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The unitary transformation method is used to study the properties of the polaritonic states and Bose-Einstein
condensation in the Rabi lattice model, where the on-site two-level systems (TLSs) are coupled with the intersite
hopping photons. It is shown that the counter-rotating coupling (CRC) between TLS and photon, which breaks
down the conservation of the excitation numbers, may induce a long-range Ising-like interaction among intersite
TLSs. We have shown that the coupled TLSs and photons are hybridized to form the polaritonic states, and the
corresponding ground state and polaritonic excitation spectra are calculated by diagonalizing our transformed
Hamiltonian. When the photon hopping J is weak, the excitation spectrum is gapped. But the gap decreases
with increasing J , and at critical value J = Jc the gap becomes zero at the � point and the ground state becomes
instable. Thus, Jc is the phase transition point where the polaritons are condensed at the � point to form the
delocalized superradiant phase. The results show that the larger detuning between TLS and photon favors the
disorder insulator phase, which requires the stronger Jc to get the long-range order phase. The phase diagram
of the delocalized superradiant phase transition has been obtained where there are no Mott lobes since the
CRC breaks down the number conservation. The ground state and the excitation spectra of the delocalized
superradiant phase are also calculated. It is shown that in the delocalized superradiant state the order parameter
is the nonzero ground-state average of the photon annihilation operator. The polaritonic excitation has a finite
excitation gap because the CRC breaks down the number conservation but leaves only a discrete symmetry, the
parity conservation.
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I. INTRODUCTION

The quantum Rabi model is a milestone to depict the basic
light-matter interaction processes in nature with the applica-
tions in quantum optics, the cold-atom systems and strongly
correlated systems. It describes a two-level system (TLS)
coupled coherently with a bosonic cavity field [1]. Despite
the simplicity of the Rabi model, it presents a rich variety of
interesting phenomena, such as the Josephson junction [2] and
the Bloch-Siegert shift [3]. The Hamiltonian ĤR of the Rabi
model reads

ĤR =εσ̂+σ̂− + ωb̂†b̂ + gσ̂ x(b̂† + b̂), (1)

where the TLS is represented by the Pauli matrices σ̂±, with
the atom-photon coupling g, and b̂†

i (b̂i ) is the creation (annihi-
lation) operator of the single-mode cavity with the frequency
ω. The counter-rotating coupling (CRC) terms in the Rabi
model are given by

ĤCRC =g(σ̂+b̂† + σ̂−b̂). (2)

It is well known that the Rabi model is reduced to the
Jaynes-Cummings (JC) model [4] by the rotating-wave ap-
proximation (RWA), i.e., the neglect of the CRC terms, when
the coupling between the TLS and photon is relatively weak.
Due to the conservation of the polariton number N̂ = b̂†b̂ +
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σ̂+σ̂−, the JC model is solvable. When the coupling between
photons and TLSs is comparable or larger than all decoher-
ence rates, the system can be regarded in the strong-coupling
regime. In this regime, the JC model can describe several
experiments such as the vacuum Rabi oscillations in Rydberg
atoms [5]. The achievements in circuit quantum electrody-
namics allow realizing the ultrastrong-coupling (USC) regime
[6,7], where the rate between the coupling strength and photon
frequency reaches g/ω � 0.1. In the USC regime, the RWA is
not valid anymore, and the counter-rotating terms would in-
evitably be expressed and lead to novel features [3]. Moreover,
the photonic analog simulator of the quantum Rabi model is
realized in the deep strong-coupling regime [8,9], where the
rate reaches g/ω � 1.

In an experiment of trapped ions or ultracold atoms, the
Rabi systems can couple together by tunneling of photons
to form the Rabi lattice model (RLM). Recently, Mei et al.
report an experimental realization of the Rabi-Hubbard model
using trapped ions and present a controlled study of its
equilibrium properties and quantum dynamics [10], where
the Rabi-Hubbard model has the same Hamiltonian as the
RLM we studied here, except for the long-range hopping
decaying inverse cubically with the distance. With the rela-
tively large distance between the cavities, the quantum optical
systems allow for a high level of measurement and manip-
ulation of individual cavities at the quantum level [11–14].
Therefore, the RLM can serve as a quantum simulator to
understand the emergent phenomena in strongly interacting
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FIG. 1. Schematic of the Rabi lattice model in a two-dimensional
square lattice. In each site, there is a cavity with the photon hopping
strength J between the nearest-neighbor cavity. Each cavity is cou-
pled with a two-level system.

condensed-matter systems [8,15–21]. The RLM involves two
characteristic energy scales, the TLS energy split ε and
the photon frequency ω, which provide an additional ex-
perimentally accessible detuning parameter � = ε − ω. The
two-component nature also furnishes rich physics, where the
inherently combined photonic-atomic excitations enter entan-
gled quantum states [22–24]. The composite nature of the
polariton motivates us to build an effective polariton picture
to understand all the unique features in the RLM. A theoret-
ical method to illustrate the polaritonic excitation behavior is
required.

The RLM is described by the Hamiltonian Ĥ :

Ĥ =
∑

i

ĤR
i − J

∑
〈i, j〉

(b̂†
i b̂ j + b̂†

j b̂i ), (3)

with the hopping strength J between nearest-neighbor cav-
ities with i and j. A schematic of the RLM is shown in
Fig. 1. Due to the phenomenon of photon blockade [25,26],
the atom-photon coupling leads to an effective repulsion be-
tween photons. Under the RWA, the RLM reduces to the JC
lattice model (JCLM), and the system undergoes a quantum
transition from Mott insulator to superfluid phase [16,27].
In the insulator phase, the polaritons localize on each site,
while the polaritons delocalize across the lattice to form a
Bose-Einstein condensate in the superfluid phase. The im-
portant feature in RWA is the conservation of the polariton
number. The JCLM is invariant under the generalized rotation
operator, R̂(θ ) = ∏N

i exp[iθ (b̂†
i b̂i + σ̂+

i σ̂−
i )], which means it

exhibits continuous global U (1) symmetry. Akin to the Bose-
Hubbard systems, the phase diagram exhibits a similar lobe
structure, which is confirmed by both numerical and ana-
lytical methods [16,22,23,27]. Low-lying hole and particle
polaritonic excitations are explored beyond the mean-field
approximation [22–24,28,29].

Although the RLM shares some properties with the JCLM,
the remarkable qualitative difference in RLM is the CRC
term breaks the conservation of the polariton number and
reduces the symmetry from U (1) to discrete global Z2 symme-
try [30,31], with the parity operator P̂ = ∏N

i exp[iπ (b̂†
i b̂i +

σ̂+
i σ̂−

i )]. The different properties of symmetry between RLM
and JCLM consequently change the phase diagram and the
polaritonic excitation behavior. In the JCLM, the state that
breaks the U (1) symmetry has a nonzero superfluid density,

and the delocalized phase is characterized as the superfluid
phase [16,27]. While the CRC terms in the RLM leave the
system with a discrete Z2 symmetry, the superfluid phase
is replaced by the delocalized superradiant phase according
to Refs. [32,33]. Numerical methods, such as density-matrix
renormalization group [34] or quantum Monte Carlo simula-
tions [35], are used to study the quantum phase transition in
the RLM, while most results are restricted to one-dimensional
systems with finite sites which are far away from the thermo-
dynamic limit.

This paper is motivated by the previous paper Ref. [30],
while we propose a clearer polaritonic excitation picture to
understand this quantum phase transition from insulator to de-
localized superradiant phase and introduce the parameter m =
〈G|â†â|G〉 to describe the quantum fluctuation of the TLS on
the ground state. The CRC induces a long-range Ising-like
interaction among intersite TLSs. Through the Bogoliubov
transformation, the transformed Hamiltonian is diagonalized,
and coupled TLSs and photons are hybridized to form the
polaritonic states. When the photon hopping J is weak, the
system is in the insulator phase and the excitation spectrum
is gapped. But the gap closes at critical value J = Jc and the
ground state becomes instable. Thus, Jc is the phase transition
point where the polaritons are condensed at the � point to
form the delocalized superradiant phase. As the quantum fluc-
tuation is important around the critical point, the introduced
parameter m further improves the approximation method used
in Ref. [30]. The results show that the phase boundary is
dependent on the parameter m, in Sec. II.

In this paper, we demonstrate the polaritonic excitation
behaviors and insulator-to-superradiant phase quantum phase
transition in much broad parameter space beyond the reso-
nance case ε = ω in Ref. [30]. The quantitative research of
off-resonant situations illustrates the influence of detuning
on the phase transition boundary. Larger detuning indicates
a stronger transverse field, which favors the local disorder
phase. Thus, the increase of the relative detuning contributes
to the stronger fluctuations, and the higher critical hopping
coupling Jc to reach the long-range order phase. Additionally,
our results show in the strong-coupling case that the RLM
reduces to the transverse field Ising model, which indicates
that the insulator-to-superradiant phase transition belongs to
the Ising university class. Comparing with mean-field theory
(MFT) and strong-coupling limit results, we confirm the va-
lidity of our method.

This paper is organized as follows. In Sec. II, we in-
troduce the unitary transformations to study the strongly
correlated effects in the RLM, while maintaining the CRC
terms in the intrasite coupling. In Sec. III, the Bogoliubov
transformation is used to diagonalize the transformed Hamil-
tonian of the RLM. The corresponding ground state and
polaritonic excitation spectra in the insulator phase are cal-
culated. The Bose-Einstein condensation of the polaritons
triggers insulator-to-superradiant quantum phase transition.
The equations to determine the parameters of unitary trans-
formation are solved numerically, in Sec. IV. Then, the
phase boundary of the quantum phase transition is ob-
tained, and the results are compared with the mean-field
and strong-coupling results. In Sec. V, we introduce another
transformation R̂ to displace the k = 0 mode. The gapped
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excitation in the delocalized superradiant phase and the order
parameter are explored. Finally, we conclude our paper in
Sec. VI.

II. UNITARY TRANSFORMATION METHOD

In order to take into account the effect of CRC terms, we
perform the displaced transformation Ŝ1 and the squeezing
transformation Ŝ2 on Ĥ , where

Ŝ1 = 1√
N

∑
k

∑
i

gξk

ωk
σ̂ x

i (b̂†
−k − b̂k)e−ikri , (4)

Ŝ2 = 1

2

∑
k

ln(τk)(b̂kb̂−k − b̂†
kb̂†

−k), (5)

where b̂k is the Fourier form of the creation (annihilation)
operator with frequency ωk = ω − zJγ (k) (z the coordi-
nate number), and the lattice dispersion γ (k) = [cos(kx ) +
cos(ky)]/2 for the two-dimensional square lattice. The dis-
placement parameters ξk and the squeezing parameters τk are
determined in the latter to eliminate the CRC terms in Ĥ .

The unitary transformation on Hamiltonian Ĥ ′ =
eŜ2 eŜ1 Ĥe−Ŝ1 e−Ŝ2 can be done straightforwardly to the end
without introducing any approximation. The transformed
Hamiltonian is constructed in the form Ĥ ′ = Ĥ ′

0 + Ĥ ′
1 + Ĥ ′

2,
where

Ĥ ′
0 = Nε

2
− NV0 +

∑
i

ηεσ̂ z
i

2

+
∑

k

ωk

4

[
τ 2

k |b̂†
−k + b̂k|2 − τ−2

k |b̂†
−k − b̂k|2 − 2

]

+ 1

N

∑
i

∑
k

ηεg2ξ 2
k

ω2
kτ

2
k

σ̂ z
i (b̂†

kb̂†
−k + b̂kb̂−k − 2b̂†

kb̂k)

− 1

N

∑
i, j

σ̂ x
i σ̂ x

j

∑
k

[
g2

ωk
ξk(2 − ξk) − V0

]
eik(ri−r j ), (6)

Ĥ ′
1 = 1√

N

∑
k

∑
i

g(1 − ξk)τkσ̂
x
i (b̂†

−k + b̂k)e−ikri

− 1√
N

∑
k

∑
i

ηεgξk

ωkτk
iσ̂ y

i (b̂†
−k − b̂k)e−ikri , (7)

Ĥ ′
2 = −ε

2

∑
i

iσ̂ y
i [sinh(X̂i ) − ηX̂i] + ε

2

∑
i

σ̂ z
i

[
cosh(X̂i )

− η − 1

N

∑
k

ηεg2ξ 2
k

ω2
kτ

2
k

(b̂†
kb̂†

−k + b̂kb̂−k − 2b̂†
kb̂k)

]
, (8)

where the operator X̂i is introduced as

X̂i ≡ 2√
N

∑
k

gξk

ωkτk
(b̂†

−k − b̂k)e−ikri , (9)

and the parameters η and V0 are defined as

η ≡ exp

(
− 2

N

∑
k

g2ξ 2
k

ω2
kτ

2
k

)
, (10)

V0 ≡ 1

N

∑
k

g2ξk

ωk
(2 − ξk). (11)

The last term in Ĥ ′
0 describes the long-range Ising-like in-

teraction among the intersite TLSs, and V0 is subtracted to
eliminate a constant self-interaction at the same site.

The dominant parts that remain in the Ĥ ′
2 are the products

of three or more photon operators in normal ordering. As we
focus on the ground and low-lying excited states, the effect of
multiphoton processes is weak, which makes it reasonable to
drop Ĥ ′

2 in the following calculation. It is worth emphasizing
that the neglect of Ĥ ′

2 does not mean that our result is valid
only to the second order of g. The photon-dressing param-
eter η, introduced in Eq. (10), includes the infinite order of
g, which is involved in the form of Ĥ ′

0 and Ĥ ′
1. Thus, with

the parameter η, the strong-coupling effects on the ground
and low-lying excited states can be explored to a satisfactory
degree. We think that our results work well even for the
strong-coupling case. In fact, as we show in Sec. IV B, in
the strong-coupling case, the RLM reduces to the quantum
transverse Ising model. The accuracy of this method has been
confirmed by the single- and double-site Rabi model at the
resonant condition ε = ω in Ref. [30].

III. INSULATING PHASE

We use the Holstein-Primakoff (HP) transformation to turn
the Pauli matrices in Ĥ ′ � Ĥ ′

0 + Ĥ ′
1 into the bosonic operators

âi and â†
i [36],

σ̂ x
i = â†

i

√
1 − â†

i âi +
√

1 − â†
i âiâi, (12)

iσ̂ y
i = â†

i

√
1 − â†

i âi −
√

1 − â†
i âiâi, (13)

σ̂ z
i = 2â†

i âi − 1, (14)

and then apply the mean-field approximation:

σ̂ x
i � √

1 − m(â†
i + âi ), (15)

iσ̂ y
i � √

1 − m(â†
i − âi ). (16)

The parameter m is the mean value of â†
i âi on the ground

state of Ĥ ′, m ≡ 〈G′|â†
i âi|G′〉, and will be determined in the

self-consistent way. Compared with linearized spin-wave ap-
proximation [30], the HP transformation involves the quantum
fluctuation of the TLS on the ground state.

Then, Ĥ ′ � HI is approximated as

HI = 1 − η

2
Nε − NV0 +

∑
k

ωk

4

(
τ 2

k + τ−2
k − 2

)

+
∑

k

ωkτ
2
k b̂†

kb̂k +
∑

k

ηεâ†
kâk

− (1−m)
∑

k

[
g2

ωk
ξk(2−ξk)−V0

]
(â†

−k + âk)(â†
k + â−k)

+
√

(1 − m)
∑

k

g(1 − ξk)τk(b̂†
−k + b̂k)(â†

k + â−k)

−
√

(1 − m)
∑

k

ηεgξk

ωkτk
(b̂†

−k − b̂k)(â†
k − â−k) (17)
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with

τ 2
k =

√
1 + 4ηεg2ξ 2

k /ω3
k. (18)

The Hamiltonian HI can be diagonalized by
another Bogoliubov transformation Ŝ3, where Ŝ3 =
1
2

∑
k ln(ρ−1

k )(âkâ−k − â†
kâ†

−k), with ξk and ρk given by

ξk = ωkτ
2
k

ωkτ
2
k + ηερ2

k

, (19)

ρ2
k =

√
1 − 4(1 − m)

ηε

[
g2ξk(2 − ξk)

ωk
− V0

]
. (20)

After the Bogoliubov transformation, the Hamiltonian
becomes

eŜ3 Ĥ I e−Ŝ3 = EI
g +

∑
k

ωkτ
2
k b̂†

kb̂k +
∑

k

ηερ2
k â†

kâk

+
∑

k

gIk(b̂†
kâk + b̂kâ†

k), (21)

where gIk = 2
√

(1 − m)gτk(1 − ξk)ρ−1
k is the effective cou-

pling strength between the TLS and the photon. With
the choice of parameters ξk, τk, and ρk, the trans-
formed Hamiltonian eŜ3 Ĥ I e−Ŝ3 takes on a RWA-like form.
Through the renormalized quantities gIk, εηρ2

k , and ωkτk,
the effects of the CRC terms are explored. Then, it is
easy to get the diagonalized Hamiltonian in the polariton
picture:

Ĥ = EI
g + ∑

k E±
I (k)d̂†

±kd̂±k,

where

d̂−k = cos αâk − sin αb̂k, (22)

d̂+k = sin αâk + cos αb̂k, (23)

with tan 2α = 2gIk/(ωkτ
2
k − ηερ2

k ). The ground state of Ĥ I is
in the form of |GI〉 = |{d̂†

±kd̂±k = 0}〉 and the corresponding
ground-state energy of the insulating phase is

EI
g =1 − 2η

2
Nε − NV0+

∑
k

ωk

4

(
τ 2

k +τ−2
k − 2

)+∑
k

ηε

2
ρ2

k .

(24)

From the ground state |GI〉, we can get the self-consistent
equation of m as

m =〈GI |eŜ3 â†
i âie

−Ŝ3 |GI〉 = 1

4N

∑
k

(
ρ−2

k + ρ2
k − 2

)
. (25)

In the insulating phase, the excitation energies of polaritons
have two branches E±

I (k), and the analytic formulas for the
dispersion relations are

E±
I (k) = 1

2

(
ηερ2

k + ωkτ
2
k

) ± 1

2

√(
ηερ2

k − ωkτ
2
k

)2 + 4g2
Ik.

(26)

In the weak-coupling limit, ω, J � g, as a crude approxi-
mation, the TLS and photon almost decouple. The TLS stays
on its respective ground state, and the system has a flat band

with the energy splitting ε contribution from the atomic exci-
tation. The photonic excitation contributes from the bosonic
tight-binding model with the dispersion relation ωk. Through
the Bogoliubov transformation, our results show that the po-
lariton emerges from the hybridized system where TLSs and
the photons are coupled with the effective coupling strength
gIk. The dispersion relation of the two-branch polaritonic
excitations E±

I (k) for the two-dimensional square lattice is
plotted in Fig. 2(a) for the negative detuning case � = −0.1ω,
Fig. 2(b) for the resonant case � = 0, and Fig. 2(c) for the
positive detuning case � = 0.1ω deep inside the insulator
phase with ω = 1.5g. The important features in Figs. 2(a)–
2(c) are that the polaritonic excitation spectra in the insulator
state are characterized by gapped cosinelike bands, and have
their minima at k = 0.

The branch E−
I (k) always has the lower excitation en-

ergy, and the dispersion relations of E−
I (k) around the critical

point for the two-dimensional square lattice are plotted in
Figs. 2(d)–2(f). In the negative detuning case � = −0.1ω, the
results show that there exists a gap at k = 0 in the insulator
phase zJ/g = 0.280. The gap E−

I (0) decreases with increasing
of the hopping strength J , and eventually closes at the critical
point, zJc/g = 0.321 67, with linear dispersion at small k in
Fig. 2(d). Similar behaviors are also found for the resonant
case � = 0, where the gap E−

I (0) closes at the critical point
zJc/g = 0.352 93 but opens at zJ/g = 0.320 in Fig. 2(e). For
the positive detuning case � = 0.1ω in Fig. 2(f), there exists
a gap at zJ/g = 0.350 in the insulator phase while the gap
E−

I (0) disappears at the critical point zJc/g = 0.383 18. The
results confirm that below the critical hoping strength Jc the
systems have a stable insulating ground state. Above Jc, E−

I (0)
becomes negative. In this case, adding more polaritons to the
system always lowers the total energy, which means the sys-
tem becomes unstable. Then, macroscopic polaritons occupy
the ground state, and the Bose-Einstein condensation of the
polaritons emerges.

The condensation of the polariton gives rise to instabil-
ity of the insulator phase, and triggers the phase transition
to the delocalized superradiant phase. Therefore, the condi-
tion for the presence of the stable insulating phase can be
used as a criterion to determine the boundary of the phase
transition:

ηερ2
0ω0τ

2
0 � g2

I0 ⇒ 2(1 − m)G0 � ηε, (27)

where G0 = 2g2/ω0 − 2V0. As the coupled TLSs and photons
are hybridized to form the polaritonic states, the fluctuations
of the TLS should be taken into account to give the effects on
the phase boundary, which are described by the parameter m
in Eq. (27).

The boundary of the phase transition is determined by

2(1 − mc)G0 = ηε, (28)

where m at the phase transition point is noted as mc. The
phase boundary is dependent on the parameter m. The stronger
the fluctuation on the TLS, the higher the critical hopping
coupling Jc required to reach the long-range order phase.
In Fig. 2, mc = 0.027 54 in the negative detuning case with
� = −0.1ω and zJ/g = 0.250, mc = 0.024 49 in the resonant
case with � = 0 and zJ/g = 0.225, and mc = 0.021 76 in the
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FIG. 2. (a–c) The dispersion relation of the two-branch polaritonic excitations E±
I (k) for the two-dimensional square lattice RLM at

ω = 1.5g: (a) the negative detuning case with � = −0.1ω and zJ/g = 0.250; (b) the resonant case with � = 0 and zJ/g = 0.225; (c) the
positive detuning case with � = 0.1ω and zJ/g = 0.200. (d–f) The dispersion relation of the low-branch polaritonic excitations E−(k) for
the two-dimensional square lattice RLM at ω = 1.5g around the critical points: (d) the negative relative detuning case with � = −0.1ω and
zJ/g = 0.250; (e) the resonant case with � = 0 and zJ/g = 0.225; (f) the positive relative detuning case with � = 0.1ω and zJ/g = 0.200.
Energies are in the units of ω.

positive detuning case with � = 0.1ω and zJ/g = 0.200 in
the two-dimensional square lattice RLM. In order to show
precisely the effect of quantum fluctuations, the values of the
parameter mc at the critical points as a function of detuning
� with several different photon frequencies ω are shown in
Fig. 3.

IV. PHASE DIAGRAM

The phase diagram is an important feature to character-
ize the phase transition. In this section, we show the phase
diagram of the insulator-to-superradiant quantum phase tran-
sition on the two-dimensional square lattice RLM.

A. Mean-field theory

The main idea in MFT is that it neglects the fluctuations
between the operators. In the scheme of MFT, the hopping
terms in the RLM are decoupled as

b̂†
i b̂ j = 〈b̂†

i 〉b̂ j + b̂†
i 〈b̂ j〉 − 〈b̂†

i 〉〈b̂ j〉, (29)

and 〈b̂ j〉 is replaced by the order parameter ψ . Then, the orig-
inal RLM reduces to a single site problem with the effective

−1.0 −0.5 0.0 0.5 1.0

0.
00

0.
02

0.
04

0.
06

� �

m
c

� g = 0.75
� g = 1.0
� g = 1.5

FIG. 3. The value of the dimensionless parameter mc at the crit-
ical points as a function of detuning � with several different photon
frequencies ω.
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Hamiltonian

Ĥ �
∑

i

[
ĤR

i − zJψ (b̂†
i + b̂i ) + zJψ2

]
. (30)

Around the critical point, the order parameter ψ is small.
ψ can be calculated in the perturbation theory [27,32]. As a
result, the expression of the perturbation ground energy in the
power of ψ is

EMF
g

N
= E0 + zJψ2 + (zJ )2

∑
n 
=0

〈n|(b̂† + b̂)|0〉2

E0 − En
ψ2, (31)

where |n〉 represents the exact nth eigenstate of the single site
Rabi model, and En is the corresponding eigenenergy. The
analytic solution of the Rabi model was found [37–39]. In
the spirit of Landau theory the second-order terms being zero
indicates a phase transition. Then, the full phase transition
boundary is obtained as

1

zJc
=

∑
n 
=0

〈n|(b̂† + b̂)|0〉2

En − E0
. (32)

Similarly, one can also get the insulator-to-superfluid phase
transition boundary of the JCLM [27].

Above the phase transition point, the parameter ψ is not
small, and the Gutzwiller solution [16] can be used to self-
consistently determine ψ . At first, ψ is set with a random
initial value, and the Hamiltonian is numerically diagonalized
to give a better estimation of ψ . This process will iteratively
continue until the ground state converges. Then, we can obtain
the order parameter ψ as a function of zJ in MFT.

B. Strong-coupling limit, g � ω

In the strong-coupling limit g � ω, from Eqs. (18) and
(19), we have τk = 1 and ξk = 1. For the weak hopping
coupling, ω � J , the ground state corresponds to the photon
vacuum state. The averaging of the Hamiltonian Ĥ0 + Ĥ ′

1 over
the photon vacuum produces the quantum transverse field
Ising model (QTFI) [31,34]:

ĤQI =Nε

2
+ Ng2

ω
+ ηε

2

∑
i

σ̂ z
i − 2J

g2

ω2

∑
〈i, j〉

σ̂ x
i σ̂ x

j , (33)

where the effective transverse field is h = ηε/2, and the Ising
interaction t = 2Jg2/ω2. The QTFI is a well-studied physical
model, and the system undergoes a quantum phase transi-
tion from a paramagnetic phase to a ferromagnetic phase.
The exact quantum critical point for the one-dimensional
spin chain is t/h = 1 [40,41], and the numerical result for
the two-dimensional square lattice is t/h � 0.328 [42,43].
Therefore, the strong-coupling critical hopping is Jc =
εω2

4g2 exp(−2g2/ω) for the one-dimensional spin chain, and

Jc = 0.328εω2

4g2 exp(−2g2/ω) for the two-dimensional square
lattice.

These strong-coupling results support the gapped excita-
tion in the delocalized superradiant phase and indicate that the
insulator-to-superradiant phase transition belongs to the Ising
university class, which is confirmed by quantum Monte Carlo
simulations [35].

C. Numerical results

The phase boundary is determined by Eq. (28), and the
equations to determine the parameters can be solved numer-
ically. Taking the parameters in the insulator phase as an
example, we briefly explain how to get the numerical solutions
of the parameter equations. There are two types of parameters:
the k-dependent parameters, i.e., ξk, τk, and ρk, and the k-
independent parameters, i.e., V0, η, and m, which are defined
by the integral of the function of the k-dependent parameters
in Eqs. (10), (11), and (25). At first, V0, η, and m are set
with random initial values, and then we can calculate ξk, τk,
and ρk by Eqs. (18)–(20). Using Eqs. (10), (11), and (25),
we can get a better estimation of V0, η, and m. This process
will iteratively continue until the values of the parameter
converge. During the process, for each fixed V0, η, and m,
the k-dependent parameters ξk, τk, and ρk also need another
similar iterative process to get the numerical values. As a
result, we can get the numerical solutions of the parameter
equations.

In this subsection, we show the numerical results of the
phase boundary, and illustrate the validity of the different ap-
proximation methods. The phase diagrams in the (zJ/g, ω/g)
plane for the negative detuning case � = −0.1ω, the resonant
condition ω = ε, and the positive detuning case � = 0.1ω
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FIG. 4. The phase diagram of the two-dimensional RLM obtained by the different approximation methods, in the (zJ/g, ω/g) plane with a
logarithmic horizontal axis: (a) the negative detuning case � = −0.1ω; (b) the resonant case � = 0; (c) the positive detuning case � = 0.1ω.
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FIG. 5. The phase boundary of the two-dimensional RLM at
the resonant condition ω = ε. The introduced parameter m involves
visible influences on the phase boundary.

are shown with the solid line in Fig. 4. For comparison, the
phase diagrams obtained by MFT and QTFI are also shown.
For the MFT on JCLM, the phase boundary has the analog
lobes of the Mott-insulator phase in the Bose-Hubbard model.
However, as the polariton number conservation is broken in
the RLM, both the MFT and our results show the absence of
the lobes. The MFT on the RLM gives the qualitatively correct
phase diagram, while it neglects the fluctuation of the photons
which can destroy the long-range order. As a result, the critical
hopping zJc in the MFT is always smaller than our results.
In the strong-coupling situation g � ω, the QTFI shows the
critical hopping Jc = 0.328ε

4
ω2

g2 exp(−2g2/ω). Our results are
consistent with the QTFI in the strong-coupling case g � ω,
while the deviation of the two methods is emerging in the case
g < ω.

Comparing the phase diagram in plane (zJ/g, ω/g) ob-
tained by different approximation methods, we show that the
fluctuations of the photon are important around the critical
point. In this paper, we also involve the fluctuations of the
TLS by the introduced parameter m. As an example, the phase
diagram of the two-dimensional RLM at the resonant condi-
tion ω = ε is plotted in Fig. 5. Compared with the previous
results in Ref. [30] where the m are neglected, there exist vis-
ible differences between the results from the two approaches.
According to the phase boundary, i.e., 2(1 − m)G0 = ηε,
stronger the fluctuation on the TLS, the higher the critical
hopping coupling Jc required to reach the long-range order
phase.

To get a better description of the phase transition, we
further illustrate the influences of the detuning on the phase
transition boundary in Fig. 6(a). The detuning, � = ε − ω,
between the two-level energy splitting and the cavity photon
frequency is another important parameter in the RLM, which
is easily manipulated in experiments [44]. In Fig. 6(a), we
plot the phase boundary in the (zJ/g,�/ω) plane for the
different fixed values of ω. The insulating phase is stable until
the critical hopping coupling Jc, above which the long-range

(b)

−1.0 −0.5 0.0 0.5 1.0
� �

zJ
/g

(a)

� g = 0.75
� g = 1.0
� g = 1.5

Delocalized Superradiant Phase

Insulator Phase

10
−

4
10

−
3

10
−

2
10

−
1

10
0

FIG. 6. The phase boundary of the two-dimensional RLM (a) in
the (zJ/g,�/ω) plane with fixed ω/g = 0.75, 1, 1.5 with a logarith-
mic vertical axis and (b) in the general (ω/g,�/ω, zJ/g) space.

order superradiant phase emerges. By Eq. (6), one knows that
a larger detuning indicates a stronger transverse field εη

2 σ̂z,
which favors the local disorder phase. Thus, the increase of the
relative detuning contributes to the stronger fluctuation, and
the higher critical hopping coupling Jc to reach the long-range
order phase, which is confirmed in Fig. 6(a).

Finally, in Fig. 6(b), we overview the phase diagram for
the two-dimensional RLM with the general detuning in the
(ω/g,�/ω, zJ/g) space. Above the surface, the insulator
phase is no longer stable and the delocalized superradiant
phase emerges.

V. DELOCALIZED SUPERRADIANT PHASE

For the case 2(1 − m)G0 > ηε, macroscopic polaritons
condense in the ground state, and the system is in the delo-
calized superradiant phase. In this phase, the order parameter
〈G|b̂|G〉 
= 0, so another static displacement of the k = 0
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photon mode is required. Here, we perform the unity transformation R̂ on Ĥ ′
0 and Ĥ ′

1 as

eR̂(Ĥ ′
0 + Ĥ ′

1)e−R̂ = Nε

2
− NV0 + N (1 − mc)2G0σ

2
0

2
+

∑
i

(1 − mc)G0σ0σ̂
x
i +

∑
i

ηεσ̂ z
i

2

+
∑

k

ωk

4

[
τ 2

k |b̂†
−k + b̂k|2 − τ−2

k |b̂†
−k − b̂k|2 − 2

] + 1

N

∑
i

∑
k

ηεg2ξ 2
k

ω2
kτ

2
k

(b̂†
kb̂†

−k + b̂kb̂−k − 2b̂†
kb̂k)σ̂ z

i

− 1

N

∑
i, j

[
σ̂ x

i + (1 − mc)σ0
][

σ̂ x
j + (1 − mc)σ0

] ×
∑

k

[
g2

ωk
ξk(2 − ξk) − V0

]
eik(ri−r j )

+ 1√
N

∑
k

∑
i

g(1 − ξk)τk
[
σ̂ x

i + (1 − mc)σ0
]
(b̂†

−k + b̂k)e−ikri − 1√
N

∑
k

∑
i

ηεgξk

ωkτk
iσ̂ y

i (b̂†
−k − b̂k)e−ikri ,

(34)

where the generator of the transformation is given by

R̂ = −(1 − mc)

√
Ng(1 − ξ0)

ω0τ0
σ0(b̂†

0 − b̂0). (35)

Before we apply HP transformation, we rotate the Pauli
matrices at every site i with a unitary matrix Ui to get

U †
i

[
ηεσ̂ z

i

2
+ (1 − mc)G0σ0σ̂

x
i

]
Ui = W

2
σ̂ z

i , (36)

with W =
√

4(1 − mc)2G2
0σ

2
0 + ε2η2 and σ 2

0 = 1 −
η2ε2

4(1 − mc)2G2
0

. For the whole lattice, we have unitary

matrix U given by

Û =
∏

i

Ûi. (37)

After the rotation, we obtain the expression for Ĥ ′′ =
Û †eR̂(Ĥ ′

0 + Ĥ ′
1)e−R̂Û as

Ĥ ′′ = Nε

2
− NV0 + N (1 − mc)2G0σ

2
0

2
+

∑
k

ωk

4

[
τ 2

k |b̂†
−k + b̂k|2 − τ−2

k |b̂†
−k − b̂k|2 − 2

] +
∑

i

W σ̂ z
i

2

+ 1

N

∑
i

∑
k

ηεg2ξ 2
k

ω2
kτ

2
k

(b̂†
kb̂†

−k + b̂kb̂−k − 2b̂†
kb̂k)

(
σ0σ̂

x
i + ηε

W
σ̂ z

i

)
+ 1√

N

∑
k

∑
i

ηεgξk

ωkτk
iσ̂ y

i (b̂†
−k − b̂k)e−ikri

+ 1√
N

∑∑
i

g(1 − ξk)τk

[
− ηε

W
σ̂ x

i + σ0
(
σ̂ z

i + 1 − mc
)]

(b̂†
−k + b̂k)e−ikri

− 1

N

∑
i, j,k

[
− ηε

W
σ̂ x

i + σ0
(
σ̂ z

i + 1 − mc
)][

− ηε

W
σ̂ x

j + σ0
(
σ̂ z

j + 1 − mc
)][

g2

ωk
ξk(2 − ξk) − V0

]
eik(ri−r j ). (38)

The same conditions as those in the insulator phase, the HP transformation, and the mean-field approximation are further
employed to get ĤS � Ĥ ′′:

ĤS =N (ε − W )

2
− NV0 + N (1 − mc)2G0σ

2
0

2
+

∑
k

ωk

4

(
τ 2

k + τ−2
k − 2

) +
∑

k

ωkτ
2
k b̂†

kb̂k +
∑

k

W â†
kâk

− (1 − m)

(
ηε

W

)2 ∑
k

[
g2

ωk
ξk(2 − ξk) − V0

]
(â†

−k + âk)(â†
k + â−k),

−
√

(1 − m)

(
ηε

W

) ∑
k

g(1 − ξk)τk(b̂†
−k + b̂k)(â†

k + â−k) +
√

(1 − m)
∑

k

ηεgξk

ωkτk
(b̂†

−k − b̂k)(â†
k − â−k), (39)

where the squeezing function τk is given by

τ 2
k =

√
1 + 4η2ε2g2ξ 2

k

W ω3
k

. (40)

As we focus on the ground and low-lying excited states,
we ignore all the cubic and quartic operators’ interaction in

deriving Eq. (39). Just as in the case of the insulating phase,
we need another Bogoliubov transformation Ŝ4 to diagonalize
ĤS , where

Ŝ4 = 1

2

∑
k

ln
(
θ−1

k

)
(âkâ−k − â†

kâ†
−k) (41)
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with the parameter

ξk = ωkτ
2
k

ωkτ
2
k + W θ2

k

, (42)

θ2
k =

√
1 − 4(1 − m)η2ε2

W 3

[
g2ξk(2 − ξk)

ωk
− V0

]
. (43)

After the Bogoliubov transformation, we finally obtain the
expression for the Hamiltonian as

eŜ4 ĤSe−Ŝ4 = ES
g +

∑
k

ωkτ
2
k b̂†

kb̂k +
∑

k

W θ2
k â†

kâk

−
∑

k

gSk(b̂†
kâk + b̂kâ†

k) (44)

with the effective coupling gSk = 2
√

(1 − m)gηετk(1 −
ξk)/(W θk) between TLS and photon. The transformed Hamil-
tonian indeed provides a much better description than the
RWA Hamiltonian. Using the linear transformation,

d̂−k = cos βâk − sin βb̂k, (45)

d̂+k = sin βâk + cos βb̂k, (46)

the system reduces to a diagonalized polariton model:

Ĥ = ES
g + ∑

k E±
S (k)d̂†

±kd̂±k,

where tan 2β = 2gSk/(ωkτ
2
k − ηεθ2

k ). This linear transfor-
mation reveals the composite nature of the polariton. The
ground state of the polariton model is in the form of |GS〉 =
|{d̂†

±kd̂±k = 0}〉, and the corresponding ground-state energy of
the delocalized superradiant phase is

ES
g = N

[
ε − 2W − 2V0 + (1 − mc)2G0σ

2
0

]
2

+
∑

k

ωk

4

(
τ 2

k + τ−2
k − 2

) +
∑

k

W

2
θ2

k . (47)

From the ground state |GS〉, we get the self-consistent
equation

m = 〈GS|eŜ4 â†
i âie

−Ŝ4 |GS〉 = 1

4N

∑
k

(
θ−2

k + θ2
k − 2

)
. (48)

The dispersion relations of the two branches of polaritonic
excitations in the delocalized superradiant phase are

E±
S (k) = 1

2

(
W θ2

k + ωkτ
2
k

) ± 1

2

√(
W θ2

k − ωkτ
2
k

)2 + 4g2
Sk.

(49)

The stability of the delocalized superradiant phase requires
the energy cost for the polariton excitations. Thus, the lower
branch polariton excitation energy E−

S (k) needs to be positive,
and the following equation should be satisfied:

W θ2
0 ω0τ

2
0 � g2

S0 ⇒ 2(1 − m)G0

(
ηε

W

)2

� W. (50)

By the relation 2(1 − mc)G0 = W and 1 − mc � 1 − m, the
condition for the presence of the stable delocalized superradi-
ant phase can be written as

2(1 − m)G0 � ηε, (51)
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FIG. 7. (a) The dispersion relation of the low-branch polaritonic
excitations E−(k) for the two-dimensional square lattice RLM at
ω = 1.5g in the delocalized superradiant phase. (b) The gap of the
excitation as a function of the hopping strength zJ . Energies are in
the units of ω.

which is in accordance with the results in the insulating phase.
Around the critical hopping strength Jc, the behaviors of

the low branch polariton excitations E−
S (k) in the delocalized

superradiant phase are also plotted in Figs. 2(d)–2(f). For the
negative detuning case � = −0.1ω, E−

I (0) also has a positive
gap at zJ = 0.376(> zJc), as plotted with the blue dashed line
in Fig. 2(d). For the resonant case � = 0, the k = 0 gap opens
again at zJ/g = 0.380(> zJc) in Fig. 2(e) (blue dashed line).
For the positive detuning case � = 0.1ω, E−

I (0) exists a gap
at zJ = 0.430(> zJc), in Fig. 2(f) (blue dashed line).

The spectra of the gapped polariton excitations in the delo-
calized superradiant phase are plotted in Fig. 7(a) at ω = 1.5
for the resonant case � = 0, which is quite different from
the gapless excitation in the JCLM [22–24,28]. In the JCLM,
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FIG. 8. The order parameter as a function of the hopping strength zJ at ω = 1.5g: (a) the negative detuning case � = −0.1ω; (b) the
resonant case � = 0; (c) the positive detuning case � = 0.1ω.

the system has continuous U (1) symmetry, and the Goldstone
theorem requires gapless excitation to restore the symmetry.
While the CRC terms break continuous symmetry into dis-
crete Z2 symmetry, the Goldstone theorem does not apply
here. To overview the property of the excitations, the k = 0
gap of the polaritonic excitations as a function of the hopping
strength zJ is plotted in Fig. 7(b). The polaritonic excitations
have a positive gap in both the insulator and delocalized su-
perradiant phase, but the gap vanishes at the phase transition
point.

Different from the Mott insulator state, where each site
has a fixed number of photons, the photon number per site
is not fixed in the delocalized superradiant phase due to the
hopping coupling. Thus, the order parameter is calculated as
the expectation of the photonic annihilation operator in the
ground state, which is given by

ψ = 〈GS|eŜ4Û †eR̂eŜ2 eŜ1 b̂ie
−Ŝ1 e−Ŝ2 e−R̂Û e−Ŝ4 |GS〉

= gσ0ξ0

ω0
(mc − 2m) + gσ0

ω0
. (52)

The order parameter growing from zero to a nonvanish-
ing expectation is shown in Fig. 8 for the negative detuning
case � = −0.1ω, the resonant case � = 0, and the positive
detuning case � = 0.1ω at ω = 1.5g. With the increasing of
the hopping strength, more polaritons tend to condense on the
ground state, which indicates the stronger order parameter.
From Eq. (52), our results suggest that the order parameter
ψ ∝ g

ω0
, which increases more quickly than the MFT results.

VI. CONCLUSION

In summary, we use the unitary transformation method to
study the physics of the RLM. Phase diagrams and polaritonic
excitation spectra have been explored. The CRC terms, which
are usually neglected in weak-coupling cases, have remark-
able impacts on the ground state and low-lying excited states
and consequently change the nature of the phase transition.
With the increasing of the hopping strength J , the RLM under-
goes quantum phase transition from insulator to delocalized
superradiant phase. In the Mott insulator phase, the intrasite
repulsion leads to the polariton localizing on each site and
the ground state being the net excitation per site. Gradually
increasing the hopping strength to the critical point Jc, the

ground state becomes no longer stable, and Bose-Einstein
condensation emerges. Above the critical point, the polariton
delocalizes across the lattice, and the photon coherence has
a nonvanishing expectation. From the stability of the ground
state both in the insulator and delocalized superradiant phase,
we obtain the analytical expression for the boundary of the
phase transition. The CRC terms break the conservation po-
lariton number, leading to the absence of Mott lobes in the
RLM phase diagram. The results also show that the larger
detuning favors the disorder insulator phase, and the system
needs the stronger hopping coupling Jc to reach the long-range
order delocalized superradiant phase.

In comparison with the QTFI and MFT, the advantages
of the unitary transformation method are obvious. The MFT
requires symmetry breaking ψ (b̂†

i + b̂i ) and reduces the
Hamiltonian to the single-site model, which gives the N de-
generacy excitation energy. The MFT neglects the long-range
correlation between the different sites and breaks down in
the strong hopping case. The effective QTFI Hamiltonian
is obtained in the photon vacuum state and is valid in the
strong-coupling case. In our method, through the Bogoliubov
transformation, the system maps to the polariton model. The
effects of the CRC terms are explored by renormalized quanti-
ties such as gIk, εηρ2

k , and ωkτk. Due to the coupling between
the photons and the TLSs, the composite nature of the polari-
ton is captured. The hybridized polaritonic states in the RLM
are different from the phases obtained from the effective QTFI
Hamiltonian, which is just the atomic excitations. The spectral
properties of the polaritonic excitation are further evaluated.
In both the insulator phase and delocalized superradiant phase,
the RLM has gapped polaritonic excitation, which ensures the
stability of the ground state. This gap closes at the critical
point, which indicates that the Z2 symmetry is broken and
the phase transition occurs. As the introduced photon-dressing
parameter η includes the infinite order of g, our results on the
ground and low-lying excited states work well for both the
weak-coupling and strong-coupling case.
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