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Nonlinear interferometry in all spatiotemporal degrees of freedom
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The effects of the spatiotemporal degrees of freedom on the practical implementation of an SU(1,1) in-
terferometer are investigated. A recently developed Wigner functional approach is used to obtain the phase
sensitivity of such an SU(1,1) interferometer in terms of all the spatiotemporal degrees of freedom. It reveals how
experimental scale parameters affect the performance of the interferometer. The analysis provides information
that would be useful for quantum metrology applications.
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I. INTRODUCTION

Quantum metrology can achieve a precision better than
the standard quantum limit [1]. However, the preparation of
the quantum states required in such systems (such as bright
squeezed states or NOON states with a large N) is often a
challenging task. One way to avoid this challenge is with the
aid of nonlinear interferometry, also called SU(1,1) interfer-
ometry [2].

There are many variants of the SU(1,1) interferometer
[3–7]. The initial proposal [2] called for a system consisting
of two nonlinear crystals where the first produces spontaneous
parametric down-converted light, which passes through the
second to produce stimulated parametric down-conversion.
The latter is then used to measure an observable that is
sensitive to a phase modulation applied to the spontaneous
parametric down-converted light prior to entering the second
crystal. The system sensitivity can be improved by stimulating
the light from the first crystal with a coherent state seed [4,5].
Subsequently, other types of states have been considered for
the seed [6] and various other proposals have been made
to improve the sensitivity (see, for example, Ref. [7]). The
nonlinear SU(1,1) interferometer has been used in different
applications [8,9].

Here, we investigate the effects of the spatiotemporal de-
grees of freedom, as imposed by a bulk optics implementation
of an SU(1,1) interferometer. We choose to consider the bulk
optics implementation because the spatiotemporal degrees of
freedom play a more prominent role is such systems. Al-
though we will initially derive the expressions of the phase
sensitivity for both seeded and unseeded cases, we will focus
on the former in the detailed calculations due to its better
performance. For this purpose, we consider a coherent state
seed field. The analysis will show how it can be generalized
to address other types of quantum states used as seed.

There are several dimension parameters in the practical
implementation of such a system that can play a role. Promi-
nent among them are the scale parameters that govern the
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transverse spatial dimensions and the bandwidth of the fre-
quency spectra. Therefore, we will focus on the effect of these
quantities in our final analysis. Nevertheless, our analysis can
also be used to investigate the effects of any other experimen-
tal parameters.

The output after the first crystal is often regarded as
a twin-beam state, even when it is produced by sponta-
neous parametric down-conversion. The implied “two beams”
are redirected as input to the second crystal, often with
the aid of mirrors. Although stimulated parametric down-
conversion produces two distinct beams—the signal and
idler beams—after the first crystal, spontaneous parametric
down-conversion produces a cone of light with a cone angle
determined by the phase-matching conditions. To form two
beams out of this cone, one needs to impose a form of post-
processing (as implied by the mirrors), which could affect the
performance of the system. Although the effect of such post-
processing can be readily incorporated in our analysis, it is not
our intention to investigate the effect of such postprocessing
here. Therefore, we consider the situation where the light after
the first crystal is guided into the next crystal with the aid of
a 4 f system (see Fig. 1), ignoring any aperturing effects. The
implied 180◦ rotation of the transverse plane does not have
any effect on the process.

Our analysis is based on a Wigner functional approach
[10,11] incorporating the spatiotemporal degrees of freedom
with the particle-number degrees of freedom [12,13]. It leads
to a functional phase space that generalizes the Moyal formal-
ism [14–16] and represents all quantum optical states without
any enforced truncations or approximations. We will use the
results of an investigation of stimulated parametric down-
conversion where we incorporated the spatiotemporal degrees
of freedom with this Wigner functional approach [17]. In the
seeded case, our analysis of the effect of the scale parameters
produces results reminiscent of those obtained from the inves-
tigation of the spatiotemporal effects in the measurement of
the squeezing parameter [11].

To aid our calculations, we use the thin-crystal ap-
proximation, which is generally a well-satisfied condition
in most experimental implementations of parametric down-
conversion. The thin-crystal approximation assumes that the
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FIG. 1. Diagrammatic representation of the seeded SU(1,1) in-
terferometer system.

Rayleigh range of the pump beam is much larger than the
thickness of the nonlinear crystals. The crystal thickness
divided by the Rayleigh range provides a dimensionless ex-
pansion parameter for the kernel functions. In the thin-crystal
limit, this expansion parameter is set equal to zero, leaving
only the leading order term.

The performance of the nonlinear SU(1,1) interferometer is
often compared to that of a Mach-Zehnder interferometer. The
phase sensitivities of the common phase in the SU(1,1) system
is compared to that of the relative phase in the Mach-Zehnder
interferometer. The latter saturates the standard quantum limit
(or shot-noise limit) under ideal circumstances. The for-
mer surpasses the standard quantum limit, approaching the
Heisenberg limit, provided that the number of photons that is
used in the comparison is taken to be the number of photons
“inside the interferometer,” making the SU(1,1) system ap-
pear more favorable. Such a comparison may be misleading,
because the nonlinear process is extremely inefficient and
generally uses far fewer photons in the interference process
than what is available in the pump. It would be difficult for
the SU(1,1) system to beat the performance of the Mach-
Zehnder interferometer if the latter is allowed to use the same
pump as its input. A comparison between the Mach-Zehnder
interferometer and the SU(1,1) interferometer also depends
on the nature of the implementation of the SU(1,1) system.
In an unseeded system, the number of photons inside the
interferometer is spontaneously generated in the first crystal,
but in a seeded system the seed is amplified by the nonlin-
ear process to determine the number of photons inside the
interferometer. The number of seed photons appears as an
additional experimental parameter, leading to a difference in
the number of photons that can take part in the interference.
While the Mach-Zehnder interferometer is a linear process,
the seeded SU(1,1) system is a nonlinear system that amplifies
the number of input photons in the seed. Instead of the usual
comparison, we ask the following: how do the experimental
parameters affect the improvement in performance due to
the amplification in the seeded SU(1,1) system over that of
the Mach-Zehnder interferometer, given the same number of
input photons? For this reason, the number of seed photons is
equated to the number of input photons in the Mach-Zehnder
interferometer.

II. WIGNER FUNCTIONAL CALCULATION

A. The output state

The output of a stimulated parametric down-conversion
process is given by the Bogoliubov transformation of the
seed state. For the SU(1,1) interferometer, this Bogoliubov

transformation is performed twice. The SU(1,1) interferom-
eter system is diagrammatically represented in Fig. 1. For a
coherent state seed, the Wigner functional of the output state
has the form of a displaced squeezed vacuum state, given by
[17]

Wout[α] = N0 exp[−2(α∗ − η∗) � A � (α − η)

− (α − η) � B∗ � (α − η)

− (α∗ − η∗) � B � (α∗ − η∗)], (1)

where N0 is a normalization constant, α is the field variable
that parametrizes the functional phase space on which the
Wigner functional is defined, η is the parameter function for
the displacement of the output state, and A and B are squeezed
state kernels produced by both Bogoliubov transformations.
The �-contraction is a shorthand notation for an integration
over wave vectors:

α∗ � A � α ≡
∫

α∗(k)A(k, k′)α(k′)
d2kdω

(2π )3

d2k′dω′

(2π )3
. (2)

The parameter function of the original input coherent state is
given by the twice Bogoliubov transformed parameter func-
tion of the output state. In other words, the parameter function
for the displaced squeezed vacuum state after the first crystal
is given by

ζ = U2 � η + V2 � η∗,

ζ ∗ = η∗ � U †
2 + η � V †

2 ,
(3)

where U2 and V2 are the Bogoliubov kernels of the second
nonlinear crystal. The input coherent state parameter function
is then given by

ξ = U1 � ζ + V1 � ζ ∗,

ξ ∗ = ζ ∗ � U †
1 + ζ � V †

1 ,
(4)

where U1 and V1 are the Bogoliubov kernels of the first non-
linear crystal. The squeezed state kernels for the combined
process are given by

A = U2 � A1 � U2 + V2 � AT
1 � V ∗

2

+ U2 � B1 � V ∗
2 + V2 � B∗

1 � U2,

B = U2 � A1 � V2 + V2 � AT
1 � U ∗

2

+ U2 � B1 � U ∗
2 + V2 � B∗

1 � V2,

(5)

where

A1 = U1 � U1 + V1 � V ∗
1 ,

B1 = U1 � V1 + V1 � U ∗
1 .

(6)

Here, it is assumed that in both of the Bogoliubov transforma-
tions U is Hermitian, U † = U , and V is symmetric, V T = V .
In addition to these properties, the thin-crystal approximation
also implies that

U � U − V � V ∗ = 1,

U � V − V � U ∗ = 0,
(7)
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where 1 represents the identity kernel. With the aid of Eq. (6),
we can express the combined kernels as

A = A†
0 � A0 + BT

0 � B∗
0,

B = A†
0 � B0 + BT

0 � A∗
0,

(8)

where

A0 = U1 � U2 + V1 � V ∗
2 ,

B0 = U1 � V2 + V1 � U ∗
2 ,

(9)

which are in general neither symmetric nor Hermitian.

B. Inverse Bogoliubov

The relationships among the parameter functions are given
as input parameter functions in terms of the Bogoliubov trans-
formations of the output parameter functions. From Eqs. (3)
and (4), the initial parameter function is related to the final
parameter function by

ξ = A0 � η + B0 � η∗,

ξ ∗ = η∗ � A†
0 + η � B†

0.
(10)

While the A0 operation retains the location of the beam, the B0

operation flips it to the other side. Therefore, we can separate
η into the two beams as η = η1 − η2 (see Fig. 1). However, ξ

is nonzero on only one side. Hence,

ξ = A0 � η1 − B0 � η∗
2,

0 = A0 � η2 − B0 � η∗
1,

ξ ∗ = η∗
1 � A†

0 − η2 � B†
0,

0 = η∗
2 � A†

0 − η1 � B†
0.

(11)

For the subsequent calculation, we need the output pa-
rameter functions η in terms of the inverse Bogoliubov
transformations of the input parameter functions ξ . To invert
the transformations, we use the relationships

A†
0 � A0 − BT

0 � B∗
0 = 1,

A†
0 � B0 − BT

0 � A∗
0 = 0,

(12)

that follow from Eq. (7). These operations then produce the
required inverses

η1 = A†
0 � ξ,

η2 = BT
0 � ξ ∗.

(13)

C. Phase modulation

In the SU(1,1) interferometer, the two beams that pass
through the 4 f system are modulated by arbitrary phases
to produce an interference effect in the output. The phase
modulation is a purely spatial operation that is performed on
the parameter function of the state. It can be introduced in the
filter plane of the 4 f system where the angular spectrum of
the parameter function is represented in coordinate space, and
presents the two beams as spatially separated parts of the spec-
trum. The phase modulation is therefore easily implemented
by applying it as different phase modulations on the separate
beams.

For the combined parameter function after the first crystal
given by ζ = ζ1 − ζ2, the effect of the phase modulation is to
produce

ζ → ζ ′ = exp(iφ1)ζ1 − exp(iφ2)ζ2, (14)

where we introduce arbitrary phase modulations for the two
beams independently (see Fig. 1). For the combined process,
represented by both nonlinear crystals, linking the initial pa-
rameter function with the final parameter function, we will
simply insert the appropriate phase into the terms where they
would contribute. While the U operations retain the location
of the beams, the V operations flip them to the other side. In
addition, the field is complex conjugated when it is flipped.
Hence,

η1 = A†
0 � ξ → exp(iφ1)U2 � U1 � ξ

+ exp(−iφ2)V2 � V ∗
1 � ξ,

η2 = ξ ∗ � B0 → ξ ∗ � U1 � V2 exp(−iφ1)

+ ξ ∗ � V1 � U ∗
2 exp(iφ2).

(15)

We can represent the phase modulations in terms of a common
phase φ0 and a relative phase φ	, so that

φ1 = φ0 + 1
2φ	,

φ2 = φ0 − 1
2φ	.

(16)

The effect is that the relative phase factor exp(iφ	) gives a rel-
ative phase modulation for the two beams, while the common
phase factor exp(iφ0) produces an interference effect within
the kernel functions. Since the two beams do not overlap, the
relative phase acts as a global phase for each beam, respec-
tively, and does not produce any effect. Only the common
phase has an effect, which is introduced in the kernels. It is
a consequence of the conjugation that is incorporated with the
V process.

We also need to keep track of the phase of the pump. The
solutions of the Bogoliubov kernels show that the global phase
of the pump parameter function appears as a phase factor
exp(iϕp) with V , but that U is independent of this phase. In
the thin-crystal limit, U is real valued and V = i exp(iϕp)V0,
where V0 is real valued.

III. PHASE SENSITIVITY MEASUREMENT

A. Generating function

To determine the phase sensitivity, we measure the total
intensity of the down-converted light in the final output [4].
It is proportional to the total number of photons, as obtained
from the number operator n̂. The result is used to compute the
phase sensitivity according to

	φ2 = 〈n̂2〉 − 〈n̂〉2

(∂φ〈n̂〉)2
. (17)

For the purpose of our calculations, we use the generating
function for the Wigner functionals of projection operators
[18], generalized to incorporate the spatiotemporal degrees of
freedom. It is given by

WP̂ =
(

2

1 + J

)tr{D}
exp(−2J α∗ � D � α), (18)

043701-3



FILIPPUS S. ROUX PHYSICAL REVIEW A 105, 043701 (2022)

where D represents a detector kernel, J is the generating
parameter, and

J � 1 − J

1 + J
. (19)

The generating function can be used to compute the photon
statistics of a state, observed by a photon-number-resolving
detector represented by the kernel D. The Wigner functional
of the projection operator for n photons is obtained by

W|n〉〈n|[α] = ∂n
J WP̂

∣∣
J=0. (20)

We can compute the different moments directly from the gen-
erating function. Applying a derivative to the Wigner function
in Eq. (18) before setting J = 1, we get the Wigner function

for the number operator

∂JWP̂|J=1 = α∗ � D � α − 1
2 tr{D} ≡ Wn̂, (21)

which produces the expectation value for the number of pho-
tons in a state when it is traced with the Wigner function of
that state.

For the second moment we apply two derivatives, where
the result after the first derivative is multiplied by J . After
both derivatives, we set J = 1.

For the current case under consideration, we will assume
that the detection process measures the total power of the
output. For this purpose, we can set the detector kernel D = 1.
It implies that tr{D} = �, where � ∼ ∞ represents that car-
dinality of the functional phase space.

We multiply the generating function in Eq. (18) with the
Wigner functional of the output state given in Eq. (1), and we
evaluate the functional integration over β.

The result is given by

W (J ) =
∫

Wfin[β] WP̂[β](J ) D◦[β]

= N02�

(1 + J )�

∫
exp[−2(β∗ − η∗) � A � (β − η) − (β − η) � B∗ � (β − η)

− (β∗ − η∗) � B � (β∗ − η∗) − 2J β∗ � β] D◦[β]

= N02�

(1 + J )�

∫
exp[−2α∗ � A � α − α∗ � B � α∗ − α � B∗ � α − 2J (α∗ + η∗) � (α + η)] D◦[α], (22)

where we shift the integration field variable β → α + η. The result after the functional integration is

W (J ) = exp(J 2-terms − 2J |η|2)√
det{A + J 1} det{A + J 1 − B � (A∗ + J 1)−1 � B∗}

, (23)

where the J 2-terms, which are only required for the calculation of the second moment, are given by

J 2-terms = J 2η∗ � A−1 � η + J 2[η∗ − η � (A∗)−1 � B∗] � A � [η − B � (A∗)−1 � η∗]

≈ J 2[2η∗ � A � η − η∗ � B � η∗ − η � B∗ � η]. (24)

Here we set all the J ′s inside the kernels to zero. Due to the
overall factor of J 2, they would only contribute for moments
higher than the second moment. Moreover, we assume the
output state is pure, allowing us to set

[A − B � (A∗)−1 � B∗]−1 = A. (25)

B. First moment and phase derivative

The first moment is obtained from one derivative of
Eq. (23) with respect to J . It produces

〈n̂〉 = ∂JW (J )|J=1 = |η|2 + 1
2 tr{A − 1}. (26)

For a strong enough seed field, the first term would completely
dominate over the second term, which is the spontaneous
parametric down-converted background light. Hence, we can
assume

〈n̂〉 = |η|2 = |η1|2 + |η2|2, (27)

where η = η1 − η2 is given in terms of Eq. (15). On the other
hand, in those cases in which there is no seed field, the first
moment is given by only the spontaneous parametric down-
converted light

〈n̂〉 = 1
2 tr{A − 1}. (28)

Now, we apply derivatives on the phase φ0. When Eq. (15)
is substituted into Eq. (27), the relative phase cancels every-
where. Therefore, we apply the derivative with respect to the
common phase. It leads to

∂φ0〈n̂〉 = −i2 exp(−i2φ0)ξ ∗ � U1 � B2 � V ∗
1 � ξ

+ i2 exp(i2φ0)ξ ∗ � V1 � B∗
2 � U1 � ξ, (29)

where

B2 = U2 � V2 + V2 � U ∗
2 ,

B∗
2 = U ∗

2 � V ∗
2 + V ∗

2 � U2.
(30)

The total quantity is real valued because the two terms
are complex conjugates of each other. Representing the
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contractions as

ξ ∗ � Ua � Bb � V ∗
a � ξ = G1 = |G1| exp(iγ1),

ξ ∗ � Va � B∗
b � Ua � ξ = G∗

1 = |G1| exp(−iγ1),
(31)

we obtain the simpler expression

∂φ0〈n̂〉 = 4|G1| sin(2φ0 − γ1). (32)

C. Second moment and the variance

The second moment is compute by

〈n̂2〉 = ∂J [J∂JW (J )]|J=1

= η∗ � A � η − 1
2η∗ � B � η∗ − 1

2η � B∗ � η

+ ‖η‖4 + ‖η‖2tr{A − 1}
+ 1

4 (tr{A − 1})2 + 1
2 tr{A � A − 1}, (33)

where we used Eq. (25) to assume that

A � B � (A∗)−1 � (A∗)−1 � B∗ ≈ A − A−1. (34)

The variance is then given by

σ 2 = 〈n̂2〉 − 〈n̂〉2

= η∗ � A � η − 1
2η∗ � B � η∗ − 1

2η � B∗ � η

+ 1
2 tr{A � A − 1}. (35)

If we assume that η is a strong field, then we can discard the
background term and only have

σ 2 = η∗ � A � η − 1
2η∗ � B � η∗ − 1

2η � B∗ � η. (36)

For the case without an input seed field η = 0, we have

σ 2 = 1
2 tr{A � A − 1}. (37)

In terms of Eq. (8), the variance in Eq. (36) can be repre-
sented as

σ 2 = (η∗
1 � A†

0 − η2 � B†
0) � (A0 � η1 − B0 � η∗

2 )

+ (η∗
1 � BT

0 − η2 � AT
0 ) � (B∗

0 � η1 − A∗
0 � η∗

2 ). (38)

Based on the identities in Eq. (7), it follows that

A0 � η1 − B0 � η∗
2 = [cos(φ0)1 − i sin(φ0)A1] � ξ,

B∗
0 � η1 − A∗

0 � η∗
2 = i sin(φ0)B∗

1 � ξ .
(39)

We can now substitute these expressions into Eq. (38) and get

σ 2 = cos2(φ0)‖ξ‖2 + sin2(φ0)G0, (40)

where we define

G0 � ξ ∗ � (A1 � A1 + B1 � B∗
1 ) � ξ . (41)

D. Phase sensitivity expression

The phase sensitivity in the SU(1,1) interferometer is ob-
tained by substituting Eqs. (32) and (40) into Eq. (17). The
result reads

	φ2
0 = cos2(φ0)‖ξ‖2 + sin2(φ0)G0

16|G1|2 sin2(2φ0 − γ1)
. (42)

The quantities G0 and |G1| depend on the detailed calculations
involving the kernels and the parameter function of the seed.

In general, γ1 can be identified with the global phase of the
pump at the second crystal relative to the first. Based on the
definition of G0 in Eq. (41) and the properties of the kernels A1

and B1, it is clear that G0 � ‖ξ‖2. Hence, to minimize 	φ2
0 ,

we need to consider the point where φ0 = 0 and γ1 = ±π/2.
It gives

	φ0,min = ‖ξ‖
4|G1| =

√
Ns

4|G1| , (43)

where Ns = ‖ξ‖2 represents the average number of photons
in the seed. In the weak squeezing limit, we have Ua ∼ 1,
Va ∝ �a, and Bb ∝ �b. Based on the definition in Eq. (31),
we get |G1| ∼ �1�2Ns, where �1,2 represents the squeezing
parameters of the two nonlinear processes, respectively, each
being proportional to

√
Np, where Np is the average number of

photons in the pump. Hence,

	φ0 ∼ 1

4�a�b
√

Ns
∝ 1

Np
√

Ns
. (44)

It shows that an increase in squeezing gives a reduction in
	φ0. However, for larger squeezing, the behavior becomes
that of a hyperbolic sinusoidal function.

For comparison, we consider the phase sensitivity that is
obtained in the Mach-Zehnder interferometer with respect to
the relative phase φ	. It is given by

	φ2
	 = 2

1 + cos(φ	)

Nin sin2(φ	)
, (45)

and is minimized in the limit where φ	 → π , leading to

	φ	,min = 1√
Nin

. (46)

This result coincides with the standard quantum limit.
We see that the SU(1,1) interferometer does not change the

behavior with respect to the number of input photons Nin if
we associate it with Ns. However, it produces a smaller value
thanks to the amplifications imposed by the two nonlinear
processes. Here, we study the improvement of the seeded
SU(1,1) interferometer over the Mach-Zehnder interferometer
by considering the ratio

ρ � 	φ0,min

	φ	,min
. (47)

For Nin = Ns, the effect is to remove the dependence on Ns.
The standard quantum limit is then given when this ratio is
ρ = 1.

IV. DETAIL CALCULATIONS

A. Thin-crystal limit

To get a more precise indication of the improvement, we
use the expressions of the kernels in the thin-crystal limit and
calculate the contractions and the overlap with a seed field.
For definiteness, we choose a parametric down-conversion
process based on type I phase-matching. However, similar
calculations can be done for other scenarios, even when the
nonlinear process is based on four-wave mixing. The resulting
calculations are similar to those done in [11].
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The parameter function of the seed field is assumed to be
given by a Gaussian angular spectrum

ξ =
√

2πξ0ws exp
(− 1

4w2
s |K|2)h(ω − ωs; δs), (48)

where ξ0 = ‖ξ‖ is the magnitude of the function, and ws is
its beam waist radius at the crystal plane. The spectrum is
represented by h(ω − ωs; δs) as a (monochromatic) narrow
spectral function with a bandwidth δs and a center frequency
ωs. For the sake of the calculations, we model h(ω − ωs; δs)
as a normalized Gaussian function.

Here, we use the Bogoliubov kernels in the thin-crystal
limit, given by

U = 1 +
∞∑

n=1

1

4n
H (e)

2n ,

V = i exp(iϕ)
∞∑

n=1

2

4n
H (o)

2n−1,

(49)

in terms of

H (o)
m = i

M0Mm
1

m5/4m!
ω

m/2
1 (ωp − ω1)m/2

× h(ωp − ω1 − ω2,
√

mδp)

× exp

(
− w2

p|K1 + K2|2
4m

)
for odd m,

H (e)
m = M0Mm

1

m5/4m!
ω

m/2
1 (ωp − ω1)m/2

× h(ω1 − ω2,
√

mδp)

× exp

(
− w2

p|K1 − K2|2
4m

)
for even m,

(50)

where K is the two-dimensional transverse part of the wave
vector k, and

M0 = π5/4w2
p√

δp
, M1 = 4

√
2L|ψ0|σooe

√
ωpδp

π3/4c2wp
. (51)

Here |ψ0| is the magnitude of the pump parameter function,
wp is its beam waist radius at the crystal plane, ωp is the center
frequency, δp is the bandwidth, L is the length of the nonlinear
crystal, σooe is the nonlinear coefficient of the crystal for type
I phase matching expressed as a cross-section area, and c is
the speed of light.

The Bogoliubov kernels are given as summations of
contractions Ho,e

m ≡ Hm�
0 of a bilinear kernel H0. It is ob-

tained under the semiclassical approximation with a coherent
state pump, parametrized by a Gaussian parameter function,
given by

ψ =
√

2πψ0wp exp
(− 1

4w2
p|K|2)h(ω − ωp; δp). (52)

Under the assumption that the conditions at the two crystals
are the same, apart from a different global phase for the pump,

the calculations lead to

G0 =
∞∑

n=0

|ξ0|2(2�)2n

(2n)!(1 + nν)
√

1 + nμ
,

|G1| =
∞∑

n=1

|ξ0|2(2�)2n

(2n)!(1 + nν)
√

1 + nμ
,

(53)

where

ν = w2
s

w2
p

, μ = δ2
p

δ2
s

, (54)

and

� = L|ψ0|σooeω
3/2
p

√
δp√

2π3/4c2wp

(55)

is the squeezing parameter. We see that the only difference
in the two quantities in Eq. (53) is the starting point of the
summation. Hence, |G1| = G0 − |ξ0|2. The summation for G0

is similar to the one in [11]. Since we have two nonlinear
processes here, the squeezing parameter is multiplied by 2 in
the current case. The summation is not tractable in this form.
Different approximations were considered in [11] to study the
behavior.

B. Ideal case

If we can neglect the factors containing ν and μ in Eq. (53),
which would mean that ws � wp and δp � δs, then the sum-
mations evaluate to

G0 = |ξ0|2 cosh(2�),

|G1| = 2|ξ0|2 sinh2(�).
(56)

Hence,

	φ2
0 = 1 + 2 sin2(φ0) sinh2(�)

64|ξ0|2 sinh4(�) sin2(2φ0 − γ1)
. (57)

Then, for φ0 = 0 and γ1 = ±π/2, the minimum is
obtained as

	φ0,min = 1

8|ξ0| sinh2(�)
= 1

8
√

Ns sinh2(�)
. (58)

C. Finite seed beam width

Consider now the case where μ = 0 and ν > 0, as we
would have with a finite seed beam width, comparable to the
pump beam width. The summation for |G1| then becomes

|G1| =
∞∑

n=1

|ξ0|2(2�)2n

(2n)!(1 + nν)

= |ξ0|2
[

1F2

(
1

ν
;

1

2
, 1 + 1

ν
; �2

)
− 1

]
, (59)

where 1F2 is a hypergeometric function.
In Fig. 2, we plot the minimum phase sensitivity ratio ρ as

a function of the squeezing parameter � with μ = 0 for differ-
ent values of ν, including the ideal case in which ν = 0. The
effect of ν is to reduce the squeezing, which in turn increases
the value of ρ. In general, larger values of ν require larger
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FIG. 2. The minimum phase sensitivity ratio ρ is plotted as a
function of the squeezing parameter � for different values of ν with
μ = 0. The standard quantum limit threshold is indicated by a dotted
line.

values of the squeezing parameter � to cross the standard
quantum limit threshold, which is indicated by the dotted line
in Fig. 2. To achieve the same value for the minimum phase
sensitivity ratio at a larger value of ν, we need to increase
the amount of squeezing. As a comparison, the amount of
squeezing needed for ν = 1 when ws = wp to achieve the
same performance as in the ideal case is about 40% larger.
Therefore, the best performance for a given amount of squeez-
ing is obtained for ws � wp.

D. Finite bandwidth

When we consider the case in which ν = 0 and μ > 0, the
resulting summation does not evaluate to a closed form. Here,
we use the auxiliary integral [11],

1√
a

= 1√
π

∫
exp(−ax2) dx, (60)

to replace the factor
√

1 + nμ. The resulting function can be
summed so that

|G1| =
∞∑

n=1

|ξ0|2(2�)2n

(2n)!
√

1 + nμ

= |ξ0|2√
π

∫
exp(−x2) cosh

[
2� exp

( − 1
2μx2)]dx

− |ξ0|2. (61)

It represents an ensemble average of different values of |G1|
for a varying squeezing parameter given by � exp(− 1

2μx2)
under a Gaussian probability density. Its effect is to reduce
the squeezing, depending on μ. The integral over x cannot be
evaluated. However, it can be approximated by a summation
over discrete values of x. The resulting curves of the minimum
phase sensitivity ratio ρ are shown in Fig. 3 as a function of
� for different values of μ, including the ideal case where
μ = 0, and with ν = 0. The effect of a finite value for μ is to
reduce the squeezing, which increases the value of ρ, similar
to the case for a finite ν. However, the effect of μ is less severe
than the effect of ν. While, a larger value of μ requires a larger

FIG. 3. The minimum phase sensitivity ratio ρ is plotted as a
function of the squeezing parameter � for different values of μ with
ν = 0. The standard quantum limit threshold is indicated by a dotted
line.

value of � to cross the standard quantum limit threshold,
indicated by the dotted line in Fig. 3, the required increase in
� is not as large as with larger values of ν. Here, the amount of
squeezing needed for μ = 1 when δs = δp to achieve the same
performance as in the ideal case is only about 18% larger. Still,
the best performance is obtained for δs � δp.

E. Discussion

The results of the investigation indicate that the perfor-
mance of the system is improved for smaller values of ν and
μ. The reason for these trends can be found in the relationship
between these quantities and the spatiotemporal information
capacity of the system.

Starting with ν, which is the squared ratio of the seed beam
width to the pump beam width, we note that the width of the
angular spectrum of a beam is inversely proportional to its
beam width: A very large beam width represents a narrow
angular spectrum. The pump’s spectral width serves as the
resolution in terms of which the angular spectrum of the seed
is resolved. It follows from the fact that the pump governs
the parameters in the kernels that mediate the amplification
of the seed field. Therefore, if the pump beam’s angular spec-
trum is much smaller than the seed beam’s angular spectrum,
then a larger number of spatial degrees of freedom can be
transferred through the system. The ratio of the seed angular
spectral width to the pump angular spectral width can there-
fore represent a kind of space-bandwidth product, which in
turn represents the capacity of the system to convey spatial
information. However, ν is defined as the inverse of this ratio.
Therefore, a smaller value of ν implies a larger value of the
space-bandwidth product, giving a larger spatial information
capacity.

A similar understanding follows for μ. In this case, it is
related to a kind of time-bandwidth product, which represents
the capacity of the system to convey temporal information,
but with a few differences. First, μ is defined directly in terms
of the temporal bandwidths, but with the pump bandwidth
on top. Second, while the space-bandwidth product repre-
sents a two-dimensional space, the time-bandwidth product is
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associated with a one-dimensional space. So, if the seed
beam’s temporal spectrum is resolved in terms of the pump
spectral width, then μ is proportional to the inverse square
of the time-bandwidth product. A smaller value of μ thus
represents a larger time-bandwidth product, leading to a larger
temporal information capacity.

V. CONCLUSIONS

The effect of the dominant spatiotemporal scale parameters
in a practical implementation of a nonlinear SU(1,1) interfer-
ometer is investigated. Using the Wigner functional approach,
which incorporates all the spatiotemporal degrees of freedom
without the need for discretization or truncation, we perform
the calculations directly in terms of the kernel functions and
thus do not require knowledge of the eigenbasis of the process
[19]. It makes it possible to perform calculations to all orders
in the expansion of the kernels under the thin-crystal approx-
imation. At the same time, it incorporates all the relevant
experimental parameters to make the analytically calculated
result relevant for practical experimental investigations. Thus,

it allows one to investigate the effects of such experimental pa-
rameters with analytical results without the need for numerical
simulations.

Under ideal circumstances, which do not correspond to
the situation in practical implementations, the phase sensi-
tivity in a nonlinear interferometer follows the optimal trend
as determined by the theoretical amount of squeezing. The
current analysis shows how this ideal performance is affected
by the dominant scale parameters in the implementation. To
approach the ideal performance, the bandwidth of the seed
field needs to be much larger than that of the pump field. At
the same time, the beam width of the seed field needs to be
much smaller than that of the pump field. The effect of the
beam width is more severe than that of the bandwidth.
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