − s′)
D(t − s′)D(t ′ − s)

]K

(28)

with D(t ) = 1 + iωct . If t ′ = t , then P = S = 1 and the above equation turns out to be the same as Eq. (24). In this case,
therefore, z̃1(t, t ) = z̃(t ). For the special case K = 1/2 known as the Toulouse limit, there is Q(t ) = (iωc)−1[Pt−1 + iπδ(t )],
where P denotes the Cauchy principle value. As a result, Eq. (24) becomes

dz̃(t )

dt
= −π�2

2ωc
z̃(t ) + i

�2

2ωc
P

∫ t

0
dt ′ 1

t − t ′ [z̃1(t, t ′) − z̃∗
1 (t, t ′)] = −π�2

2ωc
z̃(t ), (29)

where we used the fact that for t − t ′ > 1/ωc and in the scal-
ing limit ωc → ∞, the function z̃1(t, t ′) is real for almost all

times. We readily obtain z̃(t ) = e− π�2

2ωc
t , which is exact [1,2].

We thus showed the well-known results can be derived with
ease by using the functional formulation Eq. (23).

Now we tackle the case of strong dissipation, 1/2 < K �
1. We know z̃1(t, t ) = z̃(t ). For t ′ < t , in the evolution of

z̃1(t, t ′) defined by Eq. (26) we neglect B′
t,t ′ and B′′

t,t ′ , the “driv-
ing” fields from the early time and keep the self-induced ones
B′

s,s′ and B′′
s,s′ . This is loosely a Markovian approximation.

Also, we approximately set S(t, t ′, s, s′) = 1, which is exact
for either t = t ′ or s = s′. Further, let t > t ′ � 1/ωc. Note
that P(t, t ′, s) does not change much for s < t ′. Resorting to
Eq. (24), we approximate the integral in Eq. (26) by replacing
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the upper bound t ′ by t ′ − τ , where t ′ > τ � 1/ωc to obtain

z̃1(t, t ′) ≈ 1 + 1

2

∫ t ′−τ

0
ds

∂

dt ′
1

[P(t, t ′, s)z(s)]

= 1

2
{1 − ei4K arctan[ωc (t−t ′ )]} + 1

2
ei2Kπ z(t ′). (30)

The task now is to put these results into Eq. (24) to elicit
the equation for z̃(t ). To simplify the manipulation, we treat
Q(t ) ≡ QR(t ) + iQI (t ) as a pair of distribution functions,
which is possible for both QR(t ) and QI (t ) being local in
t . We first argue that there is no contribution from QI (t ) to
z̃(t ). For K > 1/2, in fact, QI (t ) assumes its maximum at
tI = tan[π/2(1 + 2K )]/ωc < 1/ωc, which becomes smaller
for larger K and can be simply set to zero as a zeroth-order
approximation for strong dissipation. As a consequence, since
z̃1(t1, t1) = z̃(t1) is real, the contributions in Eq. (24) result
from the imaginary parts of Q(t ) and Q∗(t ) cancel out.

For the real part, QR(t ) (t is large) can be partitioned
into two local functions, and the boundary is determined by
QR(tb) = 0, where tb = tan(π/4K )/ωc. The first one Q1R(t ′)
defined as QR(t ′) for t ′ ∈ [0, tb) is positive and assumes its
maximum t = 0, while the second one Q2R(t ′) defined as
QR(t ′) for t ′ ∈ [tb, t ) is negative, having the minimum at t∗ =
tan(π/1 + 2K )/ωc.

As the physical time is a slow variable, i.e., t � t∗, the first
distribution Q1R(t ′) dictates z̃(t ′) and the second one Q2R(t ′)
dictates the real part of z̃1(t, t ′) given by Eq. (30). Besides, the
average of the first term on the r.h.s. of Eq. (30) is zero. Now
we treat Q1R and Q2R as two delta functions with the plus and
minus coefficient

∫ tb
0 dt ′QR(t ′) = −C(K )/ωc, where

C(K ) = 1

1 − 2K

(
1 + tan2 π

4K

) 1
2 −K

sin
[ π

4K
(1 − 2K )

]
.

Substituting into Eq. (24), we obtain dz̃(t )/dt =
−R(K )z̃(t ) with the solution z̃(t ) = e−R(K )t , where
R(K ) = C(K ) sin2(Kπ )�2/ωc is the decay rate. We may
rewrite the result as z̃(t̄ ) = e−R̄(K )t̄ where t̄ = (�/ωc)t
is the scaled time and R̄(K ) = C(K ) sin2(Kπ )� is the
corresponding decay rate. Therefore, the scaled time does not
change in the strong-dissipation regime (K > 1/2), which is
different from the weak-dissipation regime where the time
is scaled as t̄ = (�/ωc)

K
1−K t . Note that R̄(K ) gives the exact

value of Toulouse limit, R(1/2) = �π/2. In addition, it
also correctly predicts localization or a frozen state from a
dynamical point of view at K = 1, i.e., R̄(1) = 0. Localization
of the dissipative system manifests a quantum-classical
crossover, a genuine quantum phase transition in which the
spin-boson model has a degenerate, parity-broken ground

state. In between R̄(K ) is a monotonically decreasing function
of the Kondo parameter K . Our observation of the scaled time
being invariant for strong dissipation is consistent with
the former numerical finding [31] based on simulating the
stochastic differential equation (5) with improved algorithms,
but different from other reports [17,35,36]. Further studies
will definitely be required.

V. SUMMARY AND DISCUSSION

The dynamical feature of the spin-boson system at zero
temperature and strong dissipation has puzzled scientists for
decades [1]. The difficulty is rooted in the involvement of
different timescales in the quantum evolution, which defies
a solution by available theoretical or numerical methods. Re-
sorting to the stochastic decoupling framework, we show how
to derive a stochastic Liouville equation for the two-state
system of the SBM at zero temperature, for which the ran-
dom average gives the exact reduced density matrix [28,30].
We then formally solve it using Green’s function technique,
obtaining a stochastic integral-differential equation for the
population difference in two localized states. Its average di-
rectly reflects quantum coherence of the two-state system. We
use the Girsanov theorem and auxiliary function techniques
to convert this stochastic equation into a deterministic, func-
tional form, which manifests the hierarchical structure with
self-induced fields of the dissipative dynamics. Moreover, the
functional equation allows for nonperturbative approxima-
tions. We demonstrate that it leads to the exact outcome in the
Toulouse limit or the coherence-incoherence crossover with
K = 1/2 and results in the NIBA when the self-induced fields
is neglected. For strong dissipation 1/2 < K � 1 we propose
a Markovian-like approximations for the arising two-time
function and observe that the dynamics follows an exponential
decay, from the maximum in the Toulouse limit K = 1/2 to
zero at the critical value K = 1 where the quantum phase
transition takes places. In addition, the scaled time in the
the whole range of decay dynamics is proportional to �/ωc,
which is in contrast to the weak-dissipation case where the
scaled time is dependent on the Kondo parameter K . Our
theoretical approach and findings would be helpful for un-
derstanding the quantum dissipation effects in particular the
quantum-classical transition and quantum impurity dynamics.
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