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The emerging hybrid cavity optomagnonic system is a very promising quantum information processing
platform for its strong or ultrastrong photon-magnon interaction on the scale of micrometers in the experiment.
In this paper, the superfluid—-Mott-insulator quantum phase transition in a two-dimensional cavity optomagnonic
array system has been studied based on this characteristic. The analytical solution of the critical hopping rate
is obtained by the mean-field approach, second-order perturbation theory, and Landau second-order phase
transition theory. The numerical results show that the increasing coupling strength and the positive detunings
of the photon and the magnon favor the coherence and then the stable areas of Mott lobes are compressed
correspondingly. Moreover, the analytical results agree with the numerical ones when the total excitation number
is lower. Finally, an effective repulsive potential is constructed to exhibit the corresponding mechanism. The
results obtained here provide an experimentally feasible scheme for characterizing the quantum phase transitions
in a cavity optomagnonic array system, which will offer valuable insight for quantum simulations.
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I. INTRODUCTION

Quantum simulation provides a useful tool for solving
many problems such as quantum phase transition, quan-
tum magnetism, and high-temperature superconductivity [1].
Quantum phase transition of an interaction system composed
of multiple particles are widely investigated, such as heavy
fermions in Kondo lattices [2], ultracold atoms in optical
lattices [3-5], and the ensemble of two-level systems inter-
acting with a bosonic field (i.e., Dicke model) [6]. Especially,
the superfluid-Mott-insulator quantum phase transition of
bosons, which forms one of the paradigm examples of a quan-
tum phase transition, was first studied in the Bose Hubbard
(BH) model due to the competition of the on-site interaction
and the hopping term theoretically and experimentally [7-10].
Given the precise control of coupling strengths, the properties
of scalability and individual accessibility of coupled cavities
[11-14], the Jaynes-Cummings Hubbard (JCH) model, which
describes the dynamics of the coupled-cavity arrays with each
embedded within a two-level atom has attracted tremendous
attention [15—-17] in recent years. Based on the JCH model and
extended JCH model, the superfluid—-Mott-insulator quantum
phase transition of light reminiscent of the ones of atoms
in the BH model are extensively simulated [18-26]. More
importantly, the quantum phase transition of light depends
crucially on the intrinsic atom-photon interaction in the JCH
model, where the atom-photon coupling leads to the formation
of repelled collective polaritonic excitations, and this on-
site repulsive potential compete with the hopping of photons
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between neighboring cavities. On the other hand, the quantum
phase transition of light has great potential application for a
new source of quantum-correlated photons [1,23,27-30].

Hereafter, with the fabrication of optomechanical cav-
ity systems at the desired frequency accuracy and the
coupling strength, the cavity optomechanical array system
provides another experimentally feasible avenue to simu-
late the superfluid—-Mott-insulator quantum phase transition
[31-33]. Compared with the coupled cavity array system, the
phonon-mediated cavity field and the two-level system form
polaritons by coupling, which provide an effective on-site
repulsion; then the system can also simulate the superfluid—
Mott-insulator quantum phase transition. Interestingly, the
enhanced phonon-photon coupling favors the coherence of the
system [34].

In analogy to the cavity optomechanical system, the cavity
optomagnonic system, a new class of hybrid quantum systems
based on collective spin excitations in ferromagnetic mate-
rials [35], has received increasing attention in recent years,
which provides a new and promising platform for studying
macroscopic quantum effects [35-43]. The collective spin
excitation in ferromagnetic crystals is called a magnon, which
can interact coherently with microwaves and optical photons
as well as phonons via magnetic dipole, magneto-optical, and
magnetostrictive interactions, respectively [44—47]. Experi-
mentally, yttrium iron garnet (YIG) spheres are characterized
with high collective spin excitation density, low dissipa-
tion, great frequency tunability, and the longer coherence
time, which are widely used in the study of magnon-photon
coupling due to its strong and even ultrastrong couplings
[35,48,49]. In addition, the strong coupling between cavity
photon and magnon has been observed at both low and high
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temperature experimentally [50]. Based on these features of
the cavity optomagnonic system, many intriguing phenomena
have been explored, such as magnon dark modes and gradi-
ent memory [51], coherent and dissipative magnon-photon
interaction [35,52-57], the high-order sideband generation
[58], the self-sustained oscillations and chaos [53,59,60],
non-Hermitian physics [54,61,62], entanglement [49,63-66],
magnon-induced nearly perfect absorption [67], magnon Fock
state [68], magnon squeezing [69], and so on. Recently, sev-
eral interesting advances associated with the photon blockade
in the cavity optomagnonic system were also investigated
[36,38,70]. We note that the interplay of the photon blockade
and photon hopping is not considered. In view of the unique
advantages of magnons, it is very interesting to further ex-
plore the superfluid—Mott-insulator quantum phase transition
of light in the hybrid macroscopic quantum interface of atoms,
photons, and magnons.

In this work, we will investigate whether there is a
superfluid—Mott-insulator quantum phase transition in a cav-
ity optomagnonic array system. Compared with the JCH
model, three new degrees of freedom were added by the inclu-
sion of YIG spheres, and the effects of these three new degrees
on the quantum phase transition were investigated. First, the
analytical solutions for low excitation number are obtained
based on the mean-field approximation, the second-order
perturbation theory, and the Landau phase transition theory.
Then, the phase diagrams are discussed numerically using
the mean-field theory. Finally, the effective repulsive potential
is presented to show the mechanism of the superfluid—Mott-
insulator transition.

This paper is organized as follows: In Sec. II, we describe
a cavity optomagnonic array system used for studying the
superfluid—Mott-insulator quantum phase transition of light.
Section III is devoted to discussing the analytical solutions of
this system, and the numerical solutions are given in Sec. IV.
Conclusions are made in Sec. V.

II. MODEL AND HAMILTONIAN

Consider a cavity optomagnonic system composed of
a two-dimensional (2D) array of identical coupled opto-
magnonic cavities, with each cavity containing a two-level
atom (TLA) interacting with the photon mode (see Fig. 1).
The total Hamiltonian (2 = 1) of the system can be written as

ZHC’”" Zlcuaa, Zml\%, M
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Hl.p = a)cai a; +a)a0< Gi + wpiit;

+ gu(Gid] + 6] a) + GOl +mla), ()

where i, j are the indexes for the individual optomagnonic
cavity and range over all nearest-neighbor sites; the subscript
T is the abbreviation of the total. Here, the cavity opto-
magnonic system is denoted as the superscript cpm for con-
venience. &, (@;) and 7 (i) are the photonic and magnonic
creation (anmhllatlon) operators, respectively. & (a,) are the
atomic ra1smg and lowering operators, respectlvely. Ni =
> N = > (a a; + rh;rrh,- + 6, 6;) is the total polariton num-
ber operator [71-73]. N; is the total number of photonic,
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FIG. 1. Schematic diagram of a two-dimensional hybrid coupled
optomagnonic cavity array setup. Each optomagnonic cavity con-
tains a two-level atom and a YIG sphere is placed near the maximum
magnetic field of the cavity mode and in a uniform bias magnetic
field, which establishes the magnon-photon coupling.

magnonic, and atomic excitations of the ith site in the cavity
optomagnonic system. From the commutation relationship
between the total polariton number operator N; and the
Hamiltonian %7, one can find that A/; is a conserved quantity.
It is feasible to describe this model in the grand-canonical
ensemble and the chemical potential is w;, which is the La-
grange multiplier in the grand-canonical ensemble ensuring
the conservation of the total excitation number in the phase
transition between the Mott insulator and superfluid phases.
G, (g,) represents the coupling strength of cavity mode and
magnon (atom), respectively. w,, @., and w,, are the frequen-
cies of cavity photon, atom, and magnon, respectively, where
w, = yH, y is gyromagnetic ratio, and H is the modulated
magnetic field, which can be given by the Holstein-Primakoff
(H-P) transformation [35,74,75]. We introduce the detuning
between the atom and the cavity, A, = w, — w., and the
detuning between the magnon mode and the cavity mode
is A, = w, — .. In addition, the second term of Eq. (1)
denotes the photon hopping between the nearest-neighbor
cavities with the hopping rate «;;. We assume the hopping
rate of photons k;; = k between adjacent sites i and j. The
chemical potential u; = p is the same for all optomagnonic
cavities for simplicity.

We utilize the mean-field approximation method to study
the superfluid-Mott-insulator quantum phase transition of
light. In the mean-field approximation, we introduce the su-
perfluid order parameter ¥ = (a;) to study the quantum phase
transition. Generally, ¥ is a complex number, but its phase
factor can be gauged away without affecting the Hamiltonian.
Thus, ¥ can be taken to be real in the present system. When
Y = 0, the system is in the Mott insulator phase. Otherwise,
the system is in the superfluid phase. The boundary between
¥ = 0 and ¢ # 0 phases defines a quantum phase transition
in the system. The final form Eq. (3) of the Hamiltonian is
obtained by using the decoupling approximation, where z = 4
is the number of nearest neighbors.

HT — Z [I_Iicpm
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Therefore, we choose the eigenstates as the bare states
of the cavity optomagnonic system, which is composed of
the direct product of the cavity photon states, magnon states,
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and atom states, i.e., | photon(n), magnon(m), atom(e, g)).
The dimension of the subspace is (2N + 1) x (2N + 1). So,

approximation and the hopping term, respectively.

MF __ 2
we choose a complete set of basis vectors [N —m — 1, m, e), H™ =zl
0O,N —1,¢e),IN —m,m,g),|1,N —1,g),10,N, g) to give the HYT H(';;P 0 0 0
matrix form of the Hamiltonian Eq. (4) after the mean-field ghoPT  pgME - prhop 0
approximation with n running 0,1,2, to N, while m takes ((())) Hh%gT H(I\l/[)F ho 0
0,1,2,...,N — 2. Therefore, the matrix dimension of Hg}’l\,}; (1) h(gp))r (ZM)F
can be defined (2N + 1) x (2N + 1), and likewise, the matrix 0 0  Hy'" Hg 01 &4
dimension of H(t;f,’f is defined as QN + 1) x Q(N + 1)+ 1).
The matrix expression can be obtained as follows. The su-
perscript MF and hop are the abbreviations of the mean-field 0 0 0 0 H(l}/[\,f
|
VNg, 0 0 0
i 0 N —1lg, 0 0
? 0 0 0 0
0 0 & 0
Hyy = |VNg, 0 0 5)
0 VN —1g, 0
H,
0 0 g
0 0 0 @N+1D)x(2N+1)
The specific forms of H; and H, are in Appendix A.
—«/N — 1z 0 0 0 0 0 0
0 —«/N — 2z 0 0 0 0 0
HyP = 0 0 0 —vNuwy 0 0 0 (6)
0 0 0 0 —«/N — lzk 0 0
0 0 0 0 0 =Y 0/ oniyan+s

For example, when the total excitation number is N = 0
(N = 1), the basis vectors are selected as |0, 0, g)(|1, 0, g),
0,1, g), 10,0, ¢)). And the matrix of Hf} = (0) for N =
0. For N =1, the matrix dimension of H(I\{I)F should be
substituted by

Wgq — 8a 0
8a We — U G
0 Gm Wy — W

m

HMF —

(1 @)

Introducing the detuning between the photon frequency
and the two-level transition frequency A, (magnon frequency
A,,), the resulting Hamiltonian is

MF Aa — M 8a 0
HF = & o-n G, |.  ®
0 Gn Ay — 1
the eigenvalues are given (A, = A,, = A)
Ejg=A—p, )

Ha-2u+ wc—\/AZ—ZAa)C +4g2 +4G2 + w?),
(10)

E|

,—

El,=3(A-2u+ wc+\/A2 —2Aw, + 48 + 4G2, + »?).
an

The splitting between states with the same excitation number
of a polariton is given by

Se = Ej , —Ej = /A~ 280, + 48 + 4G + o2,
(12)

Note that the splitting 6z does not only depend on the de-
tunings of the photon atom and the photon magnon but also
depend on their coupling strengths. That is to say, in a cavity
optomagnonic system, the strong photon-magnon and photon-
atom coupling are all involved in the polariton mapping
[71,72]. Meantime, three new degrees of freedom are added
in the new model compared with the JCH model, which are
the excitation number m of the magnon, the coupling strength
G, and the detuning A, between the cavity field and the
magnon. From the above discussion, we can determine that
the excitation number of the magnon () is constrained by the
total excitation number (V). In the following section, we will
first deduce the analytical expressions for the order parameter
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and the critical hopping rate based on the second-order pertur-
bation method and the Landau theory for the continuous phase
transitions.

III. ANALYTICAL SOLUTIONS

To get the simple analytical expression, we assume that the
cavity frequency, atomic frequency, and magnon frequency
are the same, i.e., w,, = 0, = w, = w. Considering Eq. (5) for
lower excitations without the hopping term, the eigenvalues
are given in Appendix B.

Then we need to think about the eigenstates that cor-
respond to each eigenvalue. Here, we take E,_, E; _ as
examples to obtain the analytical solutions of the order pa-
rameter for the quantum phase transition. The expressions of
the corresponding eigenstate are

1
¢ Eﬁ(IO,l,g)+alll,0,g)+d1|0,0, e),  (13)

1
= = 0721 + 1,0, +b0a11
b2 «/B_z(l g) +all,0,e) + 00, 1, )

+ ¢l2,0,8) +d[l. 1, g)). (14)

The ground state is ¢y = |0, 0, g), and the parameters involved
in Egs. (13) and (14) are detailed in Eqgs. (B10)—(B17).

The second-order perturbation theory is a commonly used
method to study the analytical solution of the superfluid—
Mott-insulator quantum phase transition [15,76]. Therefore,
we take the hopping term H"P as the perturbation term and
calculate the analytical solution of the system. One can get
the second-order corrections to the energy and the normalized
eigenstates are shown in Egs. (B18)-(B22).

Then, according to the second-order perturbation the-
ory, we can write the approximative wave function as ® =

10, (D) _ L@ 1at 1) 12 | 14ge” 1alg™) 2
g @1 $17), where N =1+ S o T

is a normalization coefficient.

Based on the definition formula of the order parameter y
and the wave function @, the analytical formula of the order
parameter i can be given as

—ac| (9™ el (o lag®)|’

ED _ED EO _E®)
V= ) 5114 O |2 (0)) 4150\ |2 : (15)
|2k (50t 161} | |2k (5" aloy”} |
(BB )2 [CREEY

Furthermore, the expansion of the energy in the power
series in ¥ can be given by

Ei_=E _Y4E_®4uy?>+o0w*H. (16)

E1(21 is given by Eq. (B8).

Hereafter, according to Landau’s second-order phase tran-
sition theory, the phase boundary of the Mott insulator phase
and the superfluid phase can be determined when the coeffi-
cient of the square term v is zero [77,78]. Then, the critical
hopping rate k. can be acquired. The system holds the Mott
insulator state when k < k., and in other cases, the system is
in a superfluid state. Based on these expressions, the bound-
aries between the superfluid phase and the Mott insulator
phase with the different coupling strength G,, are shown in

S -1
P
3
L-1.5 11,0,-> 10,0, >
-2
-10 0
An/gu

(d)

A/ ga
(f)

-1
A m/ga=o
A /g _=0.5
m'9a 11,0, ->
7Am/ga=1
7Am/ga=-1
A /g _=-0.5
m'9a 10,0, >
-10 0 10
Au/ga A/ ga

FIG. 2. Boundaries between different Mott lobes as a function
of n and A, when the hopping rate approaches zero for different
An/ga With G, /g, = 0.8. (a) A, /g, = 0. The red dashed line is the
analytical result between states |0, 0, —) and |1, 0, —). (b) A,,/g. =
0.5, (¢) An/ga =1, (d) An/ga=—0.5, (e) An/ga = —1. (f) The
boundary between states |0, 0, —) and |1, 0, —) for different A,,.

Figs. 4(e)—4(f), and the specific analysis will be discussed in
the next section.

315%1,7 N =0;
e = (£ ) 1
(o712 101” ) B2+ (o1 i) 17~ '

(17)

Up until now, the order parameter i and the critical hop-
ping rate are obtained based on a mean-field theory in order
to analyze the quantum phase transition of the system. In
what follows, we will use a numerical method to discuss
the behaviors of the superfluid—Mott-insulator quantum phase
transition and compare with the analytical results mentioned
above against the controlling parameters of our model.

IV. MOTT-SUPERFLUID TRANSITION

We first investigate the critical chemical potential as a
function of A,, which is usually defined as Ey1; _ — u(n +
1) = Ey_ — pun. Figure 2 exhibits the change of bound-
aries between different Mott lobes for various detuning A,,.
Meanwhile, the analytic solution between states |0, 0, —) and
[1,0, —) is also shown in Fig. 2(a). Obviously, the analytic
solutions conform with the numerical solution on the lower
excitation number. Figures 2(a)-2(e) also show the Mott lobes
with different A,,, which exhibit that the Mott lobes are
smaller and closer to each other with |A,/g,| increasing.
That means that the regions of stability become observably
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10,0,->

-10 0 10
A(I/g(l
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FIG. 3. Boundaries between Mott lobes as a function of p and
A, when the hopping rate approaches zero for different G,, with
Am/ga =0.5. (a) Gm/ga = 0, (b) Gm/ga = 05, (C) Gm/ga = 1, and
(d) G,/g. =1.2. (f) The boundary between states |0,0, —) and
|1, 0, —) with different G,,/g,-.

smaller with the excitation number and the detuning |A,/g,|
increasing and it’s easy to notice that the states |0, 0, —) and
|1, 0, —) are the most stable ones in Figs. 2(a)-2(e). The phase
boundary between the lowest and the second lowest states
with different A,, is shown in Fig. 2(f), which illustrates that
the stable region of state |0, 0, —) becomes large with A,
increasing. In addition, it can be found that the Mott lobes are
asymmetric with respect to A,, which is different compared
with the JCH model [15]. This means that the phase bound-
aries at higher excitation are also asymmetric with respect to
A,. Comparing Figs. 2(b) and 2(c) with Figs. 2(d) and 2(e),
it can also be found that the stable regions for a negative
detuning are smaller than ones of the positive detuning.

Figure 3 shows the critical chemical potential as a function
of A, for different coupling strength G, /g,. As shown in
Figs. 3(a)-3(d), the Mott lobes get smaller and closer together
with increasing |A,/g.|, which means that the stable area
decreases with |A,/g,| increasing. At the same time, the
stable area decreases with the increase of the total excitation
number, which can be observed in Figs. 3(a)-3(d). However,
it is easy to see that all Mott lobes are symmetric with respect
to the detuning A, except for the states between |0, 0, —) and
[1,0, —) according to Fig. 3(a), which means that the phase
boundary at higher excitation number is symmetric only when
G,./8. = 0. Furthermore, the stable region of state |0, 0, —)
decreases with increasing of the coupling strength G,,/g, as
shown in Fig. 3(e).

After investigating the boundaries between different Mott
lobes within the dressed-state formalism in our system, we
will calculate the phase diagram by applying the mean-field

3 3
2 2
1 1
3 3
2 2

-

10 102 10° 10 102 10°
”/941 ”/gn

FIG. 4. The superfluid order parameter as a function of the
photon hopping rate « and the chemical potential p for different
coupling strengths G, with A, /g, = A./g, = 0. (a) G,,/g. =0,
(0) G/8a =0.2,(c) G,/ga = 0.8,(d) Gin/gs = 1.2. (€)—(f) Analyti-
cal boundaries between different phases as a function of (© — w.)/g.
and « /g, with A,/g. = An/8a = 0. (e) Gu/8. = 0.2, (f) G,/8a =
1.2.

theory. The well-known feature of the superfluid—-Mott-
insulator quantum phase transition is the Mott lobe which is
exhibited in Fig. 4 for different values of G,, with a cutoff
N = 20 to the total excitation number basis so that 0 < m <
N. Note that, without photon-magnon interaction in Eqgs. (1)
and (2), i.e., G, = 0, the hybrid system considered here can
be reduced to the usual JCH model. In order to make a com-
parison with the cases discussed below, the phase diagram for
the JCH model is also plotted in Fig. 4(a). One can easily find
in the superfluid—Mott-insulator quantum phase transition that
the parameter space is separated into two distinct phases as
shown in Figs. 4(b)—-4(d). There is clearly the superfluid phase
corresponding to the regions where ¢ # O for large hopping
rate k, and the stable ground state of each site is a coherent
state. The Mott insulator phase corresponds to the case of
Y = 0 for a small hopping rate «. Each Mott lobe corresponds
to a state with an integer number of the total excitations per
site. It can be also found that the size of Mott lobes decreases
with increasing excitation number, which is similar to the
JCH model but significantly different from the BH model, and
this behavior may be understood due to the reasons that the
effective on-site interaction strength increases nonlinear with
the excitation number [7,71,72]. Comparing Figs. 4(b)-4(d)
with Fig. 4(a), one can find that a small hopping rate is needed
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to delocalize the photons and make them enter the superfluid
phase. Additionally, the enhanced photon-magnon coupling
strength G,, causes the region of each Mott lobe to decrease
and the superfluid phase area is increased with the increasing
of G,, correspondingly. These results mean that the coupling
of the photon-magnon favors the superfluid phase, which is
consistent with the results shown in Fig. 3. Furthermore,
the analytical results based on Eq. (17) are also shown in
Figs. 4(e) and 4(f), which are described by the blue dashed
contours. As expected, we find well agreement between this
analytical calculation and the full mean-field calculation in
determining the boundary between the superfluid and the Mott
insulator phase when the hopping rate is weak. By comparing
Figs. 4(e) and 4(f) with Figs. 4(b) and 4(d), the analytical
results obtained from the second-order perturbation theory are
no longer applicable at large hopping rate.

According to the H-P transformation, the magnon fre-
quency can be regulated by a bias magnetic field [35,74,75].
Therefore, the detuning A,, between the cavity photon and the
magnon can be used as an experimentally feasible parame-
ter for adjusting the superfluid—-Mott-insulator quantum phase
transition. Figure 5 exhibits the change of the phase diagram
for different detuning A,,. Figures 5(a), 5(c), and 5(e) show
that the region of each Mott lobe does not change significantly
but tends to increase slightly for the detuning A,, positive
increasing. While for a negative detuning, i.e., A, < 0, the
effect on the transition of the superfluid-Mott-insulator can
be enhanced as shown in Figs. 5(b) and 5(d). It can be found
that the detuning decreases not only reduce the area of the
Mott lobe, but also have a tendency to diminish the Mott lobe
with large total excitation number N. Then it is more favorable
for the generation of highly excited Mott lobes when A,, is
positive. In addition, it can be easily found that there seems to
be a “revival” of the Mott lobe appearing in the top left corner
region marked in dark blue of the phase diagram. Physically,
the “revival” Mott lobes are unreliable, and these phenomena
are also presented in the mean-field phase diagrams of the
JCH model and Dicke-Bose-Hubbard model [15,79], which
is a pure artifact of the truncation of Hilbert space based on a
fixed cutoff for the maximum excitation number [72].

In order to determine the excitation numbers corresponding
to each Mott lobe in the phase diagram. We plot the average
excitations number (N) and the average photon (magnon)
number (n) ({m)) per site for the normalized chemical poten-
tial (u — w.)/g, in Fig. 6 for N = 20. It is easy to see that the
evolutions of (N), (n), (m) reflect a conspicuous staircase due
to the competition between diverse ground states, and accord-
ingly, each Mott lobe in the phase diagram is characterized by
the corresponding plateaus. Figure 6 also exhibits (N), (n),
and (m) for different coupling strengths G,, and detunings
A,,. Itis easy to notice that the enhanced photon-magnon cou-
pling strength G, leads to a increase of the average magnon
number (m) per site and a decrease of the average photon
number (n) per site correspondingly. It is not difficult to
understand that the large detuning A,, can cause the photon-
magnon coupling to become weaker and thus reduces the
excitation of the magnons. Therefore, with increasing A,,, the
average number of magnons tends to decrease as shown in
Fig. 6(b).

(a)

s Ommm
=-0.5 3
ik :
215 1
2
10% 102 10°
K/ga

0 O
=20.5 =05
3 3 A
LL-1.5 11-1-5
T2 T2
10% 102 10° 10% 102 10°
’{/ga /f/ga

FIG. 5. The superfluid order parameter as a function of the
photon hopping rate « and the chemical potential n for differ-
ent detuning of magnon and cavity photon A, /g, with G,,/g, =
0.2,A,/84=0.5.(a) An/ga =0, (b) Ap/ga = —0.5,(c) An/ga =
0.5,(d)A,/ga=—1,(e) Ay/ga = 1.

In general, the superfluid-Mott-insulator quantum phase
transition can partly be understood by the competition arising
from the effective on-site repulsive potential and the photon
hopping. As the effective on-site repulsive potential dominates

(a) (b)
30 gz 30

Gm=0<m -
A20[n,
:< ——Gm=0.3<n>
Vo[

G:=1.2<n

-2 -1 0 -2 -1 (i}
(/l - W(:)/!]n, (/‘ - ’w‘u)/!](,

FIG. 6. The average excitations number (N) (photon number (n)
and magnon number (m)) as a function of the normalized chemical
potential (1 — w,)/g, for different detunings and photon-magnon
coupling strength, where the hopping rate « /g, is zero. (a) A,/g, =
An/ga=0.5.(b)A/g. =0.5,G, /g, =0.2.
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FIG. 7. (a) The normalized effective repulsive potential U, ver-
sus the cavity-magnon coupling strength G,,/g,. (b) The normalized
effective repulsive potential U, as a function of the detuning A,,/g,.
We set x/g, = 0; other parameters are the same as in Fig. 4 and
Fig. 5.

the hopping rate, the system should be in a Mott insulator
phase; on the contrary, the system is in a superfluid state.
The effective on-site repulsive potential U, can be defined
as U, = Eny1,— — Ey.— — w,.. Figure 7(a) shows the effective
on-site repulsive potential U, for the coupling strength G,,.
Obviously, U, decreases with the increase of G,,. Thus, for
a strong photon-magnon coupling, the diminished effective
on-site repulsive potential leads the system to be more delo-
calized for a certain hopping rate. Then, the superfluid region
increases accordingly as shown in Fig. 4. One can also notice
that U, increases with the increase of detuning A,,, which
leads to the Mott insulator phase area increase corresponding
to Fig. 5.

V. CONCLUSION AND DISCUSSION

In conclusion, we have investigated the superfluid—-Mott-
insulator quantum phase transition of light in a two-
dimensional cavity optomagnonic array system. First, the
critical hopping rate of lower excitations is obtained by the
second perturbation theory and Landau second-order phase
transition theory. In addition, the phase boundaries between
the Mott insulator phase and the superfluid phase give accord-
ingly the critical hopping rate, and these results are consistent
with the numerical ones when the hopping rate is weak. The
coupling strength is favorable to the superfluid phase, and the
stable region of the Mott lobe decreases with the increase of
the photon-magnon coupling strength. Finally, the complete
and stable phase diagram is exhibited on the positive photon-

J

magnon detuning, and the highly excited Mott lobe tends to
disappear when the detuning is negative. The effective on-
site repulsive potential can explain these results. Additionally,
our work may extend the studies based on the cavity opto-
magnonic system and offer an interesting way to explore the
superfluid—Mott-insulator quantum phase transition of light.

Experimentally, it is a mature technology that a strong
coupling magnon-photon system can be engineered in experi-
ments [42,61,75,80,81]. In addition, the system of a two-level
superconducting flux qubit, playing the role of an artificial
atom, coupled with the cavity mode has also been realized in
experiments [82]. And the linear array of three-dimensional
cavities and qubits for experiments has been developed [83].
Then, the theoretical model proposed here may be experi-
mentally realized if one integrates the processes of the three
points mentioned above. For simplicity, the parameters are
scaled by g, for numerical results. According to the theoretical
results obtained here, the parameter values for superfluid—
Mott-insulator quantum phase transition of light will vary for
different conditions. To observe these phenomena, the range
of parameters is as follows: The coupling strength between
photon and magnon G,,/2m is 0—-180 MHz, the detuning of
photon-magnon A,, is —0.942-0.942 GHz, and the hopping
rate « is 94.2 kHz to 28 x 103 kHz [40,82], which can be
achievable in the cavity optomagnonic system experimentally.
Furthermore, the disorder of this system induces some inter-
esting effects for the quantum phase transition. Taking the
JCH model as an example, the disorder of the light-matter
interaction and the disorder of detuning between light matter
both induce the transition superfluid phase to the Mott insula-
tor phase, and the disorder in the hopping induces a glassy
fluid phase [84]. On the other hand, the effects of the tiny
disorder and the weak fluctuations due to temperature can be
suppressed by the excitation-hole gap in the Mott-insulator
region, then the Mott phase are robust and should be realizable
in the considered system [15].
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APPENDIX A: THE SPECIFIC FORM FOR SUBSPACE IN H&?

Nw. —Nu VNG,, 0 0 0
VNG, (N—=Dw,+w,—Np V2N =1)G,, 0 0
0 V2N = 1)G,, (N = 2)w. + 2w, — Nu 0 0
0 0 V3N =2)G,, 0 0
Hi= 0 0 ,
. 0 0
0 0 0 we+ (N —Dwy — N /NG,
0 0 0 VNG, Nawy — N

(N+Dx(N+1)
(AL)
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w, + (N —Dw, —Nu VN — 1G,, 0 0
VN =1G, wa+ (N = 2w + w0, —Npt V2N =2)G,, 0
0 V2N =2)G,, wa + (N = 3w + 2w, —Nu 0
0 0 V3NN —3)G, 0
H, =
0 0 0 wq + wc + (N —2)w, — Nt
0 0 0 VN =1G,,

APPENDIX B: THE EIGENVALUES AND PARAMETERS FOR ANALYTICAL SOLUTIONS

The lower excitions eigenvalues are as follows:
Epo =0,

Eip=w—pu,

Ei_=w—pn—,/g+G2,
Eir=0—pn+,8+G,,

Eyo=2(w— ),

By =20 —p) -

38 4562 - /30&G, T ¢, 1 9,

V2

E) v =2(w—pn)+

38 +5G2 — /302G, + g, + 9G,

S

38 +5G2, + /308G, + 6, + 9G},

B =2(w—u)—

S

By =2(w—p)+

38+ 5G2 + /302G, + 6 + 9G,

S

The parameters involved in Eq. (14) are the following:

. VE+G
a=TTme
m

_ %

Gﬂl
By = 1+al +dj,

d

’

V30g2Gy, + &4 +9G,, — T, + 3G,
67/28,Gn
V3082G2 + & +9Gh — 782 + 3G,
T 6\/§gaGm
J—V30£G + ¢ 1 9G] + 3¢ + 56
- 2G,, ’
B=ad+bV+3*+d*+1,

b=

’

’

d

J—V30ECE T & + 9GS, + 3¢ + 5G2,(V302GE, + &, 1 9G,, — g + 3G

‘= 124.G,

043705-8
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The second-order corrections to the energy and the normalized eigenstates are the following:

OISO ©0)] 5[ £(0)|2
B 4 i i O 1 W Y Big
- (Z’“ﬁ)< EOQ _E® E9 _EQ (B18)
(S ©) A.‘¢(0>> (6 <0>‘ |¢(O)>
gl)Z—ZK’sﬁ(WW(O)) WW(O))’ (B19)
OIPSIRQ
¢>(1) w(¢1(0)| |1?(0))}‘1’(0))’ (B20)
< 0) AT|¢(O)> BB (d+\/§cal +L1d]), (B21)
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