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Classical-to-quantum transition in multimode nonlinear systems
with strong photon-photon coupling
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With advanced micro- and nanophotonic structures, the vacuum photon-photon coupling rate is anticipated to
approach the intrinsic loss rate and lead to unconventional quantum effects. Here, we investigate the classical-
to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method, which
addresses the computational challenge in tracking large photon number states of the fundamental and harmonic
optical fields involved in the second-harmonic generation process. Compared to the mean-field approximation
used in the weak-coupling limit, the quantum cluster-expansion method solves multimode dynamics efficiently
and reveals the quantum behaviors of optical parametric oscillations around the threshold. This paper presents a
universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for
continuous-variable quantum information processing.
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I. INTRODUCTION

Nonlinear optics has been exploited in abundant clas-
sical and quantum optics applications since the advent of
lasers [1,2]. Under the current theoretical framework, the
simplest approach to describe a coherent optical field is
by characterizing it with only one parameter, i.e., the field
amplitude, with the system dynamics governed by a set
of nonlinearly coupled equations among modes of different
amplitudes. This treatment, known as the mean-field approxi-
mation (MFA) [3], however, neglects the influence of quantum
fluctuations. In a more rigorous framework, the optical fields
are treated as Gaussian states for which the mean-field am-
plitude and second-order correlations are assumed to be
complete to describe the system [4,5]. Then, the quantum
fluctuations and correlations of optical fields can be derived
by calculating the covariance matrix. In the past decades,
the MFA and Gaussian-state approximation have been widely
applied in quantum optics and successfully predict a variant
of phenomena, including squeezing [6], continuous-variable
entanglement [7], and the thermal dynamics of mechanical
resonators [8,9].

In conventional nonlinear optics systems, the nonlinear
coupling strengths between optical modes are much weaker
than the dissipation rates, therefore the higher-order cor-
relations between modes are negligible due to the strong
decoherence, and the Gaussian state approximation is accu-
rate. As the fabrication technique and material improve, the
photon-photon coupling in the nonlinear system can be greatly
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enhanced, to the point that the single-photon nonlinearity
becomes appreciable in photonic integrated circuits. The cou-
pling strength to dissipation rate ratio g/κ has been greatly
boosted during the last decades [10], using a microresonator
made by gallium arsenide [11], aluminum nitride [12], indium
gallium phosphide [13], lithium niobate [14–16], etc. For
example, Lu et al. demonstrated a g/κ ratio over 1% in a
periodically poled lithium niobate microring resonator [17],
suggesting significant nonlinear effects at the level of tens of
photons. At this high nonlinearity limit, the Gaussian state
approximation no longer holds. With even larger g/κ , the non-
linear system is predicted to exhibit atomlike features [18,19],
thus significant quantum effects arise under excitation at the
single-photon level [20,21]. It is intriguing to explore the
classical-to-quantum transition in this new regime where g/κ
approaches unity and the conventional treatment of high am-
plitude bosonic modes under MFA is no longer valid, and
the quantum master equation with truncated Fock-state di-
mension becomes inefficient. It has been demonstrated that
a quantum state can be also represented by the correlation of
operators [22], by which only several low-order correlations
might be sufficient to describe a quantum state precisely under
moderate nonlinearity. By tracking the evolution of these cor-
relation functions, it is possible to solve the system dynamics
efficiently in the classical-to-quantum crossover regime.

In this paper, the classical-to-quantum transition of non-
linear χ (2) processes is investigated based on the quantum
cluster-expansion (QCE) approach. In particular, we focus
on degenerate χ (2) interactions, including second-harmonic
generation (SHG) and optical parametric oscillation (OPO)
at different nonlinear coupling rates and pump powers. The
numerical results show the deviation of the mean photon
numbers and the quantum statistics from the predictions by
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the classical theory, and manifest the classical-to-quantum
transition when increasing the g/κ and the pump power. We
developed the code for generating recursive QCE to arbitrary
orders with an arbitrary number of modes. By comparing with
the conventional numerical approaches based on master equa-
tions of truncated Hilbert space, the validity of QCE is verified
and shows a factor 104 speedup under excitation of only 400
photons. Our approach is efficient for solving the problems
with large intracavity photon numbers and also moderate g/κ
ratio, and could be extended to study the quantum behaviors
of other complex nonlinear optics systems.

II. PRINCIPLE OF QCE

In resonance-enhanced nonlinear photonics processes such
as three-wave mixing and frequency comb generation in
microrings [23], there are multiple optical resonances simulta-
neously satisfying the energy and phase-matching conditions.
These modes are generally described by the bosonic anni-
hilation operators Oj , where j labels individual mode, and
any given system operator could be written as the product
of a cluster of mode operators A = � j,kO

†mj

j Onk
k , which is a

Mth-order operator with M = ∑
j m j + ∑

k nk . For an open
quantum system, the dynamics of an operator A follows the
master equation [3]

d

dt
ρ = − i

h̄
[H, ρ] +

∑
j

κ jLd j [ρ], (1)

where ρ is the density matrix and H is the Hamiltonian of
the system, κ j is the dissipation rate, and Ld j [ρ] = 2d jρd†

j −
d†

j d jρ − ρd†
j d j is the Lindblad operator for a jump operator

d j . For example, in the case of a reservoir with near-zero
thermal excitation, the amplitude dissipation of individual
modes is κ jLd j [ρ]. The expectation value of an operator 〈A〉 =
Tr{Aρ} also follows the master equation

d

dt
〈A〉 = i

h̄
〈[H, A]〉 +

∑
j

κ j〈L′
d j

[A]〉, (2)

where L′
d j

[A] = 2d†
j Ad j − d†

j d jA − Ad†
j d j .

The master equation shows that the dynamics of the ex-
pectation value of the Mth-order cluster A is directly coupled
to operators [H, A] and also Ld j [A]. For a simple bilinear
Hamiltonian that consists of only second-order clusters, the
evaluation of Oj only depends on the first-order clusters, thus
the master equations of the system become an array of closed-
form linear equations of Oj and O†

j , as shown by Fig. 1(a). The
expectations of all second-order clusters then can be derived
based on this set of linear equations, which further gives the
covariance matrix of the system [3]. If all the environment
modes and the system initial states are Gaussian states, the ex-
pectation values of the higher-order clusters can be expressed
in terms of the first- and second-order clusters [Fig. 1(b)],
and the system quantum state evolution can be completely
described by the covariance matrix. However, for the system
that involves χ (2) and higher-order nonlinear interactions, i.e.,
the H consists of third- or higher-order clusters, the dynamics
of second-order clusters should depend on the higher-order
clusters [Fig. 1(c)], and the evolution of all clusters in general

(a) (b) (c)

FIG. 1. Illustration of a quantum nonlinear system under differ-
ent orders of quantum cluster expansion (QCE), with circles linked
by straight lines denoting a cluster of bosonic operators and wavy
lines coupling between clusters. (a) First-order QCE, corresponding
to the mean-field approximation. (b) Second-order QCE. (c) Third-
order QCE. For Mth-order QCE, the system is described by the
dynamics of operators with orders no higher than M.

cannot be obtained in a closed form. For example, for the
widely studied Kerr oscillator H = ga†2a2 with a coupling
strength of g and mode dissipation rate κa, the evolution of
the expectation value of a is governed by

d〈a〉
dt

= −2ig〈a†aa〉 − κa〈a〉, (3)

which requires us to track the value of a high-order operator
〈a†aa〉. Repeating the same process for [H, a†aa] leads to an
infinite hierarchy. Then the dynamics of 〈a〉 and 〈a†aa〉 are
coupled with an infinite set of higher-order operators.

Two approaches can be applied to address this divergence
of high-order operators.

(i) MFA, which neglects the fluctuations of strong fields
and replaces them by complex numbers, thus reducing the or-
der of clusters. In the classical limit, all operators are replaced
by complex numbers, resulting in MFA shown in Fig. 1(a).

(ii) Fock-space truncation (FST). When the number of
excitations in bosonic modes is restricted, the quantum state
could be represented in the Fock basis with a finite dimension,
and then the master equation could be solved numerically.

Although both approaches are widely adopted in quantum
optics studies, they are not applicable to a system with mod-
erate nonlinearities and strong drives.

Therefore, we revert to solve the original master equa-
tion with the QCE approach. In practice, it is unrealistic to
track the expectation values of an infinite set of operators
to evaluate the expectation value 〈A〉. Although the number
of clusters involved for a complete system dynamics gen-
erally diverges, the QCE can be solved approximately or
even analytically by truncating the order of QCE, i.e., set-
ting the high-order clusters as zero. Such treatment has been
established in quantum chemistry [24] and semiconductor
systems [25,26] as well as Bose-Einstein condensates beyond
the mean-field theory [27]. Different from these previous
studies, the order of the hierarchy of a multimode nonlinear
photonic system depends on the specific nonlinear processes
involved. At large mode number and orders, the expansion
of the clusters increases drastically, and it is intractable to
directly write down all the equations for clusters and solve
them analytically.

The high-order correlation is directly related to the non-
linear coupling rate g. In the weak-coupling limit g � κ ,
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the correlation between different operators can be neglected.
The expectation values of N th-order operators can be directly
factorized to the product of first-order operators by

〈N̂〉 ≈
N∏

j=1

〈Oj〉, (4)

which is the main assumption of the MFA. At this limit, the
photonic modes are treated as harmonic oscillators and the
optical fields can be approximated to coherent states, as has
been adopted by most experiments. The system dynamics
is described by a set of nonlinearly coupled equations only
containing the expectation values of first operators [Fig. 1(a)],
while the tiny quantum fluctuation around the mean field 〈Oj〉
is neglected. As the g/κ ratio increases, the strong anhar-
monicity leads to the distortion of the quantum state from
the coherent state, in which case the quantum correlation
becomes significant so that the high-order correlation cannot
be directly factorized to the product of single-order operators
represented by Eq. (4). For example, a second-order operator
can be written as 〈̂2〉 = 〈̂1〉〈̂1〉 + �〈̂2〉 = 〈̂2〉s + �〈̂2〉, where
〈̂2〉s represents the MFA approximation by Eq. (4) and �〈̂2〉
indicates the purely correlated part. Likewise, the factoriza-
tion of a N th-order cluster reads

〈N̂〉 = 〈N̂〉s + 〈N̂ − 2〉s�〈̂2〉 + 〈N̂ − 4〉s�〈̂2〉�〈̂2〉
+ . . . �〈N̂〉

= 〈On〉〈N̂ − 1〉 + �〈On̂1〉〈N̂ − 2〉
+ �〈On̂2〉〈N̂ − 3〉 + . . . �〈N̂〉, (5)

where each product term presents one factorization and
is summed over all indistinguishable combinations. k̂ (0 <

k � N ) denotes all the possible ith-order clusters within
the N th-order cluster. And N̂ − k represents the remaining
(N − k)th-order cluster. The second equality can be derived
from Bell’s number: All the indistinguishable expansions of
the nth-order cluster can be mapped one to one onto the
nth Bell number Bn, which has a recursion formula, Bn =∑n−1

k=0 Ck
n−1Bk, B0 = 1, where each term in the formula rep-

resents a unique factorization and decomposes the N th-order
cluster into two parts. For example, Cn−1−k

n−1 Bn−1−k represents
the factorization into �〈Onk̂〉 and 〈N̂ − 1 − k〉, where k̂ de-
notes all the possible combinations of the ordered kth-order
cluster. To give a concrete illustration of Eq.(5), we consider
the expansion of a third-order cluster 〈O3O2O1〉 as follows:

〈O3O2O1〉 = 〈O3〉〈O2O1〉 + �〈O3O2〉〈O1〉
+ �〈O3O1〉〈O2〉 + �〈O3O2O1〉

= 〈O3〉〈O2O1〉 + (〈O3O2〉 − 〈O3〉〈O2〉)〈O1〉
+ (〈O3O1〉 − 〈O3〉〈O1〉)〈O2〉 + �〈O3O2O1〉

= 〈O3〉〈O2O1〉 + 〈O1〉〈O3O2〉 + 〈O2〉〈O3O1〉
− 2〈O3〉〈O2〉〈O1〉 + �〈O3O2O1〉, (6)

where the pure correlation term �〈O3O2O1〉 can be neglected
for the second-order truncation.

Based on Eqs. (2) and (5), the dynamics of a nonlinear
system can be implemented following the Mth-order QCE.

(1) To get the expectation value of 〈N̂〉, submit 〈N̂〉 to
Eq. (2) and one gets its relation with 〈N̂〉 = 〈[H, N]〉 and
operator 〈̂i〉 of other orders.

(2) Following the Mth truncation that all �〈N̂〉 = 0 for
N � M, 〈N̂〉 and 〈̂i〉 can be factorized according to Eq. (5).

(3) Repeat steps 1 and 2 for any cluster that appears in step
2 until no new clusters are generated. In this way, we arrive at
a set of nonlinear coupled equations involving clusters up to
Mth order.

For the case of the Kerr oscillator in Eq. (3), the whole set
of evolution equations under second-order truncation can be
given following the above procedure as

d〈a〉
dt

= − 2ig(2〈a†a〉〈a〉 + 〈a2〉〈a†〉 − 2〈a†〉〈a〉2) − κa〈a〉,
d〈a2〉

dt
= − 4ig(3〈a†a〉〈a2〉 − 2〈a†〉〈a〉3) − 2(κa + ig)〈a2〉,

d〈a†a〉
dt

= − 2κa〈a†a〉. (7)

In these equations, the expectation value of the Hermitian
conjugate of an operator O fulfills 〈O†〉 = 〈O〉∗. Generally, the
number of equations will increase with the number of modes
involved in the nonlinear interaction and the truncation order,
making it inconvenient to give their explicit forms. Thus we
implement an open-source package to automatically complete
the factorization and calculation procedures. The technical
details about the code and the data of our paper are available
in Ref. [28].

III. CLASSICAL-TO-QUANTUM TRANSITION
OF χ(2) INTERACTION

We apply the QCE approach to investigate the classical-to-
quantum transition of a signature quantum nonlinear optical
system—degenerate χ (2) interaction—involved in the SHG
and OPO. For the phase-matched degenerate χ (2) interaction
between modes a and b, the interaction Hamiltonian in the
rotating framework can be written as (h̄ = 1) [23,29]

HI = �aa†a + �bb†b + g(a†2b + a2b†), (8)

where a (b) and a† (b†) are the annihilation and creation
operator of the fundamental (second-harmonic) mode with
�a(b) being the corresponding frequency detunings. g is the
nonlinear coupling strength that depends on the material and
cavity geometry. Under coherent drives, the corresponding
excitation Hamiltonian reads

Hex = Ea(a† + a) + Eb(b† + b). (9)

Here, Ea(b) is the driving strength on mode a(b). In the case of
SHG, only mode a is pumped and thus we set Eb = 0, while
Ea is set to be zero similarly for OPO. To simplify notation,
we will simply use E to denote the corresponding pump am-
plitude in each case in the following text. In addition, each
mode of the system experiences mode dissipation described
by the Lindblad operator La(b)[.] with dissipation rate κa(b).

For the MFA widely used in classical nonlinear optics, the
dynamics of the system can be easily derived from Eq. (2) by
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neglecting all the correlators as follows:
dα

dt
= − (i�a + κa)α − 2igβα∗ − iEa,

dβ

dt
= − (i�b + κb)β − 2igα2 − iEb, (10)

where α(β ) is the classical amplitude for mode a(b). The
classical model defined by the above equations infers that

each mode can be fully described via a single c-number under
the assumption that the system stays close to the two-mode
separable coherent state, which we will prove to be invalid for
strong nonlinear coupling strength.

Similarly to the case of the Kerr oscillator, QCE under
second-order truncation gives rise to eight equations describ-
ing the system dynamics:

d〈a〉
dt

= − (i�a + κa)〈a〉 − 2ig〈ba†〉 − iEa,

d〈b〉
dt

= − (i�b + κb)〈b〉 − ig〈a2〉 − iEb,

d〈a†a〉
dt

= + iEa(〈a〉 − 〈a†〉) − 2κa〈a†a〉 + 4gIm[〈a†2〉〈b〉 + 2〈a†b〉〈a†〉 − 2〈a†〉2〈b〉],
d〈b†b〉

dt
= + iEb(〈b〉 − 〈b†〉) − 2κb〈b†b〉 − 2gIm[〈a†2〉〈b〉 + 2〈a†b〉〈a†〉 − 2〈a†〉2〈b〉],

d〈a2〉
dt

= − 2iEa〈a〉 − 2(κa + i�a)〈a2〉 − 2ig[(2〈a†a〉 + 1)〈b〉 + 2〈a†b〉〈a〉 + 2〈a b〉〈a†〉 − 4〈a†〉〈a〉〈b〉],
d〈b2〉

dt
= − 2iEb〈b〉 − 2(κb + i�b)〈b2〉 − 2ig(〈a2〉〈b〉 + 2〈a b〉〈b〉 − 2〈a〉2〈b〉),

d〈ab〉
dt

= − i(Ea〈b〉 + Eb〈a〉) − (κa + κb + i�a + i�b)〈ab〉 − ig(3〈a2〉〈a〉 + 2〈bb〉〈a†〉 + 4〈a†b〉〈b〉 − 2〈a〉3 − 4〈a†〉〈b〉2),

d〈a†b〉
dt

= + i(Ea〈b〉 − Eb〈a〉) + (i�a − κa − κb − i�b)〈a†b〉,
− ig[2(〈a†a〉 − 〈b†b〉)〈a〉 + 〈a2〉〈a†〉 − 2〈ab†〉〈b〉 − 2〈ab〉〈b†〉 + (4〈b†〉〈b〉 − 2〈a†〉〈a〉)〈a〉]. (11)

Since the implementation of QCE with higher truncation or-
ders is too complicated, we use a program to automatically
perform the factorization and derivations [28].

Based on the QCE, we calculate the dynamics of the intra-
cavity photon numbers Na = 〈a†a〉 in mode a Nb = 〈b†b〉 in
mode b for SHG, as summarized in Fig. 2 To demonstrate the
validity the QCE, we compare the system evolution modeled
by three different approaches. The master equation provides
the most rigorous solution as long as the FST has the trun-
cated dimension large enough. Under weak drive strength,
we take the truncation dimension as 40 and 20 for mode a
and mode b, respectively, and the computation is performed
using QUTIP [34]. For comparison, the QCE is solved with the
fourth-order truncation of clusters. The classical MFA model
governed by Eqs.(10) is also evaluated, and we note that the
MFA is actually the first-order QCE. For E = 6 and g = 0.4,
with initial vacuum state, the dynamics of photon numbers in
the two modes show excellent agreement between QCE and
FST. However, the results of MFA deviate from the other two
approaches, indicating that non-negligible quantum correla-
tions between modes exist for g/κ ∼ 0.4 as such effects could
not be captured by the MFA. Additionally, the steady-state
populations in two modes are studies for various g and E .
Figures 2(c) and 2(d) show that the MFA and QCE start to de-
viate when g exceeds 0.1, indicating a crossover from classical
to quantum regime. Similar behavior is shown when increas-
ing E for a fixed g = 0.2, as shown in Figs. 2(e) and 2(f).
Furthermore, MFA predicts a classical threshold above which

it will lead to self-pulsing as marked in the shadow region.
The critical driving strength Ec is given by

Ec = (2κa + κb)

2g

√
2κb(κa + κb), (12)

while it can be seen that the result above this threshold does
not correspond with the ones offered by either QCE or FST.

For the OPO process, as shown in Fig. 3, the MFA predic-
tions also significantly deviate from those of FST and QCE.
When varying g and E , the deviation is only obvious at mod-
erate values around the OPO threshold. As correctly predicted
by MFA, degenerate OPO exhibits threshold driving strength
Ec as

Ec = κaκb

2g
, (13)

similar to a second-order phase transition [30]. However, af-
ter taking the quantum correlation into consideration in the
QCE, the intracavity photon number 〈a†a〉 and 〈b†b〉 changes
smoothly with the driving strength E , in contrast to the
sharp transition predicted by the MFA [Fig. 3(c)]. Due to
the quantum fluctuation of the vacuum field, the spontaneous
parametric down-conversion always generates photons in the
fundamental mode a, which leads to the nonzero value of
〈a†a〉 for E < Ec. Even though semiclassical modification
can be introduced to MFA to explain the spontaneous para-
metric oscillation, it is still difficult to predict the system
behavior precisely when the drive amplitude is around the
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FIG. 2. Quantum-to-classical transition behaviors of second-
harmonic generation. (a, b) The dynamical evolution of intracavity
photon numbers Na = 〈a†a〉 and Nb = 〈b†b〉 for two modes, with
E = 6 and g = 0.4. (c, d) Steady-state intracavity photon number vs
the coupling strength g, with E = 10. (e, f) Steady-state intracavity
photon number vs the external drive strength E , with g = 0.2. In all
calculations, κa = κb = 1 and the evolution duration of the system is
TSS = 10/κa which is long enough for the system to reach the steady
state. Solid lines, dashed lines, and dash-dotted lines correspond to
results obtained via fourth-order QCE, FST, and MFA, respectively.
The shadow region denotes parameter spaces that lead to self-pulsing
behavior predicted by MFA.

threshold. For both SHG and OPO, MFA is consistent with
other approaches at the weak-coupling limit, thus validating
the coupled-mode theory widely adopted for nonlinear optical
systems with g/κ � 1. For OPO far above threshold (E and
g are large enough), the photon number in the fundamental
mode is much larger than the second-harmonic mode, thus
their quantum correlation can be safely neglected, i.e., �〈2̂〉 ≈
0. In this case, QCE and MFA agree with each other.

Besides offering more accurate prediction of the photon
numbers, another prominent advantage of the QCE is its abil-
ity to track the quantum statistics of the optical fields when
the nonlinear optical system transits from weakly anharmonic
to strongly anharmonic regime. In quantum optics, the equal-
time second-order self-correlation function

g(2)(0) = 〈O†O†OO〉
〈O†O〉2

(14)

is often used to quantify the quantum statistics of a mode O.
It requires the operator cluster to be truncated at least to the
second order, whereas MFA could not track the correlation
functions since 〈O†O†OO〉 = 〈O†O〉2 for first-order trunca-
tion. In contrast to the coupled-mode equations by MFA,
which can be transformed to g/κ-invariant form [31], the
quantum correlation function is coupled with the mean fields
in QCE, and thus depends on the pump power and g/κ . It is

FIG. 3. Quantum-to-classical transition behaviors of optical
parametric oscillation. (a, b) The dynamical evolution of cavity pho-
ton numbers Na = 〈a†a〉 and Nb = 〈b†b〉 for two modes, with E = 1
and g = 0.24. (c, d) The steady-state cavity photon number against
the coupling strength g, with E = 20. (e, f) The steady-state cavity
photon number against the external drive strength E , with g = 0.24.
In all calculations, κa = 1

2 κb = 1 and the evolution duration of the
system is set to TSS = 10/κa. Solid lines, dashed lines, and dash-
dotted lines correspond to the results via fourth-order QCE, FST, and
MFA, respectively.

worth noting that the QCE also enables the calculation of ar-
bitrary high-order quantum correlation functions by choosing
an appropriate truncation order.

Figure 4 shows g(2)(0) as a function of the coupling
strength g and the driving strength E . For SHG, the g(2)(0)

(a) (c)

(b) (d)

FIG. 4. Quantum second-order correlation function [g(2)(0)] of
different modes calculated by sixth-order quantum-cluster expansion
with varying coupling rate g and driving strength E . (a, b) The g(2)(0)
for modes a and b, respectively, under the SHG drive κa = κb = 1.
(c, d) The g(2)(0) for modes a and b, respectively, under the OPO
drive κa = 1

2 κb = 1. For all calculation, the evolution duration of the
system is set to TSS = 10/κa.
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FIG. 5. The performance of the QCE approach of different or-
ders. (a, b) Steady-state intracavity photon number of modes a and
b, under the SHG drive E = 2 with κa = κb = 1. (c, d) Steady-state
photon number of modes a and b, under the OPO drive intensity
E = 0.8 with κa = 1

2 κb = 1. The solid lines are the reference results
calculated by FST.

functions of the fundamental and SH mode are smaller than
1 when g is large and E is small, revealing the photon an-
tibunching due to the significant quantum photon blockade
effect [20,21]. As the driving strength E becomes large, the
g(2)(0) function tends above 1, which corresponds to the
bunching effect and can be attributed to optical bistability
and bifurcation [32,33]. The OPO case [Figs. 4(c) and 4(d)]
also shows the pump power-dependent g(2)(0) function, which
indicates the classical-to-quantum transition of OPO under a
strong pump as the value of the g(2)(0) function diverges from
1.

IV. PERFORMANCE ANALYSIS

It is of great importance to gain further insights into the per-
formance of QCE as the nonlinear optical system transitions
from weakly harmonic (g/κ � 1) to strongly anharmonic
(g/κ 	 1) regime. Figure 5 shows the performances of QCE
for SHG and OPO with different QCE truncation orders. The
solid line is obtained by solving the master equation in the
Fock-state basis and is used as a reference. For both SHG
and OPO, the deviations of the QCE results become large
with the increase of the coupling strength g, indicating an
increased high-order quantum correlation. It is anticipated that
it is more accurate to treat the nonlinear system as multilevel
atoms when g/κ 	 1 [19]. By expanding the operator clusters
to higher order, the results of QCE, as shown by the dashed
curves with orders of 2, 4, and 6, converge to the result of the
FST. However, as the order of expansion increases, a much
larger number of clusters are involved in the nonlinear cou-
pled equation, and lead to exceptionally high computational
complexity, especially for g 	 κ .

Therefore, the potential advantage of the QCE approach
is discussed by comparing its time consumption and com-
putational complexity with other approaches. In a nutshell,
Fig. 6(a) offers a qualitative illustration of the applicable pa-
rameter region for the three methods discussed in this paper.
The MFA is efficient and accurate for very weak nonlinearity

FIG. 6. Time consumption and computational complexity for
different approaches. (a) Qualitative illustration of the applicable
parameter regions of FST, QCE, and MFA. (b) The computation
time of the SHG model via FST compared with that via QCE with
different orders on a personal computer. The truncation dimension
of FST is max(E 2, 4) × 1

2 max(E 2, 4). (c) The computational com-
plexity of multimode systems. Solid lines and dash-dotted lines are
the numbers of items of the partial differential equations for QCE
with different truncation orders and the FST with different truncation
dimensions.

with g/κ � 1. For the FST, the density matrix contains the
full information of the optical fields with a finite Fock-space
dimension, and can be used for the calculation of the expec-
tation value of operators with arbitrarily high order. Thus,
the FST method is particularly powerful for g/κ 	 1, since
only a small amount of photon number states is enough to
capture the system’s behavior due to the strong anharmonicity,
but is limited to very few modes. The QCE is more suitable
for nonlinear systems with moderate nonlinearity g/κ � 1,
and its superiority is particularly significant for strong pump
power and large mode number. For example, in Fig. 2 with
g/κ = 0.2, a fourth-order QCE is enough to predict the photon
numbers of both modes with high precision. The star marked
near the curve of QCE [Fig. 2(d)] presents the result of FST in
a dimension of 100 × 100, which costs nearly 12 h for Monte
Carlo simulations [31] of 2000 trajectories by Qutip [34]. In
contrast, there are only 37 clusters in the fourth-order QCE
used, and the calculation takes only 1 s on the same computer,
showing a factor 104 speedup.

Figure 6(b) shows the quantitative result for the time cost
to complete a single simulation task via FST and QCE of
different orders. It is clear that the time cost for FST in-
creases exponentially with the pump power while the time
costs for QCE approaches are almost constants. Furthermore,
the two approaches scale differently with the system dimen-
sion, as shown in Fig. 6(c). For the open system with m
modes, the number of equations to solve with FST is nm

trunc,
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which increases exponentially with m (dashed lines). Thus,
the FST approach becomes impractical when the photon num-
ber exceeds 1000 for m � 5, as implied by the quantum
supremacy [35]. Fortunately, for the QCE, the exponential
scaling is reduced down to the polynomial relationship be-
tween the number of clusters and the number of modes, as
shown by the solid lines in Fig. 6(c). To the second-order
expansion, the maximum number of items f (2)(m) tracked in
the differential equations is m2 + 2m, which grows quadrati-
cally with mode number. For nth-order expansion, the number
of items is still a polynomial function of mode number
with O(mn). Even though these clusters couple with each
other nonlinearly, the computation complexity still follows
a polynomial relationship with the number of modes, thus
demonstrating the superiority of QCE for quantum many-
body physics in multimode bosonic systems.

V. CONCLUSION

In summary, we use the quantum cluster-expansion ap-
proach to investigate the classical-to-quantum transition of
multimode nonlinear optical systems. The χ (2) nonlinearity
is investigated as a signature two-mode system, with pump
laser driving either the fundamental mode or second-harmonic
mode. We have discussed the system dynamics with vari-
ous nonlinear coupling strengths to dissipation ratio g/κ , and
different approaches including the MFA, FST, and QCE are
numerically implemented and compared. It is found that the
QCE approach could bridge the gap between the MFA and

FST, i.e., capture both the classical behaviors and the quan-
tum correlations between modes, and is appropriate for the
nonlinear optical system with a large number of modes and
also relatively strong excitations with g/κ � 1. QCE greatly
reduces the computational complexity and can be applied
to describe a wide range of applications based on bosonic
oscillators with moderate anharmonicity, including the rapidly
developing integrated nonlinear photonics [15–17,36] and the
superconducting cavity with kinetic inductance [37,38]. The
experimental progress raises an urgent need for the theoretical
simulation of nonlinear photonic systems with high efficiency.
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