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Effects of counter-rotating-wave terms on the noisy frequency estimation
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We investigate the problem of estimating the tunneling frequency of a two-level atomic system embedded
in a dissipative environment by employing a numerically rigorous hierarchical equations-of-motion method.
The effect of counter-rotating-wave terms on the attainable precision of the noisy quantum metrology is
systematically studied beyond the usual framework of perturbative treatments. We find the counter-rotating-wave
terms are able to boost the noisy quantum metrological performance in the intermediate- and strong-coupling
regimes, whether the dissipative environment is composed of bosons or fermions. The results presented in this
paper may pave the way to design a high-precision quantum estimation scenario under practical decoherence.
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I. INTRODUCTION

Quantum parameter estimation is a rapidly developing
research field, which has many potential applications from
gravitational-wave detection [1,2], quantum radar [3,4], and
quantum illumination [5,6] to various ultrasensitive quan-
tum thermometries [7–9] and magnetometers [10,11]. As
demonstrated in many previous theoretical and experimental
studies, using quantum coherence [12], quantum entangle-
ment [13–15], quantum squeezing [16–18], and quantum
criticality [19–22], the performance of quantum metrology
can surpass the so-called shot-noise limit or standard quan-
tum limit, which is usually achieved in classical metrological
schemes.

Unfortunately, the superiority of quantum metrology is
commonly destroyed by decoherence [17,23–30], which is
induced by the inevitable interaction with the surrounding
environment. For example, Ref. [17] reported that the Zeno-
limit-type scaling relation, which is generated by the resource
of quantum squeezing in the noiseless case, is degraded into
the shot-noise limit under the influence of decoherence. In
this sense, in any practical scheme, the decoherence should
be carefully taken into account, which gives rise to the devel-
opment of the so-called noisy quantum metrology [27].

However, almost all the present studies of noisy quan-
tum metrology have restricted their attention to the bosonic
environment situation with the pure dephasing mechanism
[23,26,31,32] or the rotating-wave approximation (RWA)
[33–35]. On the other hand, the counter-rotating-wave terms
play a significant role in the atomic spontaneous emission
[36], the quantum Zeno and anti-Zeno effects [37,38] and
the non-Markovianity in open quantum systems [39,40]. A
question is naturally raised here: what influence does the
counter-rotating-wave terms have on the estimation precision
of noisy quantum metrology? To address the above concern,
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with the help of the nonperturbative hierarchical equations-
of-motion (HEOM) method [41–47], we go beyond the usual
RWA treatment and investigate the performance of estimating
the frequency of a two-level system which interacts with a
bosonic or fermionic environment.

This paper is organized as follows. In Sec. II, we first
recall some basic concepts, mainly about the classical and
quantum Fisher information, in the quantum parameter es-
timation theory. In Sec. III, we propose our noisy quantum
metrology scheme and outline our methodology. The effect of
the counter-rotating-wave terms on our metrological precision
is analyzed in Sec. IV. Some related discussion and the main
conclusions of this paper are given in Sec. V. In several
Appendixes, we provide some additional details about the
HEOM method as well as the other two additional dynamical
approaches. Throughout the paper, we set h̄ = kB = 1.

II. QUANTUM PARAMETER ESTIMATION

Generally, in a typical quantum metrology scheme, the
parameter of interest, say, θ in this section, is encoded into
the state of a quantum system (acting as a probe) via a unitary
or nonunitary dynamical process. Then, the information about
θ can be extracted from the θ -dependent state �θ via repeated
quantum measurements. In the above scenario, the metrolog-
ical precision with respect to a given measurement scheme is
constrained by the famous Cramér-Rao bound [48–50]

δ2θ � 1

υFC
, (1)

where δ2θ denotes the variance of the derived estimator, υ

is the number of repeated measurements (we set υ = 1 for
the sake of consistence in this paper), and FC is the clas-
sical Fisher information (CFI) corresponding to the selected
measurement scheme. To perform such a measurement in
the theory of quantum mechanics, one needs to construct a
set of positive operator-valued measures {�̂u}, which satisfy∑

u �̂†
u�̂u = 1̂ with discrete measurement outcomes {u}. For
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an arbitrary θ -dependent state �θ , the measurement operator
�̂u yields an outcome u with a corresponding probability
distribution p(u|θ ) = Tr(�̂u�θ�̂

†
u). With all the probabilities

from {�̂u} at hand, the CFI can be computed via [48–50]

FC =
∑

u

p(u|θ )

[
∂

∂θ
ln p(u|θ )

]2

. (2)

From Eq. (2), one can find the value of CFI strongly relies
on the choice of measurement operators. Running over all
the possible measurement schemes, one can prove that the
ultimate metrological precision is bounded by the following
quantum Cramér-Rao inequality [51]:

δ2θ � 1

υFQ
, (3)

where FQ ≡ Tr(ς̂2�θ ), with ς̂ determined by ∂θ�θ =
1
2 (ς̂�θ + �θ ς̂ ), is the so-called quantum Fisher information
(QFI). Specially, if �θ is a two-dimensional density matrix in
the Bloch representation, namely, �θ = 1

2 (12 + �r · �σ ), with �r
being the Bloch vector and �σ ≡ (σ̂x, σ̂y, σ̂z ) being the vector
of Pauli matrices, the QFI can be easily calculated via [51,52]

FQ = |∂θ �r|2 + (�r · ∂θ �r)2

1 − |�r|2 . (4)

If �θ is a pure state, Eq. (4) reduces to FQ = |∂θ �r|2.
Physically speaking, the QFI describes the most statisti-

cal information in �θ , while the CFI denotes the statistical
message extracted from the selected measurement scheme.
Thus, one can immediately conclude that FQ � FC. When the
selected measurement scheme is the optimal one, FC can be
saturated to FQ. Unfortunately, there is no general way to find
the optimal measurement operator, which has an explicit phys-
ical meaning. In this sense, designing the physically optimal
measurement scheme, which can saturate the best attainable
precision bounded by the QFI, is important in the study of
quantum metrology.

III. NOISY QUANTUM FREQUENCY ESTIMATION

As discussed in several previous articles [23,26,32,33,53],
in the ideal noiseless case, the information of the estimated
frequency, denoted by 
 in this paper, can be encoded to the
state of a two-level atomic system, which acts as a quantum
probe, via a unitary dynamics: �
 = �(t ) = e−it Ĥs�(0)eitĤs ,
with Ĥs = 1

2
σ̂x being the Hamiltonian of the probe. How-
ever, such a unitary encoding scheme breaks down if the
environmental influence is taken into account. In the noisy
case, the encoding process is realized by a nonunitary dynam-
ics �
 = �s(t ) = Tre[e−it Ĥ�se(0)eitĤ ], where �s(t ) denotes
the reduced density operator of the probe by tracing out the
environmental degrees of freedom and Ĥ is the total Hamil-
tonian of the probe plus the environment. In this paper, we
assume Ĥ has the following general form [40,54–56]:

Ĥ = Ĥs +
∑

k

ωk ĉ†
k ĉk +

∑
k

(g∗
k σ̂−ĉ†

k + gk σ̂+ĉk )

+ χ
∑

k

(g∗
k σ̂+ĉ†

k + gk σ̂−ĉk ), (5)

where ĉk and ĉ†
k are the annihilation and creation operators

of the kth environmental mode with frequency ωk , respec-
tively. If ĉk and ĉ†

k satisfy the canonical commutation relations
[ĉk, ĉ†

k′ ] = δkk′ , one can deem that the environment is com-
posed of bosons. On the other hand, if ĉk and ĉ†

k obey
{ĉk, ĉ†

k′ } = δkk′ , then the environment is a fermionic envi-
ronment. Operators σ̂± are defined as σ̂− = σ̂

†
+ ≡ |−〉〈+|,

with |±〉 being the eigenstates of the Pauli-x operator, i.e.,
σ̂x|±〉 = ±|±〉, and gk are complex numbers quantifying the
coupling strength between the quantum probe and the kth
environmental mode. The dimensionless parameter χ is a real
number, satisfying χ ∈ [0, 1], and characterizes the weight
of counter-rotating-wave terms in the interaction Hamilto-
nian. When χ = 0, all the counter-rotating-wave terms are
removed, and Ĥ reduces to the damped Jaynes-Cummings
model [33–35,53]. When χ = 1, all the contributions of the
counter-rotating-wave terms are taken into consideration, and
the Hamiltonian is totally beyond the RWA. By introducing
such a parameter, a bridge between the RWA regime and the
non-RWA regime can be built, which helps us to get a deeper
understanding of the effect of counter-rotating-wave terms on
the parameter estimation in a dissipative environment.

To obtain the information of the estimated frequency,
one needs to monitor the reduced density operator of the
probe, namely, �s(t ). In this paper, we adopt the HEOM
method [41–47], which can provide a numerically rigorous
result, to solve this problem (see Appendix A for more
details). As benchmarks, we also employ two other ap-
proaches, the Zwanzig-Nakajima master-equation technique
(see Refs. [57,58] and Appendix B) and the RWA treatment
(see Appendix C), to investigate the reduced dynamics of the
probe. Together with the purely numerical results from the
HEOM, these two additional methods can make our conclu-
sion more persuasive.

In this paper, we assume the initial state of the whole
system is given by

�se(0) = �s(0) ⊗ �e = |ψs(0)〉〈ψs(0)|
⊗

k

|0k〉〈0k|, (6)

where |ψs(0)〉 = cos φ|+〉 + sin φ|−〉 and |0k〉 denotes the
vacuum state of the kth environmental mode. The spectral
density of the environment J (ω), which is defined by J (ω) =∑

k |gk|2δ(ω − ωk ), has a Lorentzian form,

J (ω) = 1

2π

γλ2

(ω − 
)2 + λ2
, (7)

where λ defines the spectral width and γ can be approximately
interpreted as the probe-environment coupling strength. The
Lorentzian spectral density has a clear Markovian–non-
Markovian boundary [30,59–61] and can give rise to an
Ornstein-Uhlenbeck-type environmental correlation function,
which guarantees the feasibility of the HEOM algorithm (see
Appendix A for details).

As long as �s(t ) is obtained, the CFI and the QFI can be
calculated by making use of Eqs. (2) and (4), respectively.
During the purely numerical calculations, one needs to han-
dle the first-order derivative of the parameter 
, say, ∂
�r in
Eq. (4). In this paper, the first-order derivative for an arbitrary

-dependent function f
 is numerically done by adopting the

043706-2



EFFECTS OF COUNTER-ROTATING-WAVE TERMS ON THE … PHYSICAL REVIEW A 105, 043706 (2022)

FIG. 1. The dynamics of the CFI (top panels) and the QFI (bottom panels) in the Markovian regime (λ/γ = 5) and the non-Markovain
regime (λ/γ = 0.2). The red solid lines are analytical results from the RWA treatment, namely, χ = 0. The blue solid lines are obtained with
the Zwanzig-Nakajima master-equation approach. The HEOM results are represented by purple circles. The coupling strengths are chosen as
(a) γ = 0.1 cm−1, (b) γ = 0.02 cm−1, (c) γ = 0.08 cm−1, and (d) γ = 0.04 cm−1 with 
 = 0.1 THz and φ = π/4 and (e) γ = 0.1 cm−1, (f)
γ = 0.04 cm−1, (g) γ = 0.1 cm−1, and (h) γ = 0.04 cm−1 with 
 = 10 THz and φ = π/4.

following finite-difference method:

∂
 f
 
 − f
+2δ + 8 f
+δ − 8 f
−δ + f
−2δ

12δ
. (8)

We set δ/
 = 10−6, which provides very good accuracy.

IV. RESULTS

In this section, we try to address the effect of counter-
rotating-wave terms on the noisy quantum frequency estima-
tion. To obtain the CFI, the measurement operators in this
paper are chosen as �̂ = {|e〉〈e|, |g〉〈g|}, with |e, g〉 being the
eigenstates of the Pauli-z operator. In the ideal noiseless case,
the CFI with respect to the selected measurement scheme is
F ideal

C = t2, which is completely saturated to the QFI (see
Appendix C). This result means the choice of the measure-
ment scheme is the optimal one. Moreover, our measurement
scheme is mathematically equivalent to performing standard
Ramsey spectroscopy [13,23,53], which is commonly em-
ployed to estimate the phases (or external magnetic field)
of cold atomic systems. As the detailed expositions of a
typical Ramsey interferometer setup for a two-level system
[13,23,53], the uncertainty of estimating the parameter 


from the error-propagation formula is in full accord with that
of the CFI obtained from Eq. (2). Thus, it is quite natural to
generalize the above measurement scheme to the noisy case
and evaluate the environmental influences on its performance.
We find that, in the noisy situation, although the selected
measurement scheme cannot completely saturate the ultimate
bound given by the quantum Cramér-Rao theorem [see the
numerical results in Figs. 2(a)–2(c) and 3(a)–3(c)], the corre-
sponding CFI is in qualitative agreement with the QFI in the
non-Markovian and strong-coupling regimes.

A. The bosonic environment case

In Fig. 1, we plot the dynamics of the CFI and the QFI for
χ = 0 and χ = 1, including both the Markovian (λ/γ → ∞)
and non-Markovian (λ/γ → 0) cases. From Fig. 1, we can see
both the CFI and the QFI gradually increase from zero to their
maximum values with certain oscillations. Such oscillations
are quite dramatic in non-Markovian regimes and may be
linked to the backflow of information from the environment
back to the probe [30,33,61]. As the encoding time becomes
longer, both the CFI and the QFI begin to decrease and even-
tually vanish in the long-encoding-time limit. These results
can be physically understood as the competition between
the encoding process and the decoherence in noisy quantum
metrology [29,30,35]. At the beginning, the nonunitary en-
coding process generates the information of 
 in �s(t ), which
leads to the increase of the CFI (QFI) from zero. However, as
the encoding time becomes longer, the message about 
 in-
evitably leaks to the environment and is eventually destroyed
by the decoherence. Our result suggests there exists an op-
timal encoding time which can maximize the value of CFI
(QFI). In Figs. 2(a)–2(c), we plot the maximal CFI (QFI) with
respect to the encoding time as a function of χ . We can see the
optimal CFI (QFI) monotonously increases as the value of χ

becomes large, which means the counter-rotating-wave terms
can effectively boost the performance of our noisy quantum
metrology in the strong-coupling regime. On the other hand,
we define the quantities

δFB
� ≡ max

t
FB

� − max
t

FRWA
� (9)

to quantify the effect of the counter-rotating-wave terms on
the metrological precision. Here, the superscript � = C or Q
implies the CFI or the QFI, and FB

� and FRWA
� denote the

Fisher information for χ = 1 and χ = 0, respectively. As long
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FIG. 2. Left: the optimal Fisher information with respect to the
encoding time is plotted as a function of χ for the bosonic en-
vironment case. Right: the modification of the Fisher information
induced by the counter-rotating-wave terms is displayed as a function
of γ for the bosonic environment case. Parameters are chosen as
(a) λ/γ = 0.8, (b) λ/γ = 2, and (c) λ/γ = 3 with λ = 0.32 cm−1

and (d) λ/γ = 1.5, (e) λ/γ = 1, and (f) λ/γ = 0.5 with χ = 1. The
red diamonds and blue circles are, respectively, the QFI (� = Q) and
the CFI (� = C) predicted by the HEOM method. Here, we mainly
focus on the non-Markovian and strong-coupling regimes in which
the effect of counter-rotating-wave terms is significant. The other
parameters are 
 = 0.1 THz and φ = π/4.

as δFB
� > 0, one can conclude that the counter-rotating-wave

terms play a positive role in improving the metrological pre-
cision. In Figs. 2(d)–2(f), we plot δFB

� as a function of the

FIG. 3. The same as Fig. 2, but in the fermionic environment case.

coupling constant γ . As we can see from Figs. 2(d)–2(f),
δFB

� remains positive in the entire range of intermediate-
and strong-coupling regimes (say, 0.10 � γ � 0.75 cm−1 in
Fig. 2). In Table I and Fig. 4(c), we show the Fisher in-
formation with and without the RWA in the weak-coupling
regime, which demonstrates maxt FB

Q > maxt FRWA
Q as well.

These results mean the consideration of counter-rotating-wave
terms can provide a larger QFI. However, we also notice that
maxt FB

C can be smaller than maxt FRWA
C when γ is very

small. Such a deviation from that of the QFI situation is
probably induced by the fact that the selected measurement
scheme �̂ = {|e〉〈e|, |g〉〈g|} is not the optimal one in the noisy

TABLE I. The Fisher information (QFI and CFI) versus the coupling strength in the weak-coupling regime. Here, RB is defined as RB
� ≡

maxt FRWA
� / maxt FB

� . Other parameters are the same as in Fig. 2.

γ (cm−1) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

RB
Q (λ/γ = 1.5) 1.0000 0.9733 0.9294 0.9147 0.9524 0.8591 0.7122 0.6115 0.5381 0.4818

RB
Q (λ/γ = 1.0) 1.0000 0.9536 0.9286 0.9171 0.9009 0.9467 0.7775 0.6622 0.5792 0.5169

RB
Q (λ/γ = 0.5) 1.0000 0.9653 0.9286 0.9224 0.8786 0.8846 0.9050 0.8349 0.7205 0.6344

RB
C (λ/γ = 1.5) 1.0000 1.0164 1.0669 1.1262 1.2134 1.0619 0.8243 0.7631 0.6994 0.6355

RB
C (λ/γ = 1.0) 1.0000 1.0103 1.0390 1.0719 1.1493 1.2190 0.8633 0.8135 0.7597 0.7038

RB
C (λ/γ = 0.5) 1.0000 1.0045 1.0176 1.0410 1.0535 1.1140 1.1744 1.0459 0.8518 0.8137
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FIG. 4. The dynamics of the population difference 〈σ̂z(t )〉 with
(blue solid lines) and without (red diamonds) RWA in the strong-
coupling regime for (a) the bosonic environment case (γ = 0.2 cm−1

and λ/γ = 0.5) and (d) the fermionic environment case (γ =
0.15 cm−1 and λ/γ = 1.5). The dynamics of the QFI FQ(t ) with
(blue solid lines) and without (red circles) RWA in the strong-
coupling regime for (b) the bosonic environment case (γ = 0.2 cm−1

and λ/γ = 0.5) and (e) the fermionic environment case (γ =
0.15 cm−1 and λ/γ = 1.5). Here, the green five-point stars mark the
positions of the optimal QFIs with respect to the encoding time. The
ratio of R� versus γ in the weak-coupling regime with λ/γ = 0.5 for
(c) the bosonic environment case and (f) the fermionic environment
case. The other parameters are chosen as 
 = 0.1 THz and φ = π/4.

environment. This implies the CFI cannot be completely
aligned with the behavior of QFI.

B. The fermionic environment case

Almost all the existing studies of noisy quantum metrol-
ogy have restricted their attention to the bosonic environment
case. In this section, we generalize our study to the fermionic
environment case with the help of the HEOM method (see
Appendix A). We find the Fisher information in the fermionic
environment has a dynamical behavior similar to that of the
bosonic environment case (not shown here). Thus, by opti-
mizing the encoding time, the maximal CFI and QFI versus χ

can be obtained. As displayed in Figs. 3(a)–3(c), we can see

the metrological precision can be improved by increasing the
weight of the counter-rotating-wave terms. Like in the bosonic
environment case, we here define

δFF
� ≡ max

t
FF

� − max
t

FRWA
� (10)

as the quantity to detect the influence of the counter-rotating-
wave terms on our metrological precision in the fermionic
environment case, denoted with a superscript F. As displayed
in Figs. 3(d)–3(f) and Table II, we confirm that δFF

� is positive
in the strong-coupling regime for the fermionic environment
case. These results demonstrate that the counter-rotating-wave
terms are able to boost the QFI by enhancing the probe-
environment coupling, whether the environment is composed
of bosons or fermions. However, if γ is very small, an anoma-
lous phenomenon of RF

� > 1 may occur [see Table II and
Fig. 4(f)].

Here, we would like to provide a possible physical expla-
nation of why the counter-rotating-wave terms fail to improve
the metrological performance in the small-γ regime. Es-
sentially, we concentrate on the problem of noisy quantum
parameter estimation, which means the decoherence induced
by the system-environment coupling plays a negative role in
the metrological performance. It is commonly thought that a
more severe decoherence always induces a lower sensitivity
because stronger noise leads to more serious damage to the
ideal precision obtained in the noiseless case. On the other
hand, the system-environment interactions with and without
the RWA can be viewed as two completely different deco-
herence channels. Such a difference gives rise to distinct
decay rates as well as disparate estimation accuracies. As dis-
played in Figs. 4(a) and 4(d), we find, in the strong-coupling
regime, the inclusion of counter-rotating-wave terms can ef-
fectively inhibit decoherence. This decoherence-suppression
effect was also reported in Ref. [62] and can lead to a larger
maxt F� [see Figs. 4(b) and 4(e)]. However, as the coupling
strength decreases, the influence of counter-rotating-wave
terms vanishes, resulting in the above mechanism of decoher-
ence suppression breaking down. Thus, in the weak-coupling
regime, the phenomenon of quantum metrology boosted by
counter-rotating-wave terms may disappear. Such an anoma-
lous phenomenon is displayed in Fig. 4(f), from which we can
see the ratio of RF

Q can be larger than 1 if γ is small.

V. DISCUSSION AND CONCLUSION

Before concluding our work, some important remarks shall
be addressed here.

(i) In our work, the strength of the counter-rotating-wave
terms in the interaction Hamiltonian, namely, the parame-
ter χ , is continuously tunable for the entire range of χ ∈
[0, 1], which can build a bridge connecting two particular
limits: totally with and without the RWA. In fact, such con-
trollable strength of the counter-rotating-wave terms in the
quantum Rabi model is called anisotropy [63–65], which leads
to a much richer ground-state phase diagram [64,65] and
can be used to explain the anomalous Bloch-Siegert shift in
the ultrastrong-coupling regime [66]. These previous studies
of the anisotropic quantum Rabi model motivate us to ex-
plore the influence of the counter-rotating-wave terms on the
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TABLE II. The same as Table I, but in the fermionic environment case. Here, RF is defined as RF
� ≡ maxt FRWA

� / maxt FF
� .

γ (cm−1) 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

RF
Q (λ/γ = 0.5) 1.0000 0.9657 0.9341 0.9326 0.8846 0.9079 1.0435 0.8907 0.7991 0.6955

RF
Q (λ/γ = 1.0) 1.0000 0.9577 0.9411 0.9383 0.9760 1.0099 0.8440 0.7301 0.6476 0.5854

RF
Q (λ/γ = 1.5) 1.0000 0.9733 0.9655 0.9720 1.1567 0.9321 0.7861 0.6842 0.6119 0.5558

RF
C (λ/γ = 0.5) 1.0000 1.0019 1.0058 1.0151 1.0036 1.0286 1.0846 1.0761 0.8291 0.7891

RF
C (λ/γ = 1.0) 1.0000 1.0094 1.0298 1.0438 1.1307 1.2738 0.8496 0.8008 0.7496 0.6975

RF
C (λ/γ = 1.5) 1.0000 1.0234 1.0785 1.1280 1.3398 1.0534 0.8209 0.7654 0.7085 0.6520

metrological precision by introducing the engineered tunable
parameter χ .

(ii) Compared with the widely accepted interaction Hamil-
tonian between a two-level spin and a bosonic environment,
the form of the spin-fermion interaction still remains contro-
versial. The spin-fermion model considered in this paper is
the most straightforward generalization of the well-accepted
spin-boson model and can be regarded as a toy model. How-
ever, it is necessary to emphasize that such a spin-fermion
model is not merely of academic interest. It may be used to
describe certain physical phenomena, say, the magnetism of
the weak-moment heavy-fermion compound UR2Si2 [67,68].

(ii) Although the theoretical model and the numerical tool
are the same as those in Ref. [40], the central goal of our work
is utterly different from that of Ref. [40]. Our paper concen-
trates on a concrete physical problem, while Ref. [40] is much
closer to a methodology article discussing the HEOM method.
More importantly, we here investigate an alternative topic,
which means the physical conclusion in Ref. [40] cannot be
straightforwardly applied to our present paper.

(iv) Simulating the exact non-Markovian dissipative dy-
namics of an open quantum system in the strong-coupling
regime is difficult. As reported in Refs. [69–74], the so-called
negative-frequency phenomenon may appear in the strong-
coupling regime, which leads to isolated eigenenergies in
the energy spectrum (the bound-state effect) [70–72]. The
appearance of negative frequencies can lead to a long-lived
coherence [69,70,72] as well as the breakdown of canonical
thermalization [71,74], which cannot be predicted by the com-
mon quantum master-equation approach. However, to the best
of our knowledge, such a negative-frequency phenomenon
usually occurs in the unbiased spin-boson model with the
RWA [70,72] or the quantum Brownian motion (the Caldeira-
Leggett model) without adding the counter term [73,74].
For the model considered in this paper (a Lorentzian spin-
boson model totally beyond the RWA), the negative-frequency
phenomenon has not been reported. Excluding the negative-
frequency problem, we believe the numerical correctness from
the HEOM method can be fully guaranteed.

In summary, using the numerically rigorous HEOM
method, we investigated the exact reduced dynamics of a
two-level system coupled to a dissipative bosonic or fermionic
environment. With these results, we analyzed the influence
of counter-rotating-wave terms on the performance of noisy
parameter estimation beyond the usual weak-coupling treat-
ment. It was revealed that the counter-rotating-wave terms
can effectively enhance the metrological precision in the
non-Markovian and strong-coupling regimes, regardless of
whether the dissipative environment is composed of bosons

or fermions. Our results may have certain applications in
quantum metrology and quantum sensing.
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APPENDIX A: THE HEOM METHOD

In this Appendix, we briefly sketch the HEOM method fol-
lowing the detailed expositions in Refs. [40,46,47,75]. Let us
consider a general quantum dissipative system whose Hamil-
tonian can be described by

Ĥ = Ĥs +
∑

k

ωk ĉ†
k ĉk +

∑
k

(g∗
kL̂ĉ†

k + gkL̂†ĉk ), (A1)

where L̂ is the quantum probe’s operator coupled to its
surrounding dissipative environment. Taking L̂ = σ̂− + χσ̂+,
Eq. (5) in the main text can be recovered. The dynamics of
the Hamiltonian Ĥ is governed by the common Schrödinger
equation. By introducing the bosonic or the fermionic coher-
ent state |z〉 ≡ ⊗

k |zk〉, with ĉk|zk〉 = zk|zk〉, one can recast
the standard Schrödinger equation into the following non-
Markovian quantum state diffusion [76–78]:

∂

∂t
|ψt (z∗)〉 = − iĤs|ψt (z∗)〉 + L̂z∗

t |ψt (z∗)〉

− L̂†
∫ t

0
dτC(t − τ )

δ

δz∗
τ

|ψt (z∗)〉, (A2)

where |ψt (z∗)〉 is the wave function in the coherent-state
representation. The stochastic variable (random noise)
zt ≡ i

∑
k gke−iωkt zk satisfies M{zt } = M{z∗

t } = 0 and
M{zt z∗

τ } = C(t − τ ) ≡ ∑
k |gk|2e−iωk (t−τ ), where M{· · · }

denotes the statistical mean over all the possible stochastic
processes and C(t ) is the environmental correction function.
By far, no approximation is invoked, which means the
non-Markovian quantum state diffusion equation given by
Eq. (A2) is exact. However, Eq. (A2) is difficult to solve due
to the time-nonlocal functional derivative term [46,47].

Fortunately, for the Lorentzian spectral density considered
in this paper, C(t ) is an Ornstein-Uhlenbeck-type correlation
function; namely, C(t ) can be expressed as an exponen-
tial function: C(t ) = αe−βt , with α = 1

2γ λ and β = λ +
i
. Using this particularity, the HEOM algorithm can be
realized [40,46,47,75]. By introducing auxiliary operators
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�
(m,n)
t ≡ M{|ψ (m)

t (z∗)〉〈ψ (n)
t (z∗)|}, with

|ψ (m)
t (z∗)〉 ≡

[ ∫ t

0
dτC(t − τ )

δ

δz∗
τ

]m

|ψt (z∗)〉, (A3)

the non-Markovian quantum state diffusion equation can be
reexpressed as the following HEOM [40,46,47,75]:

d

dt
�

(m,n)
t = (−iĤ×

s − mβ − nβ∗)�(m,n)
t

+ mαL̂�
(m−1,n)
t + nα∗�(m,n−1)

t L̂†

− L̂†×�
(m+1,n)
t + L̂×�

(m,n+1)
t , (A4)

where X̂ ×Ŷ ≡ X̂Ŷ − Ŷ X̂ and �
(0,0)
t is the reduced density op-

erator of the probe. Similarly, the HEOM of the spin-fermion
model is given by [40,75]

d

dt
�

(m,n)
t = (−iĤ×

s − mβ − nβ∗)�(m,n)
t

+ �(m)αL̂�
(m−1,n)
t + �(n)α∗�(m,n−1)

t L̂†

+ [
(−1)n�

(m+1,n)
t L̂† − L̂†�

(m+1,n)
t

]
+ [

(−1)mL̂�
(m,n+1)
t − �

(m,n+1)
t L̂

]
, (A5)

where �(x) ≡ x mod 2 and the auxiliary operators are defined
as �

(m,n)
t = M{|ψ (m)

t (z∗)〉〈ψ (n)
t (−z∗)|}.

The initial-state conditions of the auxiliary operators are
�

(0,0)
t = �s(0) and �

(m>0,n>0)
t = 0. In numerical simulations,

we need to truncate the hierarchical equations. In practice, we
choose a sufficiently large integer N and set �

(m,n)
t with m +

n > N to zero. Then, �
(m,n)
t with m + n � N form a closed set

of ordinary differential equations which can be numerically
solved by using the well-developed Runge-Kutta algorithm.

APPENDIX B: ZWANZIG-NAKAJIMA
MASTER EQUATION

In the special case χ = 1, Ĥ reduces to the standard spin-
boson model, whose reduced dynamics can be captured by the
famous Zwanzig-Nakajima master equation [79,80]

∂

∂t
�s(t ) = −iL̂s�s(t ) −

∫ t

0
dτ�̂(t − τ )�s(τ ), (B1)

where we have used the Born approximation L̂xÔ = Ĥ×
x Ô,

where x = s, e, i are the Liouvillian operators corresponding
to the probe, the environment, and the probe-environment
interaction Hamiltonian, respectively. Here, �̂(t ) is the self-
energy superoperator. If the probe-environment coupling is
weak, �̂(t ) can be approximately written as [57,58]

�̂(t ) 
 Tre[L̂ie
−it (L̂s+L̂e )L̂i�e]. (B2)

In the Bloch representation, the Zwanzig-Nakajima master
equation can be expressed as ∂t �r(t ) = S(t )  �r(t ), where 
denotes the convolution and

S(t ) =

⎡
⎢⎣

−A(t ) 0 0

0 −B(t ) −
δ(t )

0 
δ(t ) 0

⎤
⎥⎦, (B3)

with A(t ) = 4 cos(
t )C(t ) and B(t ) = 4C(t ). By means of
the Laplace transform, one can find

r̃i(ζ ) ≡
∫ ∞

0
dtri(t )e−ζ t =

∑
j

Fi j (ζ )r j (0), (B4)

where i, j = x, y, z. The nonvanishing terms of Fi j (λ) are
given by

Fxx(ζ ) = [ζ + Ã(ζ )]−1, (B5)

Fyy(ζ ) =
[
ζ + B̃(ζ ) + 
2

ζ

]−1

, (B6)

Fzz(ζ ) = [1 + ζ−1B̃(ζ )]Fyy(ζ ), (B7)

Fyz(ζ ) = −Fzy(ζ ) = −
ζ−1Fyy(ζ ). (B8)

Then, for an arbitrary given initial state, the reduced dynamics
of the Bloch vector �r(t ) can be completely determined by
Eq. (B4) with the help of the inverse Laplace transform.

APPENDIX C: THE RWA CASE

In the special case with χ = 0, the RWA completely re-
moves the counter-rotating-wave terms in Ĥ , resulting in the
total excitation number operator N̂ = σ̂+σ̂− + ∑

k ĉ†
k ĉk being

a constant of motion. This character leads to the spin-boson
model and the spin-fermion model sharing the same reduced
dynamical behavior in the RWA case [40]. As displayed in
Refs. [40,59], in the basis of {|+〉, |−〉}, the exactly analytical
expression of �s(t ) can be expressed as

�s(t ) =
[

�++(0)G2
t �+−(0)Gt e−i
t

�−+(0)Gt ei
t 1 − �++(0)G2
t

]
, (C1)

FIG. 5. The dynamics of the population difference with (a) χ =
0, γ = 0.1 cm−1, and 
 = 1 THz, (b) χ = 1, γ = 0.01 cm−1, and

 = 0.2 THz, (c) χ = 1, γ = 0.1 cm−1, and 
 = 0.2 THz, and
(d) χ = 1, γ = 0.2 cm−1, and 
 = 0.2 THz. The red solid line
represents the exactly analytical RWA treatment, the blue solid lines
are obtained from the Zwanzig-Nakajima master-equation approach,
and the purple diamonds are purely numerical results predicted by
the HEOM method. The other parameters are λ = 5γ and φ = π/4.
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where

Gt = exp

(
− 1

2
λt

)[
cosh

(
1

2
�t

)
+ λ

�
sinh

(
1

2
�t

)]
(C2)

is the decoherence factor and � ≡
√

γ 2 − 2γ λ.
With Eq. (C1) at hand, the analytical expressions of CFI

and QFI can be easily computed. Assuming the initial-state
parameter φ is chosen as φ = π/4, we find

FRWA
C = t2G2

t sin2(
t )

1 − G2
t cos2(
t )

(C3)

and FRWA
Q = t2G2

t . One can easily check that FRWA
Q � FRWA

C
because 0 � Gt � 1. Moreover, in the ideal noiseless case, we
have Gt = 1, which leads to F ideal

C = F ideal
Q = t2. This result

means the selected measurement scheme is the optimal one in
the noise-free situation.

In Fig. 5(a), we display the dynamics of the population
difference 〈σ̂z(t )〉 ≡ Trs[σ̂z�s(t )] from the purely numerical
HEOM method. In the special case with χ = 0, one can see
our numerical results are completely consistent with that of
the exactly analytical RWA result 〈σ̂z(t )〉RWA = Gt cos(
t ).
For the case with χ = 1, as long as the probe-environment
coupling is not too strong, our HEOM results are in good
agreement with the predictions from the Zwanzig-Nakajima
master-equation approach [see Figs. 5(b)–5(d)]. However,
the HEOM results are believed to be more reliable because
the Zwanzig-Nakajima master-equation approach neglects the
higher-order probe-environment coupling terms, which are
invalid in the non-Markovian and strong-coupling regimes.
These results verify the feasibility and the validity of the
HEOM method.
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