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We experimentally demonstrate an anti-parity-time (anti-PT )-symmetric photonic lattice in thermal cesium
atoms driven by two standing-wave laser fields. Such a lattice possesses anti-PT -symmetric susceptibility,
of which the real (imaginary) part is an odd (even) function of position. By manipulating the intensities and
phases of the two standing-wave fields, we experimentally observe unidirectional reflectionless propagation at
the exceptional points. Our work provides a platform to study the scattering property of anti-PT -symmetric
systems.
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I. INTRODUCTION

Parity-time (PT )-symmetric optical systems have triggered
extensive research interest because of their novel properties
and applications [1–10]. These systems are non-Hermitian
and invariant under combined parity (P) and time-reversal (T )
operations. Generally, they can be divided into two categories,
i.e., coupled and scattering systems. For a PT -symmetric cou-
pled system, the Hamiltonian Ĥ commutes with the combined
parity-time operator P̂T̂ , i.e., [Ĥ, P̂T̂ ] = 0. A model system
consists of a pair of coupled waveguides with gain in one
waveguide and an equal amount of loss in the other [5].
PT -symmetric scattering systems demand balanced gain-loss
modulation along the longitudinal direction z of light propa-
gation, and the refractive indices satisfy n(z) = n∗(−z). These
systems include periodic Bragg structures [10,11] and pho-
tonic heterostructures [12,13] and have been extended to
acoustic media [14–17]. In a PT -symmetric scattering system,
the scattering matrix Ŝ, which relates the output field to the
input field, satisfies the relation P̂T̂ ŜP̂T̂ = Ŝ−1 [12,13]. A
common feature of the two systems is the phase-transition
point, also called the exceptional point (EP), where not only
the eigenvalues but also the corresponding eigenvectors of Ĥ
or Ŝ become the same. It has led to many novel applications,
such as sensing [18–23], directional lasing [24], asymmetric
mode switching [25], and topological energy transfer [26].
EPs can give rise to unidirectional invisibility [6,10], which
has been demonstrated in PT -symmetric scattering systems,
such as passive PT -symmetric metamaterials [11], photonic
lattices [6], and acoustics [15,16].

As a counterpart, anti-PT symmetry has attracted increas-
ing attention recently. There are also two classes of systems
associated with anti-PT symmetry. For an anti-PT -symmetric
coupled system, the Hamiltonian anticommutes with the
operator P̂T̂ , i.e., {Ĥ , P̂T̂ } = 0 [27–41]. This anticommu-
tation relationship reveals that anti-PT -symmetric systems
do not necessarily need gain to explore non-Hermitian dy-
namics and can display distinct properties, such as constant

refraction [27], coherent switch [29], and energy-difference
conservation [31,41]. Contrary to PT -symmetric scattering
systems, an anti-PT -symmetric scattering system requires the
refractive index to satisfy n(z) = −n∗(−z) [42], which needs
balanced positive- and negative-refractive-index materials.

However, the realization of this scattering system may
encounter difficulties in arranging negative-refractive-index
materials. Wu et al. [43,44] proposed another kind of anti-
PT -symmetric scattering system, in which the spatial sus-
ceptibility rather than the refractive index is antisymmetric
under the combined PT operations, i.e., χ (z) = −χ∗(−z).
Such an anti-PT -symmetric scattering system requires neither
optical gain nor a negative refractive index. Nevertheless, it
can realize unidirectional reflectionless light propagation at
the EP. Despite several subsequent proposals [45–47] in cold
atoms, the experimental demonstration has not been achieved
yet.

On the other hand, based on the well-known effect of
electromagnetically induced transparency (EIT) [48], thermal
atomic media provide a flexible platform for realizing con-
trollable photonic lattices (so-called Bragg gratings) [49–54]
through periodically modulating the dispersion and absorp-
tion using standing-wave coupling fields. Recently, one-
dimensional (1D) PT -symmetric optical lattices with periodic
gain and loss profiles were demonstrated in an atomic
medium [55]. In particular, asymmetric reflection due to
momentum-space chiral edge currents was observed in ther-
mal atoms [56]. Here we show that based on such a system we
can realize anti-PT -symmetric photonic lattices in real space.

We use one weak probe field and two standing-wave (cou-
pling and modulating) fields to drive �-type atoms, forming
a 1D photonic lattice along the propagation direction of the
probe field. The anti-PT -symmetric susceptibility for the
probe field is achieved by fixing the spatial phase difference
φ between the two standing-wave fields at π/2 or 3π/2.
By modulating the real and imaginary parts of the probe
susceptibility through the two standing-wave fields, we ob-
serve unidirectional reflectionless propagation at the EP of
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FIG. 1. (a) Experimental setup. The forward (E f
c ) and backward

(Eb
c ) beams from the same laser form the standing-wave coupling

field in the vapor cell. Similarly, the forward (E f
m) and backward

(Eb
m) beams from a second laser form the standing-wave modu-

lating field. The forward (purple solid line) and backward (purple
dashed line) probe beams transmit through the lattice from the left
and right sides of the vapor cell, respectively. The 5-cm-long va-
por cell is wrapped with μ-metal sheets to shield magnetic fields.
PD1 and PD2: photodetectors, PBS: polarizing beam splitter, HR:
high-reflectivity mirror, PZT: piezoelectric ceramic. (b) The �-type
energy levels of 133Cs atoms. The far-detuned standing-wave mod-
ulating field �m induces periodic ac Stark shifts (blue curves) on
levels |2〉 and |3〉. The coupling field is resonant with the transition
between shifted levels when the modulating field exists. (c) The
spatial arrangement of the coupling [red (light gray)] and modulating
[blue (dark gray)] fields inside the vapor cell. (d) The scattering
process on the lattice. Input fields (E f

L , Eb
R) are scattered into two

output fields (Eb
L , E f

R ), which is described by the scattering matrix S.

the anti-PT -symmetric photonic lattice. Our work not only
demonstrates anti-PT symmetry in a 1D scattering system but
also provides a class of synthetic non-Hermitian lattices for
controlling light propagation [11,57–59].

This paper is organized as follows. In Sec. II we intro-
duce the experimental setup implemented in a �-type atomic
system and derive the spatial susceptibility for the probe
field. In Sec. III we show the construction of the anti-PT -
symmetric photonic lattice in this atomic system. In Sec. IV
we discuss the phase transition of the scattering matrix.
The unidirectional reflectionless propagation is related to the
phase-transition point, i.e., the EP. In addition, an excep-
tional line is predicted in this system. In Sec. V we show
experimental observations of the unidirectional reflectionless
propagation and the exceptional line, and our conclusion is
presented in Sec. VI.

II. EXPERIMENTAL SETUP

The experimental setup is schematically depicted in
Fig. 1(a). Two standing-wave laser fields and one probe laser
field are coupled to �-type 133Cs atoms [see Fig. 1(b)],
which have two ground states, |2〉 = |6S1/2, F = 3〉 and

|1〉 = |6S1/2, F = 4〉, and one excited state, |3〉 = |6P1/2, F =
4〉. The decay rate of the excited state is � = 2π × 4.6 MHz,
and the frequency difference between the two ground states is
2π × 9.2 GHz. The probe field (frequency ωp, wavelength λp,
Rabi frequency �p) couples the transition |1〉 ↔ |3〉, while
the transition |2〉 ↔ |3〉 is driven by two standing-wave fields.
One of the standing-wave fields is nearly resonant with the
transition (called the coupling field), while the other is far
detuned from the transition (called the modulating field). Two
counterpropagating coupling beams, E f

c and Eb
c (ωc, λc, �c),

from the same external cavity diode laser intersect at the
center of the vapor cell at an angle θc ≈ 0.42◦ with respect to
the z axis [see Fig. 1(c)]. These two beams generate a stand-
ing wave along the z direction and form the standing-wave
coupling field. The Rabi frequency envelope can be written as
2�c cos(kcz), where kc is the z component of the wave vector.
The coupling field induces a spatially periodical modulation
of absorption under the EIT condition, i.e., �c = �p = 0,
where �c = ωc − ω32 and �p = ωp − ω31 are the frequency
detunings of coupling and probe fields, with ωi j being the
atomic transition frequency between |i〉 and | j〉. In this case, a
1D photonic lattice with periodic absorption modulation along
the z direction is generated.

Two counterpropagating modulating beams, E f
m and Eb

m
(ωm, λm, �m), from a second external cavity diode laser
overlap with Eb

c and E f
c , respectively [see Fig. 1(c)]. They

form the standing-wave modulating field with the Rabi fre-
quency envelope 2�m cos(km + φ/2), where km ≈ kc is the
z component of the wave vector and φ/2 is the spatial phase
difference between these two standing-wave fields. The phase
can be tuned by a piezoelectric ceramic attached to a mirror
[see Fig. 1(a)]. The far-detuned standing-wave modulating
field induces dispersion modulation on the lattice through a
spatially periodic ac Stark shift δ(z, φ) = δ0 cos(2kmz + φ) +
δ0, where δ0 = 2�2

m/�m is the spatially homogeneous Stark
shift, with �m = ωm − ω32 being the frequency detuning and
�m � �m [see Fig. 1(b)]. Therefore, a 1D complex photonic
lattice with modulations of the dispersion and absorption is
generated in the vapor cell. The period of the lattice is Λ =
λc/[2 cos θc].

When two weak probe beams enter the lattice from the
left (forward) and right (backward) sides, they experience spa-
tially periodic modulations of the dispersion and absorption,
and first-order Bragg (λp ≈ 2Λ) reflected fields are generated
and detected by two photodetectors (PDs) [see Fig. 1(a)]. The
two probe beams are aligned parallel with a small distance
between them so that they do not interfere. In the experiment,
the e−2 full widths of the coupling and modulating beams are
both 2.5 mm. The e−2 full widths of the probe beams are
0.9 mm, and they are fully covered by the two standing-wave
beams in the vapor cell.

Under the rotating-wave approximation, the effective
Hamiltonian of the system in a rotating frame is

Heff/h̄ = −�peikpz|3〉〈1| − 2�c cos(kcz)|3〉〈2|
+ [δ0 cos(2kmz + φ) + δ0 − �pc]|2〉〈2|
− [δ0 cos(2kmz + φ) + δ0 + �p]|3〉〈3| + H.c., (1)

where �pc = �p − �c is the two-photon detuning. The third
and fourth terms are the ac Stark shifts ±[δ0 cos(2kmz + φ) +

043712-2



UNIDIRECTIONAL REFLECTIONLESS … PHYSICAL REVIEW A 105, 043712 (2022)

δ0] induced by the modulating field on levels |2〉 and |3〉,
respectively [see Fig. 1(b)].

The spatial susceptibility χ for the probe field can be
obtained through the standard density-matrix formalism (see
Appendix A). Due to the thermal atomic motion in the system,
the susceptibility at position z is contributed by atoms with
different velocities v,

χ (z) = N |μ31|2
ε0 h̄�p

+∞∑
n=−∞

e−2inkcz
∫ +∞

−∞
f (v)ρ[n]

31 (v)dv, (2)

where ρ
[n]
31 (v) is the Fourier coefficient of the density matrix,

N is the atomic density, μ31 is the relevant dipole moment
of transition |1〉 ↔ |3〉, ε0 is the permittivity in vacuum, and
f (v) = e−v2/u2

/
√

πu is Maxwell’s velocity distribution func-
tion, with u being the most probable speed. The real (Reχ )
and imaginary (Imχ ) parts of the susceptibility represent the
spatial dispersion and absorption of the lattice, respectively.
The effect of the thermal atomic motion on the spatial suscep-
tibility is discussed in Appendix C.

III. ANTI-PT -SYMMETRIC PHOTONIC LATTICES

In the experiment, the detuning and Rabi frequency of
the modulating field are �m = 50� and �m = 6.67�, so the
spatially homogeneous Stark shift δ0 = 2�2

m/�m = 1.78�.
Figures 2(a) and 2(b) show the calculated spatial susceptibili-
ties with �p = −δ0 for φ = π/2 and φ = 3π/2, respectively.
At these two phases, Reχ (Imχ ) is an odd (even) function of
position, indicating that an anti-PT -symmetric lattice χ (z) =
−χ∗(−z) can be established in such an atomic configuration.
The period and position of the lattice are determined by the
standing-wave pattern. Here the z = 0 point is defined at
one of the nodes of the standing-wave coupling field, and
it does not affect the anti-PT symmetry of the lattice (see
Appendix C). We discuss the influence of two standing-wave
fields on the lattice in three cases, namely, with both standing-
wave fields, with only the coupling field, and with only the
modulating field. We find that when both fields exist, Reχ
(Imχ ) almost overlaps with that when only the modulating
(coupling) field exists. This means that the spatial absorption
(dispersion) modulation of the lattice is mainly determined by
the coupling (modulating) field. The phase φ determines the
spatial phase difference between Reχ and Imχ of the lattice,
which exhibits its advantage in constructing reconfigurable
and tunable non-Hermitian lattices.

The spatial susceptibility that governs the first-order Bragg
reflection of the probe field on the lattice can be written
as [43,44]

χ ≈ iχi0 + χr0 + iχi cos(2kcz) + χr cos(2kmz + φ), (3)

where χi0, χr0, χi, and χr are the positive Fourier coefficients
and can be numerically calculated (see Appendix B). χi0 and
χr0 are the constant background absorption and dispersion
coefficients, respectively. χi and χr are the modulation am-
plitudes of the absorption and dispersion, respectively.

The modulation amplitudes χi and χr can be tuned by the
coupling and modulating fields. Figure 2(c) shows χi and χr

versus �c and �2
m/�m for φ = π/2. There are two surfaces,

χi(�c,�
2
m/�m) and χr (�c,�

2
m/�m), in the parameter space

FIG. 2. The spatial susceptibilities for (a) φ = π/2 and (b) φ =
3π/2. The top panels in (a) and (b) show the relative position of
the standing-wave coupling-field (red back) and modulating-field
(blue front) envelopes. The bottom panels in (a) and (b) show the
corresponding spatial susceptibilities in three cases. (i) When both
standing-wave fields exist, Reχ is represented by the thick blue
dashed lines, and Imχ is represented by the red solid lines. (ii)
When only the coupling field exists, Imχ is represented by the
thin red dashed lines. (iii) When only the modulating field ex-
ists, Reχ is denoted by the blue dotted lines. The parameters are
as follows: (i) �c = 0.65�, �m = 6.67�, �m = 50�, δ0 = 1.78�,
�c = −2δ0 = −3.56�, and �p = −δ0 = −1.78�; (ii) �c = 0.65�,
�m = 0, �c = 0, and �p = 0; and (iii) �c = 0, �m = 6.67�, �m =
50�, δ0 = 1.78�, �c = 0, and �p = −δ0 = −1.78�. (c) Modula-
tion amplitudes of dispersion (χr) and absorption (χi) versus �c

and �2
m/�m for φ = π/2. The detunings are �p = −2�2

m/�m and
�c = −4�2

m/�m. The violet dot in the intersection line represents
one EP (�c = 0.65�,�2

m/�m = 0.89�).

(�c,�
2
m/�m), from which we can see that the dispersion χi

and absorption χr mainly depend on �c and �m, respectively.
χi (χr ) increases with �c (�m) and changes little with �m

(�c). The two surfaces of χi and χr have an intersection
line where χi is equal to χr . As we will discuss below,
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this line is responsible for the unidirectional reflectionless
propagation.

IV. PHASE TRANSITION OF THE SCATTERING MATRIX

The anti-PT -symmetric lattice can be probed by the for-
ward and backward probe fields, which are incident into the
lattice from the left and right sides, respectively. The scatter-
ing on the lattice can be described by the scattering matrix S,
which relates the output electric fields (Eb

L, E f
R ) to the input

electric fields (Eb
R, E f

L ) [see Fig. 1(d)],
[

Eb
L

E f
R

]
=

[
tR rL

rR tL

][
Eb

R

E f
L

]
= S

[
Eb

R

E f
L

]
, (4)

where the subscript L (R) represents the fields on the left
(right) side of the lattice and superscript f (b) denotes the
forward (backward) fields. rL(R) and tL(R) are the reflection and
transmission coefficients for incidence from the left (right).
They can be analytically obtained by solving coupled-mode
equations (see Appendix B). The scattering matrix of the
anti-PT -symmetric lattice (at φ = π/2) can be written as

S = 1

Z

⎡
⎣

√
4χ2

i0 − χ2
i + χ2

r (χr − χi ) sinh(ξL)

−(χr + χi ) sinh(ξL)
√

4χ2
i0 − χ2

i + χ2
r

⎤
⎦, (5)

where Z =
√

4χ2
i0 − χ2

i + χ2
r cos(ξL) + 2χi0 sinh(ξL) and

ξ = (kp/4n2
0)

√
4χ2

i0 − χ2
i + χ2

r . L is the length of the lattice,

and n0 = √
1 + χr0 is the background refractive index. Al-

though the scattering matrix S is non-Hermitian (S† �= S), it
satisfies the pseudo-Hermitian condition η−1Sη = S† [40,60],
with η = σx being the Pauli matrix.

The eigenvalues of S are given by

s± = 4n2
0ξ/(kpZ ) ± sinh(ξL)

√
χ2

i − χ2
r /Z, (6)

which can be real or complex depending on the relation be-
tween χi and χr , tunable with �c and �m [see Fig. 2(c)].
In Figs. 3(a) and 3(b), we show Res± and Ims± as func-
tions of �c and �2

m/�m. One specific case of �2
m/�m =

0.89� [white lines in Figs. 3(a) and 3(b)] is highlighted
in Figs. 3(c) and 3(d). From these plots, we can see that
s± are complex-conjugate pairs s± = s∗

∓ when �c < 0.65�

(χi < χr). In contrast, s± are both real when �c > 0.65�

(χi > χr). The phase transition occurs at �c = 0.65� (χi =
χr) with s+ = s−, which indicates an EP. We define the EP
as �EP

c = 0.65�. At the EP, the reflection coefficients rL = 0
and rR �= 0 [see Eq. (5)], which represent the unidirectional
reflectionless propagation. From Figs. 3(a) and 3(b), we can
see a line where s+ = s−. Each point on this line represents
one EP. This line, therefore, is called an exceptional line.

The unidirectional reflectionless propagation can be un-
derstood from the wave-vector matching condition [17]. At
φ = π/2 and χi = χr , the modulation of the susceptibility is
�χ ∼ iχi cos(2kcz) − χr sin(2kcz) = iχie2ikcz, which offers a
unidirectional wave vector q = 2kcẑ along the +z axis. The
wave-vector matching condition for the reflection on the lat-
tice is kr = kp + q, where kp and kr are the wave vectors of
the incident probe field and the reflected field, respectively.

FIG. 3. The phase transition of the scattering matrix. (a) Res±
and (b) Ims± versus �c and �2

m/�m. (c) Res± and (d) Ims± ver-
sus �c for �2

m/�m = 0.89�. EPs (�c = 0.65�, �2
m/�m = 0.89�)

are marked by the blue dots. Other parameters are the same as in
Fig. 2(c).

The wave-vector matching condition is satisfied only for the
backward probe field with the wave vector −kpẑ, i.e., kr =
2kcẑ − kpẑ ≈ kpẑ, giving rise to the unidirectional reflection-
less propagation for the forward probe field (rL = 0 and rR �=
0). In contrast, at φ = 3π/2, the unidirectional wave vector is
q = −2kcẑ, which is along the −z axis. In this case, the wave-
vector matching condition is satisfied only for the forward
probe field with the wave vector kpẑ, i.e., kr = −2kcẑ + kpẑ ≈
−kpẑ, leading to the unidirectional reflectionless propagation
for the backward probe field (rR = 0 and rL �= 0). Therefore,
we can adjust the phase φ to control the unidirectional wave
vector to change the direction of unidirectional reflectionless
propagation.

V. OBSERVATION OF THE UNIDIRECTIONAL
REFLECTIONLESS PROPAGATION AT EPs

The reflection spectra in the two opposite directions are
detected by two photodetectors, PD1 and PD2 [see Fig. 1(a)].
The reflection spectra for φ = π/2 and 3π/2 are shown in
Figs. 4(a) and 4(b), respectively. We can see that the reflec-
tion spectra display a significant asymmetry. The reflectivity
RL(= |rL|2) < RR(= |rR|2) for φ = π/2, while RL > RR for
φ = 3π/2. Especially, we observe the fully unidirectional
reflection at the probe detuning �p = −δ0 = −1.78� [or-
ange circles in Figs. 4(a) and 4(b)]. We can see that RL = 0
for φ = π/2, while RR = 0 for φ = 3π/2. Therefore, the
unidirectional reflection indicates the existence of the anti-
PT -symmetric photonic lattice in the vapor cell [see Figs. 2(a)
and 2(b)]. The transmissivities are always equal, i.e., TL(=
|tL|2) = TR(= |tR|2) for any value of φ (not shown), indicating
the optical reciprocity. The theoretical simulations of RL and
RR are calculated using the transfer-matrix method [43,61].
The discrepancies between the experimental data and theoret-
ical simulations result from Gaussian rather than plane-wave
profiles of the laser fields, inhomogeneous profile of the lattice
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FIG. 4. Experimental data and theoretical simulations of reflec-
tion spectra for (a) φ = π/2 and (b) φ = 3π/2. The orange circles
mark the unidirectional reflection at �p = −δ0 = −1.78�. (c) RL

and RR versus φ for �p = −1.78�. The dots are experimental data
for RL (black dots) and RR (green dots). The error bars are obtained
by four independent measurements. The red dotted lines (blue dashed
lines) are numerical simulations for RL (RR). Experimental parame-
ters are Pp = 20 μW, Pc = 0.56 mW, Pm = 48 mW, �c = −3.56�,
�m = 6.67�, and �m = 50�. Theoretical parameters are �c =
0.65�, �c = −3.56�, �m = 6.67�, and �m = 50�. The weak re-
flectivity is due to the low power of the coupling field.

[see Fig. 1(c)], the loss on the windows of the vapor cell, and
asymmetric optical alignment.

To investigate the influence of φ on the reflections, we plot
RL and RR versus φ for �p = −1.78� in Fig. 4(c). We can
see that RL and RR strongly depend on the phase φ. It is found
that RL and RR satisfy the relation RL(φ) = RR(2π − φ). The
symmetric reflections (RL = RR) occur at only φ = 0 and π .
With the increase of φ from 0 to π/2, RL decreases to zero,
while RR increases to the maximum. When φ increases from
π/2 to π , RL and RR gradually become the same again. The
fully unidirectional reflection can be realized when φ = π/2
(RL = 0) and φ = 3π/2 (RR = 0).

To further examine how the phase φ affects the reflections
for �p �= −1.78�, we plot the reflection spectra for different
phases in Fig. 5. We see that the unidirectional reflection
can be observed even when the phase φ is not exactly π/2
or 3π/2, with a probe detuning �p different from −1.78�.
Therefore, we can obtain the unidirectional reflectionless
propagation within a range of probe frequencies by tuning the
phase φ.

Owing to the dependence of χi on �c, the EP can be
accessed by tuning �c. When χi = χr , the anti-PT -symmetric
lattice reaches an EP, where the unidirectional reflection can
be observed. In Fig. 6(a), we plot the reflectivities RL and RR

FIG. 5. Reflection spectra with different phases. (a) and (b) Ex-
perimental data. (c) and (d) Theoretical simulations. The experimen-
tal and theoretical parameters are the same as in Fig. 4.

versus �c for �p = −1.78� at φ = π/2. It is seen that RL

and RR change in a different way when �c is increased from
0 to 1.2�. When the coupling field is absent, i.e., �c = 0, we
observe symmetric reflections (RL = RR). When we increase
�c, RR increases gradually, while RL first decreases and then
increases. We observe RL = 0 when �c = 0.65�, i.e., at the
EP �EP

c .
In Fig. 6(b), the dependence of �EP

c on �2
m/�m is plot-

ted, where the theoretical line represents χi(�c,�
2
m/�m) =

χr (�c,�
2
m/�m), as shown by the white line in Fig. 2(c). It

can be seen that the unidirectional reflection is observable on
this line. Therefore, an exceptional line is achieved in this
system. Furthermore, if more parameters that affect �EP

c are
considered, we can realize high-dimensional EPs, such as an
exceptional surface [62] and an exceptional volume.

VI. CONCLUSION

In conclusion, we have experimentally demonstrated an
anti-PT -symmetric photonic lattice in a thermal atomic
medium. This lattice is achieved by controlling the spatial
phase difference φ between the standing-wave coupling and
modulating fields. Unidirectional reflectionless light propa-
gation, the key property of the anti-PT -symmetric photonic
lattice, is observed at EPs. Thanks to the multiple tunable pa-
rameters in our system, an exceptional line is achieved in the
experiment. The anti-PT -symmetric lattice can be extended
to two-dimensional lattices and used to study other exotic
effects, including coherent perfect absorption [63] and non-
reciprocal diffraction [59,64]. We envision that our approach
could be readily extended to the fields of acoustics [14–17],
plasmonics, and photonics [1], and it provides a platform for
non-Hermitian physics and potential applications [2], such as
dynamically circling EPs [25,65], phase-dependent nonlinear
dynamics, and quantum simulations using superradiance lat-
tices [56,66].
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FIG. 6. Experimental observations of the EP and exceptional
line. (a) RL and RR versus �c for φ = π/2 and �p = −1.78�. The
dots are experimental data for RL (black dots) and RR (green dots).
The error bars are obtained by 10 independent measurements. The
red dotted (blue dashed) line represents the numerical simulation for
RL (RR). The EP is marked at �c = 0.65�, where RL = 0. (b) Experi-
mental measurement of the exceptional line, i.e., �EP

c versus �2
m/�m.

The detunings are kept as �p = −2�2
m/�m and �c = −4�2

m/�m.
The phase is kept as φ = π/2. The experimental results are repre-
sented by the dots. The error bars are obtained by 10 independent
measurements. The large error bars are due to the insensitivity of RL

on �c near the EP. The solid line is the projection of the intersection
line [the white line in Fig. 2(c)] of the two surfaces χi(�c, �

2
m/�m )

and χr (�c, �
2
m/�m ) in the plane (�c, �

2
m/�m).
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APPENDIX A: SPATIAL SUSCEPTIBILITY

The Liouville equation of motion for an atom with velocity
v along the z axis can be written as [67]

dρ(v, z, t )

dt
= − i

h̄
[Heff , ρ(v, z, t )] + Lρ(v, z, t ), (A1)

where d/dt = ∂/∂t + v∂/∂z and Lρ denotes the additional
decay rates and dephasing terms. Substituting Heff into this
equation, we obtain the equations of motion for the density

matrix elements

dρ22

dt
= i2�c cos(kcz)(ρ32 − ρ23) + �32ρ33, (A2a)

dρ33

dt
= i�peikpzρ13 − i�pe−ikpzρ31 + 2i�c cos(kcz)(ρ23 − ρ32)

− (�31 + �32)ρ33, (A2b)

dρ11

dt
= i�pe−ikpzρ31 − i�peikpzρ13 + �31ρ33, (A2c)

dρ23

dt
= {−i[�c + 2δ(z, φ)] − γ23}ρ23 − i�pe−ikpzρ21

+ i2�c cos(kcz)(ρ33 − ρ22), (A2d)

dρ31

dt
= {i[�p + δ(z, φ)] − γ31}ρ31 + i2�c cos(kcz)ρ21

−i�peikpzρ33 + i�peikpzρ11, (A2e)

dρ21

dt
= {i[�pc − δ(z, φ)] − γ21}ρ21 + i2�c cos(kcz)ρ31

− i�peikpzρ23, (A2f)

where γ31 = (�31 + �32 + γ3)/2, γ21 = γ2/2, and γ23 =
(�31 + �32 + γ3 + γ2)/2 are the decoherence rates. �i j is the
decay rate from |i〉 to | j〉, and γi is the dephasing rate of level
|i〉, with i, j = 1, 2, 3. The Rabi frequencies �p and �c are
both real. In the weak-probe limit �p � �c, we have ρ11 ≈ 1,
ρ33 = ρ22 = ρ23 = 0. In the steady state (∂ρi j/∂t = 0), the
relevant equations are

v
∂ρ31

∂z
= {i[�p + δ(z, φ)] − γ31}ρ31

+ i2�c cos(kcz)ρ21 + i�peikpz, (A3a)

v
∂ρ21

∂z
= {i[�pc − δ(z, φ)] − γ21}ρ21

+ i2�c cos(kcz)ρ31. (A3b)

To solve these two equations, we expand the density-matrix
elements to different Fourier components,

ρ31(v, z) = eikpz
+∞∑

n=−∞
ρ

[n]
31 (v)e−2inkcz, (A4a)

ρ21(v, z) = eikpz
+∞∑

n=−∞
ρ

[n]
21 (v)e−i(2n+1)kcz, (A4b)

where ρ
[n]
31 and ρ

[n]
21 are the Fourier coefficients of ρ31 and

ρ21, with ∂ρ
[n]
i1 /∂z = 0, i = 2, 3. Then we obtain two coupled

equations,

(�̃31 + 2inkcv)ρ[n]
31 + i

δ0

2
eiφρ

[n+1]
31 + i

δ0

2
e−iφρ

[n−1]
31

+ i�cρ
[n]
21 + i�cρ

[n−1]
21 + i�pδn,0 = 0, (A5a)

[�̃21 + i(2n + 1)kcv]ρ[n]
21 − i

δ0

2
eiφρ

[n+1]
21

− i
δ0

2
e−iφρ

[n−1]
21 + i�cρ

[n]
31 + i�cρ

[n+1]
31 = 0, (A5b)

where �̃31 = i(δ0 + �p − kpv) − γ31 and �̃21 = i(�pc −
δ0 − kpv) − γ21.ρ

[n]
31 can be solved numerically through the
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two equations, where n is truncated at 30 in the numerical cal-
culation. We take γ31 = γ23 = � in the theoretical calculation.
The average susceptibility can be expressed as the Doppler
integral of the Fourier coefficient ρ31 [see Eq. (2) in the main
text].

When atoms are static (v = 0), the left terms in Eq. (A3)
are zero. Then we obtain the analytical expression for the
susceptibility,

χ (z) = N |μ31|2
ε0h̄�peikpz

ρ31

= N |μ31|2
ε0 h̄

1

−[�p + δ(z, φ)] − iγ31 + 4�2
c cos(kcz)

−[�pc−δ(z,φ)]+iγ21

.

(A6)

This is the standard susceptibility for a standing-wave coupled
EIT system, except for the shifted detunings on �p and �pc

due to the ac Stark shifts of the modulating field. The analyti-
cal equation is the same as the numerical simulation (2) in the
main text when v → 0.

APPENDIX B: COUPLED-MODE EQUATIONS

The Fourier coefficients χi0, χr0, χi, and χr can be obtained
through

χi0 = − 1

Λ

∫ Λ

0
iχ (z)dz, (B1a)

χr0 = 1

Λ

∫ Λ

0
χ (z)dz, (B1b)

χi = − 2

Λ

∫ Λ

0
iχ (z) cos(2kcz)dz, (B1c)

χr = 2

Λ

∫ Λ

0
χ (z) cos(2kcz + φ)dz, (B1d)

where χ (z) is given in Eq. (2). These coefficients are used
to obtain the analytical expressions of the reflection and
transmission coefficients through coupled-mode equations.
The eigenmodes in the lattice can be written as Ep(z) =
E f (z)eikpz + Eb(z)e−ikpz, where kp = n0ωp/c is the z compo-
nent of the wave vector of the probe field and E f (z) [Eb(z)]
denotes the forward (backward) mode in the lattice. Ep(z)
obeys the 1D Helmholtz equation

dEp

dz
+ ω2

p

c2
n2(z)Ep = 0, (B2)

where

n2(z) = 1 + χ ≈ 1 + iχi0 + χr0

+ iχi cos(2kcz) + χr cos(2kmz + φ)

= n2
0 + iχi0 + iχi cos(2kcz) + χr cos(2kmz + φ),

(B3)

with n0 = √
1 + χr0. Substituting Ep(z) and n2(z) into the

Helmholtz equation, considering the slowly varying approx-
imation (d2E f ,b/dz2 � kpdE f ,b/dz), we obtain

dE f

dz
= −kpχi0

2n2
0

E f + kp(iχreiφ − χi )

4n2
0

Ebe−i�kz, (B4a)

dEb

dz
= kpχi0

2n2
0

Eb − kp(iχre−iφ − χi )

4n2
0

E f ei�kz, (B4b)

where �k = 2kp − 2kc. Using the perfect phase-matching
condition �k = 0, we obtain the coupled-mode equations

d

dz

[E f

Eb

]
= kp

4n2
0

[−2χi0 κb→ f

κ f →b 2χi0

][E f

Eb

]
= N

[E f

Eb

]
, (B5)

where χi0 denotes the attenuation coefficient of the two modes
in the lattice, and the off-diagonal element κb→ f = iχreiφ −
χi (κ f →b = −iχre−iφ + χi) denotes the phase-dependent cou-
pling coefficient from the backward (forward) to forward
(backward) mode. Then we have[E f (z)

Eb(z)

]
= eNz

[E f (0)
Eb(0)

]
= M(z)

[E f (0)
Eb(0)

]
, (B6)

where M(z) is the transfer matrix and can be written in 2 × 2
matrix form,

M(z) =
[

M11(z) M12(z)
M21(z) M22(z)

]
. (B7)

The four matrix elements are

M11(z) = cosh(ξz) − kpχi0

2n2
0ξ

sinh(ξz), (B8a)

M12(z) = kpκb→ f

4n2
0ξ

sinh(ξz), (B8b)

M21(z) = kpκ f →b

4n2
0ξ

sinh(ξz), (B8c)

M22(z) = cosh(ξz) + kpχi0

2n2
0ξ

sinh(ξz), (B8d)

where ξ = (kp/4n2
0)

√
4χ2

i0 − χ2
i + χ2

r + 2iχiχr cos φ. With
the boundary conditions E f (0) = E0, Eb(L) = 0 and Eb(L) =
E0, E f (0) = 0, we can obtain the reflection and transmission
coefficients

rL = −M21(L)

M22(L)
= − (χi − iχr cos φ − χr sin φ) sinh(ξL)(

4n2
0ξ/kp

)
cosh(ξL) + 2χi0 sinh(ξL)

,

(B9a)

rR = M12(L)

M22(L)
= − (χi − iχr cos φ + χr sin φ) sinh(ξL)(

4n2
0ξ/kp

)
cosh(ξL) + 2χi0 sinh(ξL)

,

(B9b)

tL = tR = t = 1

M22(L)
= 2n2

0ξ

2n2
0ξ cosh(ξL) + kpχi0 sinh(ξL)

.

(B9c)

The unidirectional reflectionless propagation can also be
understood from the unidirectional coupling. When φ = 0 and
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FIG. 7. The anti-PT -symmetric susceptibility for different tem-
peratures T . (a) T = 0 K. (b) T = 0.1 K. (c) T = 1 K. Other
parameters are the same as in Fig. 2(a) in the main text.

φ = π , we have |κb→ f | = |κ f →b|. In this case, we have sym-
metric reflections (rL = rR). When φ �= 0 or π , the coupling
coefficients are different, i.e., κb→ f �= κ f →b, which leads to
asymmetric reflections (rL �= rR). Interestingly, at the anti-PT
symmetric condition φ = π/2, the coupling coefficients are
κb→ f = −χr − χi and κ f →b = χi − χr , respectively. The uni-
directional coupling occurs at χi = χr , where κ f →b = 0 and
κb→ f �= 0. Therefore, the unidirectional coupling leads to the
unidirectional reflectionless propagation for the forward probe
field (rL = 0 and rR �= 0). In the same way, at φ = 3π/2,
the unidirectional coupling (κb→ f = 0 and κ f →b �= 0) leads to
the unidirectional reflectionless propagation for the backward
probe field (rR = 0 and rL �= 0).

APPENDIX C: THE EFFECT OF DOPPLER BROADENING

The Doppler broadening plays an important role in this
system due to the thermal atomic motion. To investigate the
effect of Doppler broadening, we calculate the spatial suscep-
tibility for different temperatures, which determine the widths
of Doppler broadening. Meanwhile, we assume the atomic
density is invariant. In Fig. 7, we plot the spatial susceptibil-
ities for three different temperatures (T = 0 K, T = 0.1 K,
T = 1 K), where probe detuning and phase are kept at �p =
−1.78� and φ = π/2. The widths of Doppler broadening
kcu are 0, 0.86�, and 2.7�, respectively. With the increas-
ing temperature (i.e., Doppler broadening), the modulation of

FIG. 8. The reflectivity RL versus �c for different temperatures.
T = 0 K (solid line), T = 0.1 K (dashed line), and T = 1 K (dotted
line). The inset highlights zero points of RL . EPs are �EP

c = 1.92�

(T = 0 K), 1.41� (T = 0.1 K), and 0.73� (T = 1 K).

the susceptibility becomes smaller, and the profile becomes
smoother. This property has been analyzed in [67]. When we
increase the temperature from 1 K to room temperature, the
modulation amplitude decreases, and the profile almost does
not change [see Fig. 2(a)].

It can be seen that the Doppler broadening changes the
amplitudes of the susceptibility but not the symmetry of the
lattice. In other words, the anti-PT -symmetric susceptibility
χ (z) = −χ∗(−z) is independent of the Doppler broadening.
Actually, it is the spatial phase difference φ = π/2 (or 3π/2)
between the two standing-wave fields that determines the
anti-PT symmetry of the lattice. In addition, the anti-PT
symmetry does not depend on the choice of z = 0 either. We
can choose z = ±0.5Λ as the zero point, where the relation
χ (z) = −χ∗(−z) is also satisfied.

Due to the changes in the susceptibility under the Doppler
broadening, the EP may be different. To show the influence
of Doppler broadening on the EP, we plot the reflectivity
RL versus �c for different temperatures with �p = −1.78�

and φ = π/2 in Fig. 8. We can see that the EP changes
with the temperature. The EPs are �EP

c = 1.92� (T = 0 K),
1.41� (T = 0.1 K), and 0.73� (T = 1 K), respectively.
Therefore, �EP

c decreases with the increase of the Doppler
broadening.

In summary, the Doppler broadening changes the ampli-
tude of the spatial susceptibility and the EP, but it does not
affect the anti-PT symmetry of the susceptibility. Therefore,
the anti-PT -symmetric photonic lattice can also be realized in
homogeneous cold atoms, and the unidirectional reflectionless
light propagation can be observed.
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