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Theory of the Rydberg blockade with multiple intermediate-state excitations
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We present a detailed theory of the Rydberg blockade, including contributions from multiple intermediate-state
excitations. Two fields drive transitions between ground and Rydberg levels via an off-resonance intermediate
state. Assuming a perfect blockade, we calculate the probability to excite fully symmetric collective states having
either zero or one Rydberg excitation, but an arbitrary number of intermediate-state excitations. Both “bare”
state and “dressed” state approaches are used for (1) constant amplitude driving fields and (2) adiabatic pulse
driving fields. It is shown that a dressed state approach offers distinct advantages when multiple intermediate-
state excitations occur. In the case of fixed amplitude fields, the multiple intermediate excitations can result in
comblike modulated populations of individual states having one Rydberg excitation and n � N intermediate-
state excitations. However, when summed over all such state populations, most of the modulation disappears
and the system is described to a good approximation by an effective two-level model. In the case of adiabatic,
pulsed fields, there is no such modulation and an effective two-level model (in the dressed basis), corrected for
light shifts, can be used to model the system. In addition to solving this problem using conventional methods,
we show that similar results could be obtained using a form of the Holstein-Primakoff transformation.
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I. INTRODUCTION

As a consequence of the dipole-dipole interaction between
highly excited Rydberg atoms, it is possible to suppress mul-
tiple Rydberg excitations in an atomic ensemble when the
atoms are driven by optical fields. The suppression mech-
anism produces a “dipole or Rydberg blockade” that can
be used to entangle a large number of atoms. As proposed
originally by Lukin et al. [1], such a Rydberg blockade can
be used as an important element in quantum computing and
quantum information protocols. Experimental confirmation of
the Rydberg blockade has been reported for both two-atom [2]
and many-atom [3] systems.

In the simplest theoretical modeling of the Rydberg block-
ade, the ensemble of atoms is taken to consist of two collective
states, the ground state and a fully symmetric state involving
a single Rydberg excitation. Excitation of the collective Ryd-
berg state is often accomplished using two-photon excitation
via an off-resonant intermediate state. In the two-level model,
the intermediate state does not appear explicitly in the formal-
ism, having been adiabatically eliminated in some fashion.
In such treatments, it is not clear whether or not there are
multiple collective excitations of the intermediate state and to
what extent off-resonant excitation of the intermediate states
results in light shifts. The light shifts can modify the resonance
condition for excitation of the blockade. In this paper, we fully
account for multiple intermediate-state excitations.

The collective states that are excited in the Rydberg block-
ade can be related to Dicke states [4]. There is a vast literature

on both Dicke states and the Rydberg blockade. In a compre-
hensive article containing many references, Shammah et al.
[5] reviewed the Dicke state dynamics for an ensemble of non-
interacting two-level atoms. If the atoms are noninteracting,
the Dicke formalism, while interesting, simply makes a theo-
retical analysis of the problem much more complex, since the
expectation value of any physical observable for noninteract-
ing atoms is simply N times that of a single atom. On the other
hand, when the blockade is operational, the Dicke formalism
offers distinct advantages, especially if decay is negligible and
the field amplitudes are constant over the atomic ensemble.
In that limit, the state vector describing the atomic ensemble
is restricted to a limited subspace, namely, the fully symmet-
ric Dicke states. Although there are many papers devoted to
the state dynamics of the symmetric states in the Rydberg
blockade [6], far fewer consider the role of intermediate-state
excitations [7]. Moreover these papers often focus on the role
of spontaneous decay rather than the modifications of the
Rydberg dynamics in the absence of decay.

The goals of this paper are severalfold: (1) to provide
formal justification for the use of the two-level approxima-
tion in the theory of the dipole blockade, (2) to examine the
changes in the blockade that occur when there are multiple
intermediate-state excitations, (3) to develop a dressed state
theory of the blockade that can be used for both constant
amplitude and adiabatic input pulses, (4) to underline the
advantages of the dressed state approach, (5) to calculate the
probability of the collective Rydberg population produced in
the blockade as a function of pulse duration, (6) to compare
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FIG. 1. Level scheme. The detuning δ2 = ω32 − ω2 is not indi-
cated explicitly in the figure.

this response for both constant amplitude and adiabatic input
pulses, and, finally, (7) to connect our results with those that
can be obtained using a form of the Holstein-Primakoff trans-
formation [8]. We shall see that multiple intermediate-state
excitations can lead to an overall modulation of the Rydberg-
state population for constant amplitude fields that is absent
when adiabatic pulses are used.

The paper is organized as follows: In Sec. II, the basic
model is presented. A theory based on “bare” states is devel-
oped in Sec. III, allowing us to calculate the probability for
excitation of the collective Rydberg state as a function of pulse
duration. The analogous theory using a dressed-state basis is
developed in Sec. IV for constant amplitude and adiabatic
pulses. In Sec. V, a form of the Holstein-Primakoff transfor-
mation is used to reproduce the results that were obtained for
adiabatic pulse excitation of the blockade.

II. GENERAL CONSIDERATIONS

Each atom is modeled as a three-level atom with lower
state 1 (ground state), intermediate state 2, and upper state
3 (Rydberg level), as shown in Fig.1. The atoms are assumed
to be cold—motion of the atoms is neglected. There are two
fields present:

E1(R, t ) = 1

2
E1(t )ε1eik1·R−iω1t + c.c., (1a)

E2(R, t ) = 1

2
E2(t )ε2eik2·R−iω2t + c.c., (1b)

where c.c. stands for “complex conjugate.” Field
E1(R, t ) [E2(R, t )] has propagation vector k1 [k2], frequency
ω1 = k1c [ω2 = k2c], and polarization ε1 [ε2]. We define
detunings

δ1 = ω21 − ω1, δ2 = ω32 − ω2, (2)

where ω21 is the intermediate-state to ground-state frequency
and ω32 is the Rydberg-state to intermediate-state frequency.
It is assumed that |δ1| � |δ1 + δ2|. In drawing the figures in
this paper, we assume that δ1 > 0. Field E1(R, t ) drives the

1-2 transition and field E2(R, t ) drives the 2-3 transition with
associated Rabi frequencies

�1(t ) = 2χ1(t ) = −μ12 · ε1E1(t )

h̄
, (3a)

�2(t ) = 2χ2(t ) = −μ23 · ε2E2(t )

h̄
, (3b)

where μ12 and μ23 are dipole matrix elements. It is assumed
that both χ1(t ) and χ2(t ) are real and positive.

Two pulse amplitude envelopes are considered, square pro-
files having duration T for which

χ1,2(t ) = χ1,2�(t )�(T − t ), (4)

where �(t ) is a Heaviside function, and Gaussian profiles,

χ1,2(t ) = χ1,2e−t2/T 2
p , (5)

with

Tp = T/
√

π, (6)

chosen such that the pulse areas of the square and Gaussian
pulses are equal. For the most part, it is assumed that the
detunings satisfy

χ2
1

δ2
1

� 1,
χ2

2

δ2
1

,
χ2

2

δ2
2

� 1, (7)

and that

|δ1|Tp ≈ |δ2|Tp � 1. (8)

Condition (7) guarantees that the intermediate-state popula-
tion of a single atom is much less than unity while condition
(8) ensures that the Gaussian pulses are adiabatic.

It is assumed that the Rydberg blockade is totally func-
tional. That is, in an ensemble of N atoms, there is at most
one collective Rydberg excitation in the sample. On the other
hand, there can be several collective intermediate-state exci-
tations. The average number of level 2 excitations is of order

n2 = N�2
1

δ2
1

� N. (9)

Decay of levels 2 and 3 is neglected, based on the assumptions
that (

χ2
1 + χ2

2

)
δ2

1

γ2T � 1, (10a)

γ3T � 1 (10b)

where γ j is the decay rate of state j [9]. Although decay is
neglected, the light shifts, which are of order χ2

1 /δ1, χ
2
2 /δ1,

can modify the atomic response to the applied fields if

χ2
1 T

|δ1| � 1 or
χ2

2 T

|δ1| � 1. (11)

The ensemble will undergo enhanced Rabi oscillations be-
tween the ground and collective Rydberg state with rate

χRN =
√

N
χ1χ2

|δ1| ≡ �RN

2
. (12)
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To observe m Rabi oscillations, it is necessary that χRN T >

mπ . On this time scale, the light shifts will be negligible
provided that

χ1mπ

χ2

√
N

� 1,
χ2mπ

χ1

√
N

� 1. (13)

We assume that N � 1.

III. BARE ATOM BASIS

A. Single atom

For a single atom, the wave function in a field interaction
representation [10] can be written as

|ψ (t )〉 = a1|1〉 + a2|2〉eik1·R1−iω1t + a3|3〉eik1·R1−iω1t

× eik2·R1−iω2t , (14)

where R1 is the position of the atom. The state amplitudes
evolve as

ȧ1 = −iχ1(t )a2, (15a)

ȧ2 = −iχ1(t )a1 − iχ2(t )a3 − iδ1a2, (15b)

ȧ3 = −iχ2(t )a2 − i(δ1 + δ2)a3, (15c)

with initial condition, a1(0) = 1. It is straightforward to solve
these equations numerically. For square pulses the solution for
the vector a(t ) = (a1(t ), a2(t ), a3(t )) is

a(t ) = exp (−iHt/h̄)a(0) (16)

where

H = h̄

⎛⎝ 0 χ1 0
χ1 δ1 χ2

0 χ2 δ1 + δ2

⎞⎠ (17)

is the effective Hamiltonian in a field interaction representa-
tion.

For adiabatic Gaussian pulses, it is possible to eliminate
the intermediate state using

a2(t ) ≈ − [χ1(t )a1(t ) + χ2(t )a3(t )]

δ1
(18)

to arrive at

ȧ1 ≈ i
χ1(t )χ2(t )

δ1
a3 + i

[χ1(t )]2

δ1
a1, (19a)

ȧ3 ≈ i
χ1(t )χ2(t )

δ1
a1 + i

[χ2(t )]2

δ1
a3 − i(δ1 + δ2)a3. (19b)

Even though there is a very small probability for the atom
to be in level 2 following the pulse, these equations give
the sum of level 1 and level 3 populations equal to unity. In
other words, adiabatic elimination leads to an error that is
exponentially small in the parameter |δ1|Tp. This is true of
any asymptotic expansion—it misses only exponentially small
corrections.

There is an effective net detuning from two-photon reso-
nance given by


(t ) = δ1 + δ2 − [χ2(t )]2

δ1
+ [χ1(t )]2

δ1
(20)

which implies that the light shifts can be larger than or com-
parable with the two-photon coupling rate

χ (t ) = χ1(t )χ2(t )

δ1
. (21)

The light shifts can be somewhat compensated by taking a
nonzero two-photon detuning, but it is impossible to compen-
sate for the light shifts at all times.

B. N atoms

Once the dipole-dipole interaction between different atoms
in Rydberg level 3 is included, the calculation becomes very
difficult. Even if the blockade is fully functional, as we as-
sume, there can be several level 2 excitations. There is no
obvious simple way to eliminate the intermediate states, in
general. In other words, there is no formal justification for
considering the problem as an effective two-level problem
involving the ground and collective Rydberg states.

A more formal justification begins with the neglect of
Rydberg-Rydberg interactions. We assume the field amplitude
is constant over the sample. Then the ensemble wave function
is given simply by

|ψ (t )〉 =
N∏

j=1

(a1|1〉 j + a2|2〉 je
ik1·R j−iω1t + a3|3〉 je

ik1·R j−iω1t

× eik2·R j−iω2t ) (22)

where R j is the position of the atom j. When expanded, this
gives a state vector that can be written as the sum of fully
symmetric orthonormal phased basis kets |N ; n, q〉 that have n
excitations of level 2 and q excitations of level 3, that is,

|N ; n, q〉 = 1√
CN

n CN−n
q

∣∣SN
nq

〉
, (23)

where the |SN
nq〉 are fully symmetric, un-normalized phased

states. In other words,

|ψ (t )〉 =
∑
n,q

aN−n−q
1 an

2aq
3

∣∣SN
nq

〉
=

∑
n,q

cN
nq(t )|N ; n, q〉, (24)

where n and q can vary from zero to N with n + q � N . It
then follows immediately that

cN
nq =

√
CN

n CN−n
q aN−n−q

1 an
2aq

3. (25)

The |N ; n, 0〉 are not Dicke states [4], but can be related to
the Dicke states if we set n = mDicke + N/2 and N = 2JDicke.
Using Eqs. (25) and (15), we obtain the evolution equations

ċN
nq = −i[nδ1 + q(δ1 + δ2)]cN

nq − iχ1(t )
√

n(N − n − q + 1)

× cN
n−1,q − iχ1(t )

√
(n + 1)(N − n − q)cN

n+1,q

− iχ2(t )
√

n(q+1)cN
n−1,q+1 − iχ2(t )

√
q(n + 1)cN

n+1,q−1,

(26)

subject to the initial conditions

cN
nq(0) = δn,0δq,0, (27)
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FIG. 2. Fully symmetric collective bare states. The left ladder
consists of states |N ; n, 0〉 containing zero Rydberg excitations and
up to n = N level 2 excitations. The right ladder consists of states
|N ; n, 1〉 containing one Rydberg excitation and up to n = (N − 1)
level 2 excitations. Coupling strengths are shown. Initially the atoms
are in the ground state |N ; 0, 0〉. The ladders are drawn for δ1 + δ2 =
0.

where δi, j is a Kronecker delta. Of course, for our factorized
state, if you want to calculate any physical observable’s ex-
pectation value, it will simply be N times the single atom
expectation value.

To go from a factorized state to the blockade, we limit the
values of q to be 0 or 1. Then there are two ladders of levels,
the first of which has N + 1 steps (q = 0 and 0 � n � N ) and
the second of which has N steps (q = 1 and 0 � n � N − 1).
These ladders are represented schematically in Fig. 2 for the
case when δ1 + δ2 = 0. The equations for the state amplitudes
in these two chains are

ċN
n0 = −inδ1cN

n0 − iχ1(t )
√

n(N − n + 1)cN
n−1,0

− iχ1(t )
√

(n + 1)(N − n)cN
n+1,0 − iχ2(t )

√
ncN

n−1,1,

(28a)

ċN
n1 = −i[nδ1 + (δ1 + δ2)]cN

n1 − iχ1(t )
√

n(N − n)cN
n−1,1

− iχ1(t )
√

(n + 1)(N − n − 1)cN
n+1,1

− iχ2(t )
√

(n + 1)cN
n+1,0.

(28b)

Field 1 produces strong coupling up and down each ladder
when N is large, as is assumed. There is coupling between
adjacent ladder states for n differing by 1 with a coupling
constant

√
(n + 1)χ2. The maximum population in each lad-

der occurs for n ≈ n2/2, where n2 is given by Eq. (9), and
approximately n2 states are populated significantly. Thus, only
the lower states of the ladders get populated in the limit
that �2

1/δ
2
1 � 1. In the case of square pulses, the solution of

Eqs. (28) at time t � T can be expressed formally as

cN
nq(t ) = e−iHbaret/h̄cN

nq(0), (29)

where Hbare is a (2N + 1) × (2N + 1) matrix and cN
nq is a

(2N + 1) column vector. The matrix exponential function

needs to be calculated numerically, in general. For time-
dependent Rabi frequencies (pulsed fields), Eqs. (28) must be
solved numerically.

If n2 = N�2
1/δ

2
1 � 1, it is a good approximation to include

only the two lowest states of each ladder (at least two steps
must be included since the lowest states of each ladder are not
coupled in this bare state calculation). The truncated equa-
tions with n � 1 and q � 1 are

ċN
00 = −iχ1(t )

√
NcN

10, (30a)

ċN
10 = −iδ1cN

10 − iχ1(t )
√

NcN
00 − iχ2(t )cN

01, (30b)

ċN
01 = −i(δ1 + δ2)cN

01 − iχ2(t )cN
10 − iχ1(t )

√
N − 1cN

11,

(30c)

ċN
11 = −i(2δ1 + δ2)cN

11 − iχ1(t )
√

N − 1cN
01

≈ −iδ1cN
11 − iχ1(t )

√
N − 1cN

01. (30d)

For adiabatic pulses [11]

cN
10(t ) ≈ −χ1(t )

√
NcN

00(t ) + χ2(t )cN
01(t )

δ1
, (31a)

cN
11(t ) ≈ −χ1(t )

√
N − 1

δ1
cN

01(t ), (31b)

which, when substituted into the original equations, yield

ċN
00 ≈ iN[χ1(t )]2

δ1
cN

00 + i
√

Nχ1(t )χ2(t )

δ1
cN

01, (32a)

ċN
01 ≈ −i(δ1 + δ2)cN

01 + i[χ2(t )]2

δ1
cN

01

+ i(N − 1)[χ1(t )]2

δ1
cN

01 + i
√

Nχ1(t )χ2(t )

δ1
cN

00. (32b)

If we let

cN
00 = c̃N

00 exp

[
i
N

δ1

∫ t

−∞
[χ1(t ′)]2dt ′

]
, (33a)

cN
01 = c̃N

01 exp

[
i
N

δ1

∫ t

−∞
[χ1(t ′)]2dt ′

]
, (33b)

then

dc̃N
00/dt = i

√
Nχ1(t )χ2(t )

δ1
c̃N

01, (34a)

dc̃N
01/dt = i

√
Nχ1(t )χ2(t )

δ1
c̃N

00 − i
(t )c̃N
01, (34b)

which are the effective two-level equations, including the light
shifts, with 
(t ) defined by Eq. (20).

For constant amplitude pulses and n2 � 1, Eqs. (34) can
still provide a very good approximation to the exact result pro-
vided that χ2/δ1 � 1. The solution of Eqs. (34) with constant
amplitude fields is∣∣cN

01(t )
∣∣2 = 4χ2

RN


2 + 4χ2
RN

sin2
[√


2 + 4χ2
RNt/2

]
, (35a)∣∣cN

00(t )
∣∣2 = 1 − ∣∣cN

01(t )
∣∣2

, (35b)

where 
 is given by Eq. (20) and χRN is given by Eq. (12).
With increasing χ2/δ1, Eqs. (34) may fail to reproduce the
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FIG. 3. Population of the lowest state of the Rydberg ladder as
a function of χRNt for χ1 = 1, χ2 = 10, δ1 = −δ2 = 1000, and N =
500. The solid red curve is the exact result and the dashed blue curve
is the two-level result given by Eq. (57). For these parameters the two
curves overlap.

nonadiabatic effects associated with the sudden turn-on of
the fields. In Figs. 3 and 4, we plot |cN

01(t )|2 as a function
of χRNt with values of χ1, χ2, δ1, and δ2 given in arbitrary
units. The values chosen are χ1 = 1, δ1 = 1000, N = 500, and
{χ2 = 10, δ2 = −1000} (Fig. 3) or {χ2 = 500, δ2 = −890}
(Fig. 4). For χ2/δ1 = 0.01, the exact [obtained from Eq. (29)]
and “adiabatic” results are in good agreement, but for χ2/δ1 =
0.5, |cN

01(t )|2 is modulated at frequency δ1, even though the
two-level approximation remains valid. We shall see that this
nonadiabatic behavior persists for the total Rydberg popula-
tion when the two-level approximation is no longer valid. The
oscillation frequency in Fig. 4 is much larger than the collec-
tive Rabi frequency owing to the large light shift associated
with field 2.

IV. DRESSED ATOM BASIS

A. Constant amplitude dressed states

It turns out there can be some significant advantages if
(semiclassical) dressed states are used [10]. In this subsec-
tion we consider constant amplitude fields, but it turns out
that adiabatic dressed states, to be discussed in the following

FIG. 4. Population of the lowest state of the Rydberg ladder as a
function of χRNt for χ1 = 1, χ2 = 500, δ1 = 1000, δ2 = −890, and
N = 500. The solid red curve is the exact result and the dashed blue
curve is the two-level result given by Eq. (57).

subsection, may be more useful. The equations of motion for
the bare state amplitudes in the absence of field 2 are

ȧ1 = −iχ1a2, (36a)

ȧ2 = −iχ1a1 − iδ1a2, (36b)

which implies an effective Hamiltonian

H2 = h̄

(
0 χ1

χ1 δ1

)
. (37)

We diagonalize this Hamiltonian and obtain eigenvalues

EI,II = h̄ωI,II = h̄

[
δ1

2
∓ �

2

]
, (38)

where

� =
√

δ2
1 + 4χ2

1 . (39)

The corresponding eigenkets are

|I〉 = cos θ |1〉 + sin θ |2〉, (40a)

|II〉 = cos θ |2〉 − sin θ |1〉, (40b)

with

cos θ = χ1√
χ2

1 + ω2
I

, (41a)

sin θ = ωI√
χ2

1 + ω2
I

. (41b)

Note that for χ2
1 /δ2

1 � 1,

cos θ ≈ 1 − χ2
1

2δ2
1

, (42a)

sin θ ≈ −χ1

δ1
, (42b)

ωI ≈ −χ2
1

δ1
. (42c)

The bare and dressed state amplitudes are related by

aI = cos θa1 + sin θa2, (43a)

aII = cos θa2 − sin θa1, (43b)

a1 = cos θaI − sin θaII, (43c)

a2 = cos θaII + sin θaI, (43d)

and the initial condition for the dressed state amplitudes is

aI(0) = cos θ , aII(0) = − sin θ. (44)

It is now possible to introduce symmetric collective states as
before. The ensemble wave function is given simply by

|ψ (t )〉 =
N∏

j=1

(aI|I〉 j + aII|II〉 je
ik1·R j−iω1t + a3|3〉 j

× eik1·R j−iω1t eik2·R j−iω2t ), (45)
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where

|I〉 j = cos θ |1〉 j + sin θ |2〉 j, (46a)

|II〉 j = cos θ |2〉 j − sin θ |1〉 j . (46b)

When expanded, this gives a state vector that can be written
as the sum of fully symmetric orthonormal dressed basis kets
˜|N ; n, q〉 that have n excitations of state II and q excitations of

level 3, that is,

˜|N ; n, q〉 = 1√
CN

n CN−n
q

∣̃∣SN
nq

〉
(47)

where the ˜|SN
nq〉 are the fully symmetric, un-normalized states.

In other words,

|ψ (t )〉 =
∑
n,q

aN−n−q
I an

IIa
q
3

∣̃∣SN
nq

〉
=

∑
n,q

cNd
nq (t ) ˜|N ; n, q〉, (48)

where n and q can vary from zero to N with n + q � N . It
then follows immediately that

cNd
nq =

√
CN

n CN−n
q aN−n−q

I an
IIa

q
3. (49)

Using Eqs. (43) and (15), one can show that the single atom
dressed state amplitudes obey the evolution equations

ȧI = −iωIaI − iχ2 sin θa3, (50a)

ȧII = −iωIIaII − iχ2 cos θa3, (50b)

ȧ3 = −i(δ1 + δ2)a3 − iχ2 cos θaII − iχ2 sin θaI, (50c)

from which it follows that the collective state amplitudes obey

ċNd
nq = −i[(N − q)ωI + n� + q(δ1 + δ2)]cNd

nq

− iχ2 sin θ
√

(q + 1)(N − n − q)cNd
n,q+1

− iχ2 sin θ
√

q(N − n − q + 1)cNd
n,q−1

− iχ2 cos θ
√

n(q + 1)cNd
n−1,q+1

− iχ2 cos θ
√

q(n + 1)cNd
n+1,q−1, (51)

where we have used the relation ωII − ωI = �.
Redefining the zero of energy by setting

cNd
nq (t ) = bNd

nq (t )e−iNωIt e−in�t , (52)

we find, for a perfect blockade, that the needed equations are

ḃNd
n0 = −iχ2 sin θ

√
(N − n)bNd

n1 − iχ2ei�t cos θ
√

nbNd
n−1,1,

(53a)

ḃNd
n1 = −i(δ1 + δ2 − ωI )b

Nd
n1 − iχ2 sin θ

√
N − nbNd

n0

− iχ2 cos θe−i�t
√

n + 1bNd
n+1,0. (53b)

The situation has changed dramatically from the bare basis
(see Fig. 5, drawn for δ1 + δ2 = 0). Having used a dressed
basis, there is no longer any direct coupling up and down each
of the ladders. Most of the coupling is between adjacent states
of the two ladders having the same n and this coupling is

FIG. 5. Fully symmetric collective dressed states for constant
amplitude fields when δ1 + δ2 = 0. In contrast to the bare state lad-
ders, there is no longer any direct coupling up and down the ladders.
However, initially there is now population in each of the states in
the left ladder (represented by the shaded circles), with the relative
populations determined from Eq. (56).

enhanced by a factor of
√

N for low-lying states if N � 1.

Note that the energy of state ˜|N ; n, 0〉 is lower than that of

state ˜|N ; n, 1〉 by −h̄ωI, which is the ground-state light shift
associated with the first field (recall that −ωI ≈ χ2

1 /δ1 > 0). In
other words the dressed states automatically include this light
shift. In addition there is coupling of order χ2

√
n between

states in different ladders differing in n by 1. Since these states
are separated in frequency by � ≈ δ1 � χ2, this coupling
leads to contributions to state amplitudes of order χ2

√
n/�.

If the χ2 coupling between states differing in n by 1 is
neglected, the problem reduces to a number of independent
two state problems between different ladder states having the
same n. In this limit, and in the limit that

|σ | = |δ1 + δ2 − ωI | � χ2|sin θ |
√

(N − n), (54)

the approximate solution of Eqs. (53) is[
bNd

n0 (t )
](0) = bNd

n0 (0) cos
[
χ2t sin θ

√
(N − n)

]
, (55a)[

bNd
n1 (t )

](0) = −ibNd
n0 (0) sin

[
χ2t sin θ

√
(N − n)

]
, (55b)

where

bNd
nq (0) =

√
CN

n aN−n
I (0)an

II(0)δq,0

=
√

CN
n cosN−n θ [− sin θ ]nδq,0. (56)

For θ � 1 and N � n, |bNd
n0 (0)|2 approaches a Poisson dis-

tribution having average value 〈n〉 = Nχ2
1 /δ2

1 = n2/4. Good
convergence is achieved if a maximum of n2/2 steps in each
ladder is included. We have reduced the number of states from
what was needed in the bare state basis by a factor of 2;
moreover, we now have an approximate analytic solution.

We can improve upon this solution by using a truncated
subspace for the amplitudes:

bNd
n = [

bNd
n0 , bNd

n1 , b̃Nd
n+1,0, b̃Nd

n+1,1, b̃Nd
n−1,0, b̃Nd

n−1,1

]
.
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FIG. 6. Imaginary part of the amplitude associated with the low-
est level of the Rydberg ladder as a function of χRNt for χ1 = χ2 = 1,
δ1 = −δ2 = 100, N = 10 000. The exact (solid red curve) and ap-
proximate solutions given by Eq. (58b) (dashed blue curve) overlap.

As is shown in the Appendix, whenever the inequalities

χ2
1

δ2
1

� 1,
χ2

δ1
� 1, N � n, χRN �

∣∣∣∣δ1 + δ2 + χ2
1

δ1

∣∣∣∣ (57)

hold, approximate solutions for the dressed state amplitudes
are

bNd
n0 (t ) ≈ bNd

n0 (0)e−ist cos (χRNt ), (58a)

bNd
n1 (t ) ≈ ibNd

n0 (0)e−ist sin (χRNt ), (58b)

where

s = χ2
1

2δ1
− χ2

2

2δ1
+ δ1 + δ2

2
= 


2
. (59)

To this order, the solution depends on n only through the initial
conditions. A somewhat improved approximation can be ob-
tained by using the exact solution for the truncated subspace
given by Eq. (A6) in the Appendix. There are no collective
light shifts, proportional to N , that enter the solution.

Some illustrative plots are given for Im bNd
01 as a function

of χRNt for δ1 = −δ2. In Fig. 6, χ1 = χ2 = 1, δ1 = 100,
N = 10 000, and n = 0. For these parameters, n2 = 4 and
only the first two steps in each dressed state ladder are pop-
ulated significantly. Moreover, s = 0, such that Re bNd

01 ≈ 0.
The solid red curve is the exact solution and the dashed blue
curve, which virtually coincides with the exact solution, is
the approximate solution given by Eq. (58b). Modifications
of the transition amplitude introduced by light shifts can be
seen in Fig.7, in which χ1 = 2, χ2 = 1, δ1 = 50, N = 100,
and n = 0. For these parameters, s = 0.03 and the light shifts
lead to a modulation of the collective Rabi oscillations, but the
exact and approximate solutions for both Im bNd

01 and Re bNd
01

(not shown) still are in excellent agreement. For larger val-
ues of χ2/δ1, the approximate expression given by Eq. (58b)
begins to breakdown for two reasons. There are corrections
within the truncated subspace of order χ2/δ1 and there is cou-
pling between the truncated subspaces as well. This feature
is illustrated in Fig. 8, in which χ1 = 2, χ2 = 30, δ1 = 50,
N = 100, and n = 0. The dotted black curve is an improved

FIG. 7. Imaginary part of the amplitude associated with the low-
est level of the Rydberg ladder as a function of χRNt for χ1 = 2,
χ2 = 1, δ1 = −δ2 = 50, N = 100. The exact (solid red curve) and
approximate solutions given by Eq. (58b) (dashed blue curve) begin
to deviate from one another for large times.

approximation for Im bNd
01 in the truncated subspace given by

Eq. (A6) of the Appendix.
Having derived approximate expressions for the dressed

state amplitudes, we can use these results to obtain ap-
proximate expressions for the bare state amplitudes. From
Eqs. (25), (43), and (49), it follows that the bare state ampli-
tudes cN

n0(t ) and cN
n1(t ) can be expressed in terms of the dressed

state solutions as

cN
n0(t ) =

N−n∑
μ=0

n∑
ν=0

√
CN

n

CN
n+μ−ν

CN−n
μ Cn

ν (−1)μ(cos θ )N−μ−ν

× (sin θ )μ+νe−i(n+μ−ν)�t e−iNωIt bNd
n+μ−ν,0(t ), (60a)

cN
n1(t ) =

N−n−1∑
μ=0

n∑
ν=0

√
N − n

N − n − μ + ν

√
CN

n

CN
n+μ−ν

CN−1−n
μ

× Cn
ν (−1)μe−iNωIt (cos θ )N−1−μ−ν (sin θ )μ+ν

× e−i(n+μ−ν)�t bNd
n+μ−ν,1(t ). (60b)

FIG. 8. Imaginary part of the amplitude associated with the low-
est level of the Rydberg ladder as a function of χRNt for χ1 = 2,
χ2 = 30, δ1 = −δ2 = 50, N = 100. The exact (solid red curve) and
approximate solutions given by Eq. (58b) (dashed blue curve) no
longer agree. The black dotted solution is an approximate solution
in the truncated subspace described in the Appendix.
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FIG. 9. Graph of |cN
n1(t )|2 as a function of χRNt for χ1 = χ2 =

1, δ1 = −δ2 = 50, N = 10 000, and n = 0 (large red spikes) and 16
(smaller blue peaks).

In the limit of large N , Eqs. (60), (58), and (56) can be
combined to give the approximate solutions

cN
n0(t ) ≈

√
CN

n

(
1 − ei�t

)n
(−1)ne−in�t cosn θ sinn θe−iNωIt

× (cos2 θ + e−i�t sin2 θ )N−ne−ist cos[χ2t sin θ
√

N],
(61a)

cN
n1(t ) ≈ −i

√
CN

n (1 − ei�t )n(−1)ne−in�t cosn+1 θ sinn θe−iNωIt

× (cos2 θ + e−i�t sin2 θ )N−1−ne−ist sin[χ2t sin θ
√

N].
(61b)

If θ � 1, we find

∣∣cN
n0(t )

∣∣2 ≈ CN
n (

2χ2
1

δ2
1

)n[1 − cos (δ1t )]n

× exp

[
−2(N − n)

χ2
1

δ2
1

[1 − cos (δ1t )]

]
cos2 (χRNt ),

(62a)∣∣cN
n1(t )

∣∣2 ≈ CN
n

(
2χ2

1

δ2
1

)n

[1 − cos (δ1t )]n

× exp

[
−2(N − n − 1)

χ2
1

δ2
1

[1 − cos (δ1t )]

]
× sin2 (χRNt ). (62b)

For 2Nχ2
1 /δ2

1 > 1, the probabilities consist of a number of
spikes under the envelope of the collective Rabi oscillations.
For n � 2Nχ2

1 /δ2
1 , the spikes are centered near δ1t = 2mπ ,

for integer m, but for n � 2Nχ2
1 /δ2

1 , they are centered at
δ1t = (2m + 1)π . This feature is seen in Fig. 9 where |cN

n1|2
is plotted as a function of χRNt for χ1 = χ2 = 1, δ1 = −δ2 =
50, N = 10 000, and n = 0, 16.

In a typical experiment there is a readout pulse following
the excitation pulses applied at a time where all intermediate-
state populations have decayed. For large N , it is a fairly good
approximation to assume that all the decay is confined to the
fully symmetric states, provided the number of excited states
n2 � N [12]. In that limit, the observed signal is proportional
to the total Rydberg population PR following the excitation

FIG. 10. Graph of the total Rydberg population PR(t ) as a func-
tion of χRNt for χ1 = χ2 = 1, δ1 = −δ2 = 50, and N = 10 000. The
exact (solid red curve) and approximate solutions from Eq. (64)
(dashed blue curve) are shown.

pulse given by

PR =
N−1∑
n=0

∣∣cN
n1(t )

∣∣2 ≈ sin2 (χRNt ). (63)

In some sense, this is a justification for the two-level approx-
imation that is used to model this system. However, Eq. (63)
is valid only when inequalities (57) hold. In the Appendix,
it is shown that an approximate solution giving first-order
corrections in χ2/δ1 is [15]

PR ≈ sin2 (χRNt ) − χRN

δ1
sin (δ1t ) sin (2χRNt ), (64)

assuming that δ1 � χRN . Most of the modulation seen in
Fig. 9 is now gone, but there remains a small component of the
signal which is modulated at frequency δ1. This modulation
can be seen in Fig. 10.

B. Adiabatic dressed states

As long as |δ1Tp| � 1 for the Gaussian pulse envelope of
Eq. (5), we can use time-dependent adiabatic dressed states
defined as in Eqs. (43), but with time-dependent θ (t ). The
evolution equations will be given by Eq. (51), if �, θ , and
χ2 are replaced by their time-dependent values, provided
terms of order θ̇ (t ) ≈ |δ1Tp| � 1 can be neglected. The use
of adiabatic dressed states changes things dramatically since
the only adiabatic dressed state that is occupied at t = −∞
is the n = q = 0 state (see Fig. 11). As time evolves the
ensemble stays mainly in the lowest state of each ladder, with
a contribution to the light shifts from the first excited state of
each ladder. Thus, we get an excellent approximation to the
exact result by considering only the two lowest states of each
ladder (or even just the lowest states, with the second states
adiabatically eliminated). Moreover, following the pulse, all
amplitudes except cNd

00 and cNd
01 go to zero. The adiabatic

solution is generally valid for smooth pulses, provided

�(t )Tp =
√

δ2
1 + [χ1(t )]2Tp � 1; (65)

that is, it is not restricted to values [χ1(t )]2/δ2
1 � 1. Consid-

ering only the lowest two states [and subtracting out an energy
as in Eqs. (33)], we adiabatically eliminate the second state in
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FIG. 11. Fully symmetric collective dressed state levels for adi-
abatic, time-dependent fields when δ1 + δ2 = 0. In contrast to the
constant amplitude dressed ladders, the only state populated initially

is the ˜|N ; 0, 0〉 state and the only final states populated are ˜|N ; 0, 0〉
and ˜|N ; 0, 1〉. Although not indicated explicitly, χ1, χ2, �, and θ are
functions of time.

the first ladder using

c̃Nd
10 (t ) = −χ2(t ) cos [θ (t )]c̃Nd

01 (t )

�(t )
, (66)

leading to evolution equations for the lower state amplitudes
[13]:

dc̃Nd
00 /dt = −i

√
N sin [θ (t )]χ2(t )c̃Nd

01 , (67a)

dc̃Nd
01 dt = −i

√
N sin [θ (t )]χ2(t )c̃Nd

00

−i

[
(δ1 + δ2) − ωI(t ) + [χ2(t ) cos [θ (t )]]2

�(t )

]
c̃Nd

01 .

(67b)

Equations (67) lead to results that agree with the exact results
when |δ1Tp| � 1. This is true even when the inequalities
(7) are violated. There is no modulation at frequency δ1

in the adiabatic result. For the Gaussian pulse envelope of
Eq. (5), in Fig. 12, we plot |cN

01(∞)|2 = |c̃Nd
01 (∞)|2 as a func-

tion of χRN T/
√

2 for χ1 = 30, χ2 = 2, δ1 = −δ2 = 50, and

FIG. 12. Graph of |cN
01(∞)|2 as a function of χRN T/

√
2 for χ1 =

30, χ2 = 2, δ1 = −δ2 = 50, and N = 100. The blue, dashed curve
is the adiabatic solution and the red solid curve is the exact solution.

N = 100, and compare it with the exact solution. The blue,
dashed curve is the adiabatic solution and the red solid curve
is the exact solution—as can be seen, they agree perfectly,
even though χ1/δ1 = 0.6.

V. EFFECTIVE HAMILTONIAN AND THE
HOLSTEIN-PRIMAKOFF TRANSFORMATION

The Hamiltonian that gives rise to the evolution Eqs. (26)
is

H = h̄
∑
n,q

[nδ1 + q(δ1 + δ2)]|N ; n, q〉〈N ; n, q|

+ h̄χ1(t )
N−q+1∑

n=0

√
n(N − n − q + 1)|N ; n, q〉〈N ; n − 1, q|

+ h̄χ1(t )
N−q∑
n=0

√
(n + 1)(N − n − q)|N ; n, q〉〈N ; n + 1, q|

+ h̄χ2(t )
N−n∑
q=0

√
n(q + 1)|N ; n, q〉〈N ; n − 1, q + 1|

+ h̄χ2(t )
N−n∑
q=0

√
q(n + 1)|N ; n, q〉〈N ; n + 1, q − 1| (68)

and is exact. However, in the limit that N � n, q, 1, it reduces
to

H ≈ h̄
∑
n,q

[nδ1 + q(δ1 + δ2)]|N ; n, q〉〈N ; n, q|

+ h̄χ1(t )
√

N
∑

n

(
√

n|N ; n, q〉〈N, n − 1, q|

+
√

(n + 1)|N ; n, q〉〈N ; n + 1, q|)

+ h̄χ2(t )
∑

q

( √
n(q + 1)|N ; n, q〉〈N ; n − 1, q + 1|

+√
q(n + 1)|N ; n, q〉〈N ; n + 1, q − 1|

)
.

(69)

This a Hamiltonian for coupled oscillators, in which one of the
oscillators is driven by an incident field. That is, if the ladder
operators for each oscillator are denoted by a and b, then

H ≈ h̄[δ1a†a + (δ1 + δ2)b†b] + h̄χ1(t )
√

N (a + a†)

+ h̄χ2(t )(a†b + b†a). (70)

Since these correspond to linear oscillators, there can be no
nonlinear effects. To simulate the blockade we must truncate
the b oscillator. That is, we replace b by σ− = |1〉〈3|, b† by
σ+ = |3〉〈1|, and b†b by σ+σ− = |3〉〈3| = σ33, yielding

H ≈ h̄[δ1a†a + (δ1 + δ2)σ33] + h̄χ1(t )
√

N
(
a + a†

)
+ h̄χ2(t )(a†σ− + σ+a), (71)

which corresponds to an oscillator driven by an off-resonant
field that is coupled to a two-level atom. The excited state of
the “two-level” atom is actually the collective Rydberg state.

The equation of motion for a is

ȧ = −iδ1a − iχ1(t )
√

N − iχ2(t )σ−. (72)
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The adiabatic solution of this equation is

a = −χ1(t )
√

N + χ2(t )σ−
δ1

. (73)

Note that the adiabatic solution might fail when [χ1(t )]2T
δ1

> 1.
The equations for the atomic operators are

σ̇11 = iχ2(t )[σ+a − a†σ−], (74a)

σ̇33 = −iχ2(t )[σ+a − a†σ−], (74b)

σ̇+ = i(δ1 + δ2)σ+ − iχ2(t )a†[σ33 − σ11], (74c)

σ̇− = −i(δ1 + δ2)σ− + iχ2(t )[σ33 − σ11]a, (74d)

where σ11 = σ−σ+ = |1〉〈1|. If we insert the solution (73) for
a in these equations, we find

σ̇11 = −i
χ2(t )χ1(t )

√
N

δ1
[σ+ − σ−], (75a)

σ̇33 = i
χ2(t )χ1(t )

√
N

δ1
[σ+ − σ−], (75b)

σ̇+ = i(δ1 + δ2)σ+ + i
χ2(t )χ1(t )

√
N

δ1
[σ33 − σ11]

−i
[χ2(t )]2

δ1
σ+, (75c)

σ̇− = (σ̇+)†. (75d)

These equations suggest that there is no level shift associated
with the field χ1, but this can be traced to the neglect of q in
going from Eq. (68) to Eq. (69), under the assumption that
N � q (see below).

Suppose we want to find corrections to the excited-state
population resulting from multiple level 2 excitations. If we
want to estimate corrections, we can look only at terms
in the Hamiltonian related to the χ1 field and drop the q terms
in the Hamiltonian. In this limit

H = h̄
∑

n

nδ1|N ; n〉〈N ; n|

+ h̄χ1(t )
N−q+1∑

n=0

√
n(N − n + 1)|N ; n〉〈N ; n − 1|

+ h̄χ1(t )
N−q∑
n=0

√
(n + 1)(N − n)|N ; n〉〈N ; n + 1|. (76)

We convert this to operators by replacing n by a†a to arrive at

H ≈ h̄δ1a†a + h̄χ1(t )
√

N

[√(
1 − a†a

N

)
a

+ a†

√(
1 − a†a

N

)]
, (77)

where we have neglected terms of order 1/N . This result
has essentially the same form as the Holstein-Primakoff (HP)
transformation [8]. If we expand to lowest order, then

H ∼ h̄δ1a†a + h̄χ1(t )
√

N (a + a†)

− h̄χ1(t )
1

2
√

N
(a†aa + a†a†a). (78)

Including the interaction with the second field,

H ≈ h̄δ1a†a + h̄χ1(t )
√

N (a + a†)

− h̄χ1(t )
1

2
√

N
(a†aa + a†a†a)

+ h̄χ2(t )(a†σ− + σ+a). (79)

The equation for ȧ is

ȧ = −iδ1a − iχ1(t )
√

N + iχ1(t )
1

2
√

N

(
a2 + 2a†a

)
− iχ2(t )σ−. (80)

One possibility is to put the adiabatic solution

a = −χ1(t )
√

N + χ2(t )σ−
δ1

(81)

in the third term and neglect the χ2(t )σ− term. Then

ȧ ≈ −iδ1a − iχ1(t )
√

N

(
1 − 3

2

χ2
1 (t )

δ2
1

)
− iχ2(t )σ−, (82)

such that

a ≈ −
χ1(t )

√
N

(
1 − 3

2
χ2

1 (t )
δ2

1

)
+ χ2(t )σ−

δ1
. (83)

As a consequence, the coupling is modified as

√
N

χ2(t )χ1(t )

δ1
→

√
N

χ2(t )χ1(t )

δ1

(
1 − 3

2

[χ1(t )]2

δ2
1

)
, (84)

consistent with the lowest-order correction to the coupling in
the adiabatic model given in Eq. (67).

The use of the HP approximation does not simplify the
calculation. However, if the light shifts are negligible, it does
provide a simple justification for the two-level model. The
Hamiltonian of Eq. (71) can be viewed as the lowest order
approximation to the HP transformation. Equation (71) led to
Eqs. (75). If the light shifts are neglected in Eqs. (75) and
expectation values are taken, one arrives at density-matrix
equations consistent with the two-level approximation. In
other words, the Heisenberg operator approach of the HP
transformation allows one to arrive at expressions for the
total Rydberg population without regard to the individual state
populations of the ladder states.

How to include the light shift from the first field

Even with corrections, the Hamiltonian given by Eq. (79)
does not contain the light shifts produced by field 1. The
reason for this is clear. In the dressed basis, there are two
ladders and the q = 1 ladder is shifted slightly from the q = 0
ladder. There is no analogous term in HP since we have
assumed that N � q;, in effect, we treat q = 0 and 1 in the
same manner. Thus, to include the light shift in HP, we must
somehow account for the q dependence. To do so we expand√

n(N − n − q + 1) ≈
√

nN − q
√

n

2
√

N
. (85)
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As a consequence, the effective Hamiltonian given in Eq. (79)
is replaced by

H ≈ h̄

[
δ1a†a +

(
δ1 + δ2 − χ1(t )(a + a†)

2
√

N

)
b†b

]
+ h̄χ1(t )

√
N (a + a†) + h̄χ2(t )(a†b + b†a). (86)

If, in lowest approximation for large N , we replace (a + a†)
in the frequency term by(

a + a†) ≈ −2χ1(t )
√

N

δ1
, (87)

then the effective Hamiltonian becomes

H ≈ h̄

[
δ1a†a +

(
δ1 + δ2 + [χ1(t )]2

δ1

)
b†b

]
+ h̄χ1(t )

√
N (a + a†)

+ h̄χ2(t )(a†b + b†a). (88)

We then proceed as before, so that the effective equations for
the atomic operators are

σ̇11 = −i
χ2(t )χ1(t )

δ1

√
N[σ+ − σ−], (89a)

σ̇33 = i
χ2(t )χ1(t )

δ1

√
N[σ+ − σ−], (89b)

σ̇+ = i

(
δ1 + δ2 + [χ1(t )]2

δ1

)
σ+ + i

χ2(t )χ1(t )

δ1

√
N[σ33 − σ11]

−i
[χ2(t )]2

δ1
σ+, (89c)

σ̇− = (σ̇+)†. (89d)

Now the light shifts from both fields are included. More-
over, if we also include the corrections to the coupling term
given by Eq. (84), the HP and dressed state approaches are in
excellent agreement in the limit that inequalities (7) hold.

VI. CONCLUSIONS

We have presented a detailed theory of the Rydberg block-
ade, including contributions from multiple intermediate-state
excitations. It has been shown that a dressed state approach
offers distinct advantages when multiple intermediate-state
excitations occur. In the case of fixed amplitude fields, the
multiple intermediate excitations can result in comblike mod-
ulated populations of individual states having one Rydberg
excitation and n � N intermediate-state excitations. How-

ever, when summed over all such state populations, most of
the modulation disappears and the system is described to a
good approximation by an effective two-level model. In the
case of adiabatic, pulsed fields, there is no such modulation
and an effective two-level model (in the dressed basis), cor-
rected for light shifts, can be used to model the system. The
calculation has been restricted to fully symmetric (phased)
states containing at most one Rydberg excitation. Sponta-
neous decay from the intermediate state will couple these
states to states outside the symmetric subspace, but such ef-
fects are expected to provide only small corrections provided
the number of excited states n � N and (χ2

1 /δ2
1 )γ2T � 1. In

other words, as was the case for the light shifts, there are no
collective decay rates proportional to N that contribute to the
signal [14]. In addition to solving this problem using conven-
tional methods, we have shown that similar results could be
obtained using a form of the Holstein-Primakoff transforma-
tion. Given the state of the art of current experiments involving
atoms in lattices, it may be possible to test some of our predic-
tions concerning the role of multiple intermediate excitations.
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APPENDIX

We can improve upon the lowest-order solution for the
dressed state amplitudes by expanding the subspace for n ex-
citations from two to six levels. That is, we look at a truncated
subspace for dressed state amplitudes:

bNd
n = [

bNd
n0 , bNd

n1 , b̃Nd
n+1,0, b̃Nd

n+1,1, b̃Nd
n−1,0, b̃Nd

n−1,1

]
(A1)

with

b̃Nd
n+1,0 = e−i�t bNd

n+1,0, b̃Nd
n+1,1 = e−i�t bNd

n+1,1, (A2a)

b̃Nd
n−1,0 = ei�t bNd

n−1,0, b̃Nd
n−1,1 = ei�t bNd

n−1,1. (A2b)

We truncate the space by considering only these amplitudes,
which obey the matrix equation

ih̄ḃ
Nd
n = HnbNd

n , (A3)

subject to the initial conditions bNd
n (0) =

[bNd
n0 (0), 0, bNd

n+1,0(0), 0, bNd
n−1,0(0), 0] with

Hn=h̄

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 χ (n, N ) 0 0 0 χ (n)

χ (n, N ) σ χ (n + 1) 0 0 0

0 χ (n + 1) � χ (n + 1, N ) 0 0

0 0 χ (n + 1, N ) � + σ 0 0

0 0 0 0 −� χ (n − 1, N )

χ (n) 0 0 0 χ (n − 1, N ) −� + σ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A4)
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where

χ (n, N ) = χ2 sin θ
√

(N − n),

χ (n) = √
nχ2 cos θ,

and

σ = δ1 + δ2 − ωI. (A5)

The formal solution of Eq. (A3) is

bNd
n (t ) = e−iHnt/h̄bNd

n (0), (A6)

which can be evaluated numerically. In this truncated sub-
space the resulting solution is valid only for bNd

n0 (t ) and bNd
n1 (t )

and this solution provides an excellent approximation to the
exact solution provided

χ2

δ1
n ≈ �2

1χ2

δ3
1

N � 1. (A7)

In fact, when this inequality holds, a first approximation can
be obtained by considering only the [bNd

n0 , bNd
n1 ] subspace. For

N � n, the analytic solution of Eq. (A3) in this limited sub-
space is

bNd
n0 (t ) = bNd

n0 (0)e−iσ t/2 cos

⎛⎝
√

4χ2
RN + σ 2

2
t

⎞⎠ + ibNd
n0 (0)e−iσ t/2 σ√

4χ2
RN + σ 2

sin

⎛⎝
√

4χ2
RN + σ 2

2
t

⎞⎠, (A8a)

bNd
n1 (t ) = ibNd

n0 (0)e−iσ t/2 2χRN√
4χ2

RN + σ 2
sin

⎛⎝
√

4χ2
RN + σ 2

2
t

⎞⎠. (A8b)

In this approximation, the total population PR in the Rydberg ladder is equal to

PR =
N−1∑
n=0

∣∣bNd
n1 (t )

∣∣2 ≈
N∑

n=0

∣∣bNd
n1 (t )

∣∣2 = 4χ2
RN

4χ2
RN + σ 2

sin

⎛⎝
√

4χ2
RN + σ 2

2
t

⎞⎠ (A9)

and does not exhibit modulation at frequency δ1.
In order to see if PR can exhibit modulation at frequency δ1, we must obtain corrections of order χ2/δ1. An approximate

analytic solution to Eq. (A3) can be obtained in the limit that

χ2
1

δ2
1

� 1, |σ | ≈
∣∣∣∣δ1 + δ2 + χ2

1

δ2
1

∣∣∣∣ � χRN , N � n, (A10)

for which

Hn ≈ h̄

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 −χRN 0 0 0
√

nχ2

−χRN σ
√

n + 1χ2 0 0 0

0
√

n + 1χ2 δ1 −χRN 0 0

0 0 −χRN δ1 + σ 0 0

0 0 0 0 −δ1 −χRN√
nχ2 0 0 0 −χRN −δ1 + σ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A11)

To obtain the state amplitudes in this limit, we first use degenerate perturbation theory to diagonalize the (nearly) degenerate
{bNd

n0 , bNd
n1 } sub-block. If χRN � |σ |, the eigenvectors are then given approximately by

|μ0〉′ ≈ 1√
2

(|μ0〉 + |μ1〉), (A12a)

|μ1〉′ ≈ 1√
2

(|μ0〉 − |μ1〉) (A12b)

(μ = n, n ± 1) and the transformed matrix is given by

H ′′
n ≈ h̄

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ
2 − χRN 0

√
n + 1χ2

2

√
n + 1χ2

2

√
n χ2

2 −√
n χ2

2

0 σ
2 + χRN −√

n + 1χ2

2 −√
n + 1χ2

2

√
n χ2

2 −√
n χ2

2√
n + 1χ2

2 −√
n + 1χ2

2
σ
2 + δ1 − χRN 0 0 0

√
n + 1χ2

2 −√
n + 1χ2

2 0 σ
2 + δ1 + χRN 0 0

√
n χ2

2

√
n χ2

2 0 0 σ
2 − δ1 − χRN 0

−√
n χ2

2 −√
n χ2

2 0 0 0 σ
2 − δ1 + χRN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A13)
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We now use nondegenerate perturbation theory, assuming that
δ1 � χRN , to obtain the eigenenergies:

E ′′
1 ≈ h̄(−χRN + s), E ′′

2 ≈ h̄(χRN + s), (A14a)

E ′′
3n ≈ h̄

(
s + δ1 − χRN + (n + 2)χ2

2

δ1

)
, (A14b)

E ′′
4n ≈ h̄

(
s + δ1 + χRN + (n + 2)χ2

2

δ1

)
, (A14c)

E ′′
5n ≈ h̄

(
s − δ1 − χRN − (n − 1)χ2

2

δ1

)
, (A14d)

E ′′
6n ≈ h̄

(
s − δ1 + χRN − (n − 1)χ2

2

δ1

)
, (A14e)

where

s = χ2
1

2δ1
− χ2

2

2δ1
+ δ1 + δ2

2
. (A15)

The eigenkets associated with these eigenenergies are given
approximately by [15]

|n0〉′′ ≈ |n0〉′ ≈ 1√
2

(|n0〉 + |n1〉), (A16a)

|n1〉′′ ≈ |n1〉′ ≈ 1√
2

(|n0〉 − |n1〉), (A16b)

|n + 1, 0〉′′ ≈ |n + 1, 0〉′ + √
n + 1

χ2

2δ1
(|n0〉′ − |n1〉′)

= 1√
2

(|n + 1, 0〉 + |n + 1, 1〉) + √
n + 1

χ2√
2δ1

|n1〉,
(A16c)

|n + 1, 1〉′′ ≈ |n + 1, 1〉′ + √
n + 1

χ2

2δ1
(|n0〉′ − |n1〉′)

= 1√
2

(|n + 1, 0〉 − |n + 1, 1〉) + √
n + 1

χ2√
2δ1

|n1〉,
(A16d)

|n − 1, 0〉′′ ≈ |n − 1, 0〉′ − √
n

χ2

2δ1
(|n0〉′ + |n1〉′)

= 1√
2

(|n − 1, 0〉 + |n − 1, 1〉) − √
n

χ2√
2δ1

|n0〉, (A16e)

|n − 1, 1〉′′ ≈ |n − 1, 1〉′ + √
n

χ2

2δ1
(|n0〉′ + |n1〉′)

= 1√
2

(|n − 1, 0〉 − |n − 1, 1〉) + √
n

χ2√
2δ1

|n0〉. (A16f)

The state vector |ψ (t )〉 in this subspace is expanded as

|ψ (t )〉 = [
bNd

n0 (0)
]′′

eiχRN t e−ist |n0〉′′ + [
bNd

n1 (0)
]′′

e−iχRN t

× e−ist |n1〉′′ + [
bNd

n+1,0(0)
]′′

e−iδ1t |n + 1, 0〉′′

+ [
bNd

n+1,1(0)
]′′

e−iδ1t |n + 1, 1〉′′ + [
bNd

n−1,0(0)
]′′

× eiδ1t |n − 1, 0〉′′ + [
bNd

n−1,1(0)
]′′

eiδ1t |n − 1, 1〉′′.
(A17)

Using the fact that[
bNd

n0 (0)
]′′ ≈ 1√

2
bNd

n0 (0) − √
n + 1

χ2√
2δ1

bNd
n+1,0(0), (A18a)

[
bNd

nn (0)
]′′ ≈ 1√

2
bNd

n0 (0) + √
n + 1

χ2√
2δ1

bNd
n+1,0(0), (A18b)[

bNd
n+1,0(0)

]′′ ≈ 1√
2

bNd
n+1,0(0);

[
bNd

n+1,1(0)
]′′ ≈ 1√

2
bNd

n+1,0(0),

(A18c)[
bNd

n−1,0(0)
]′′ ≈ 1√

2
bNd

n−1,0(0);
[
bNd

n−1,1(0)
]′′ ≈ 1√

2
bNd

n−1,0(0),

(A18d)

we find the state amplitudes:

bNd
n0 (t ) ≈ bNd

n0 (0)e−ist cos (χRNt ) − ibNd
n+1,0(0)e−ist χ2

δ1

√
n + 1

× sin (χRNt ) − ibNd
n−1,0(0)

χ2

δ1

√
neiδ1t e−ist sin (χRNt ),

(A19a)

bNd
n1 (t ) ≈ ibNd

n0 (0)e−ist sin (χRNt )

+ bNd
n+1,0(0)

χ2

δ1

√
n + 1(e−iδ1t − 1)e−ist cos (χRNt ).

(A19b)

In writing these equations, we have neglected contributions
from the light shifts of field 2 in the correction terms of order
χ2/δ1. It then follows that the total Rydberg population,

PR ≈
N∑

n=0

∣∣bNd
n1 (t )

∣∣2 ≈ sin2 (χRNt )

− χ2

δ1
sin (δ1t ) sin (2χRNt )

N∑
n=0

√
n + 1bNd

n0 (0)bNd
n+1,0(0),

(A20)

exhibits modulation at frequency δ1, with a modulation depth
of order χ2/δ1. For (χ1/δ1)2 � 1 and N � 1,

N∑
n=0

√
n + 1bNd

n0 (0)bNd
n+1,0(0) ≈ 2

χ1

δ1

√
N . (A21)
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